Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/transportation/src/G4Transportation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/transportation/src/G4Transportation.cc (Version 11.3.0) and /processes/transportation/src/G4Transportation.cc (Version 10.4.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
                                                   >>  27 // $Id: G4Transportation.cc 2011/06/10 16:19:46 japost Exp japost $
 27 //                                                 28 // 
 28 // -------------------------------------------     29 // ------------------------------------------------------------
 29 //  GEANT 4  include file implementation           30 //  GEANT 4  include file implementation
 30 //                                                 31 //
 31 // -------------------------------------------     32 // ------------------------------------------------------------
 32 //                                                 33 //
 33 // This class is a process responsible for the     34 // This class is a process responsible for the transportation of 
 34 // a particle, ie the geometrical propagation      35 // a particle, ie the geometrical propagation that encounters the 
 35 // geometrical sub-volumes of the detectors.       36 // geometrical sub-volumes of the detectors.
 36 //                                                 37 //
 37 // It is also tasked with the key role of prop     38 // It is also tasked with the key role of proposing the "isotropic safety",
 38 //   which will be used to update the post-ste     39 //   which will be used to update the post-step point's safety.
 39 //                                                 40 //
 40 // ===========================================     41 // =======================================================================
                                                   >>  42 // Modified:
                                                   >>  43 //   10 Jan  2015, M.Kelsey: Use G4DynamicParticle mass, NOT PDGMass
                                                   >>  44 //   28 Oct  2011, P.Gumpl./J.Ap: Detect gravity field, use magnetic moment 
                                                   >>  45 //   20 Nov  2008, J.Apostolakis: Push safety to helper - after ComputeSafety
                                                   >>  46 //    9 Nov  2007, J.Apostolakis: Flag for short steps, push safety to helper
                                                   >>  47 //   19 Jan  2006, P.MoraDeFreitas: Fix for suspended tracks (StartTracking)
                                                   >>  48 //   11 Aug  2004, M.Asai: Add G4VSensitiveDetector* for updating stepPoint.
                                                   >>  49 //   21 June 2003, J.Apostolakis: Calling field manager with 
                                                   >>  50 //                     track, to enable it to configure its accuracy
                                                   >>  51 //   13 May  2003, J.Apostolakis: Zero field areas now taken into
                                                   >>  52 //                     account correclty in all cases (thanks to W Pokorski).
                                                   >>  53 //   29 June 2001, J.Apostolakis, D.Cote-Ahern, P.Gumplinger: 
                                                   >>  54 //                     correction for spin tracking   
                                                   >>  55 //   20 Febr 2001, J.Apostolakis:  update for new FieldTrack
                                                   >>  56 //   22 Sept 2000, V.Grichine:     update of Kinetic Energy
 41 // Created:  19 March 1997, J. Apostolakis         57 // Created:  19 March 1997, J. Apostolakis
 42 // ===========================================     58 // =======================================================================
 43                                                    59 
 44 #include "G4Transportation.hh"                     60 #include "G4Transportation.hh"
 45 #include "G4TransportationProcessType.hh"          61 #include "G4TransportationProcessType.hh"
 46 #include "G4TransportationLogger.hh"           << 
 47                                                    62 
 48 #include "G4PhysicalConstants.hh"                  63 #include "G4PhysicalConstants.hh"
 49 #include "G4SystemOfUnits.hh"                      64 #include "G4SystemOfUnits.hh"
 50 #include "G4ProductionCutsTable.hh"                65 #include "G4ProductionCutsTable.hh"
 51 #include "G4ParticleTable.hh"                      66 #include "G4ParticleTable.hh"
 52                                                    67 
 53 #include "G4ChargeState.hh"                        68 #include "G4ChargeState.hh"
 54 #include "G4EquationOfMotion.hh"                   69 #include "G4EquationOfMotion.hh"
 55                                                    70 
 56 #include "G4FieldManagerStore.hh"                  71 #include "G4FieldManagerStore.hh"
 57                                                    72 
 58 #include "G4Navigator.hh"                      << 
 59 #include "G4PropagatorInField.hh"              << 
 60 #include "G4TransportationManager.hh"          << 
 61                                                << 
 62 #include "G4TransportationParameters.hh"       << 
 63                                                << 
 64 class G4VSensitiveDetector;                        73 class G4VSensitiveDetector;
 65                                                    74 
 66 G4bool G4Transportation::fUseMagneticMoment=fa     75 G4bool G4Transportation::fUseMagneticMoment=false;
 67 G4bool G4Transportation::fUseGravity= false;   <<  76 
 68 G4bool G4Transportation::fSilenceLooperWarning <<  77 // #define  G4DEBUG_TRANSPORT 1
 69                                                    78 
 70 //////////////////////////////////////////////     79 //////////////////////////////////////////////////////////////////////////
 71 //                                                 80 //
 72 // Constructor                                     81 // Constructor
 73                                                    82 
 74 G4Transportation::G4Transportation( G4int verb <<  83 G4Transportation::G4Transportation( G4int verbosity )
 75   : G4VProcess( aName, fTransportation ),      <<  84   : G4VProcess( G4String("Transportation"), fTransportation ),
                                                   >>  85     fTransportEndPosition( 0.0, 0.0, 0.0 ),
                                                   >>  86     fTransportEndMomentumDir( 0.0, 0.0, 0.0 ),
                                                   >>  87     fTransportEndKineticEnergy( 0.0 ),
                                                   >>  88     fTransportEndSpin( 0.0, 0.0, 0.0 ),
                                                   >>  89     fMomentumChanged(true),
                                                   >>  90     fEndGlobalTimeComputed(false), 
                                                   >>  91     fCandidateEndGlobalTime(0.0),
                                                   >>  92     fParticleIsLooping( false ),
                                                   >>  93     fNewTrack( true ),
                                                   >>  94     fFirstStepInVolume( true ),
                                                   >>  95     fLastStepInVolume( false ), 
                                                   >>  96     fGeometryLimitedStep(true),
 76     fFieldExertedForce( false ),                   97     fFieldExertedForce( false ),
 77     fPreviousSftOrigin( 0.,0.,0. ),                98     fPreviousSftOrigin( 0.,0.,0. ),
 78     fPreviousSafety( 0.0 ),                        99     fPreviousSafety( 0.0 ),
                                                   >> 100     // fParticleChange(),
 79     fEndPointDistance( -1.0 ),                    101     fEndPointDistance( -1.0 ), 
                                                   >> 102     fThreshold_Warning_Energy( 100 * MeV ),  
                                                   >> 103     fThreshold_Important_Energy( 250 * MeV ), 
                                                   >> 104     fThresholdTrials( 10 ), 
                                                   >> 105     fNoLooperTrials( 0 ),
                                                   >> 106     fSumEnergyKilled( 0.0 ), fMaxEnergyKilled( 0.0 ), 
 80     fShortStepOptimisation( false ) // Old def    107     fShortStepOptimisation( false ) // Old default: true (=fast short steps)
 81 {                                                 108 {
                                                   >> 109   // set Process Sub Type
 82   SetProcessSubType(static_cast<G4int>(TRANSPO    110   SetProcessSubType(static_cast<G4int>(TRANSPORTATION));
 83   pParticleChange= &fParticleChange;   // Requ    111   pParticleChange= &fParticleChange;   // Required to conform to G4VProcess 
 84   SetVerboseLevel(verbosity);                     112   SetVerboseLevel(verbosity);
 85                                                   113 
 86   G4TransportationManager* transportMgr ;         114   G4TransportationManager* transportMgr ; 
 87                                                   115 
 88   transportMgr = G4TransportationManager::GetT    116   transportMgr = G4TransportationManager::GetTransportationManager() ; 
 89                                                   117 
 90   fLinearNavigator = transportMgr->GetNavigato    118   fLinearNavigator = transportMgr->GetNavigatorForTracking() ; 
 91                                                   119 
 92   fFieldPropagator = transportMgr->GetPropagat    120   fFieldPropagator = transportMgr->GetPropagatorInField() ;
 93                                                   121 
 94   fpSafetyHelper =   transportMgr->GetSafetyHe    122   fpSafetyHelper =   transportMgr->GetSafetyHelper();  // New 
 95                                                   123 
 96   fpLogger = new G4TransportationLogger("G4Tra << 124   // Cannot determine whether a field exists here, as it would 
 97                                                << 125   //  depend on the relative order of creating the detector's 
 98   if( G4TransportationParameters::Exists() )   << 126   //  field and this process. That order is not guaranted.
 99   {                                            << 127   // Instead later the method DoesGlobalFieldExist() is called
100     auto trParams= G4TransportationParameters: << 
101                                                << 
102     SetThresholdWarningEnergy(  trParams->GetW << 
103     SetThresholdImportantEnergy( trParams->Get << 
104     SetThresholdTrials( trParams->GetNumberOfT << 
105     G4Transportation::fSilenceLooperWarnings=  << 
106   }                                            << 
107   else {                                       << 
108      SetHighLooperThresholds();                << 
109      // Use the old defaults: Warning = 100 Me << 
110   }                                            << 
111                                                   128 
112   PushThresholdsToLogger();                    << 
113   // Should be done by Set methods in SetHighL << 
114                                                << 
115   static G4ThreadLocal G4TouchableHandle* pNul    129   static G4ThreadLocal G4TouchableHandle* pNullTouchableHandle = 0;
116   if ( !pNullTouchableHandle)                  << 130   if ( !pNullTouchableHandle)  { pNullTouchableHandle = new G4TouchableHandle; }
117   {                                            << 
118     pNullTouchableHandle = new G4TouchableHand << 
119   }                                            << 
120   fCurrentTouchableHandle = *pNullTouchableHan    131   fCurrentTouchableHandle = *pNullTouchableHandle;
121     // Points to (G4VTouchable*) 0                132     // Points to (G4VTouchable*) 0
122                                                   133 
123                                                << 
124 #ifdef G4VERBOSE                                  134 #ifdef G4VERBOSE
125   if( verboseLevel > 0)                           135   if( verboseLevel > 0) 
126   {                                               136   { 
127      G4cout << " G4Transportation constructor>    137      G4cout << " G4Transportation constructor> set fShortStepOptimisation to "; 
128      if ( fShortStepOptimisation )  { G4cout < << 138      if ( fShortStepOptimisation )  G4cout << "true"  << G4endl;
129      else                           { G4cout < << 139      else                           G4cout << "false" << G4endl;
130   }                                               140   } 
131 #endif                                            141 #endif
132 }                                                 142 }
133                                                   143 
134 //////////////////////////////////////////////    144 //////////////////////////////////////////////////////////////////////////
135                                                   145 
136 G4Transportation::~G4Transportation()             146 G4Transportation::~G4Transportation()
137 {                                                 147 {
138   if( fSumEnergyKilled > 0.0 )                 << 148   if( (verboseLevel > 0) && (fSumEnergyKilled > 0.0 ) )
139   {                                            << 149   { 
140      PrintStatistics( G4cout );                << 150     G4cout << " G4Transportation: Statistics for looping particles " << G4endl;
141   }                                            << 151     G4cout << "   Sum of energy of loopers killed: " <<  fSumEnergyKilled << G4endl;
142   delete fpLogger;                             << 152     G4cout << "   Max energy of loopers killed: " <<  fMaxEnergyKilled << G4endl;
143 }                                              << 153   } 
144                                                << 
145 ////////////////////////////////////////////// << 
146                                                << 
147 void                                           << 
148 G4Transportation::PrintStatistics( std::ostrea << 
149 {                                              << 
150    outStr << " G4Transportation: Statistics fo << 
151    if( fSumEnergyKilled > 0.0 || fNumLoopersKi << 
152    {                                           << 
153       outStr << "   Sum of energy of looping t << 
154              <<  fSumEnergyKilled / CLHEP::MeV << 
155              << " from " << fNumLoopersKilled  << 
156              <<  "  Sum of energy of non-elect << 
157              << fSumEnergyKilled_NonElectron / << 
158              << "  from " << fNumLoopersKilled << 
159              << G4endl;                        << 
160       outStr << "   Max energy of  *any type*  << 
161              << "    its PDG was " << fMaxEner << 
162       if( fMaxEnergyKilled_NonElectron > 0.0 ) << 
163       {                                        << 
164          outStr << "   Max energy of non-elect << 
165                 << fMaxEnergyKilled_NonElectro << 
166                 << "    its PDG was " << fMaxE << 
167       }                                        << 
168       if( fMaxEnergySaved > 0.0 )              << 
169       {                                        << 
170          outStr << "   Max energy of loopers ' << 
171          outStr << "   Sum of energy of looper << 
172                 <<  fSumEnergySaved << G4endl; << 
173          outStr << "   Sum of energy of unstab << 
174                 << fSumEnergyUnstableSaved <<  << 
175       }                                        << 
176    }                                           << 
177    else                                        << 
178    {                                           << 
179       outStr << " No looping tracks found or k << 
180    }                                           << 
181 }                                                 154 }
182                                                   155 
183 //////////////////////////////////////////////    156 //////////////////////////////////////////////////////////////////////////
184 //                                                157 //
185 // Responsibilities:                              158 // Responsibilities:
186 //    Find whether the geometry limits the Ste    159 //    Find whether the geometry limits the Step, and to what length
187 //    Calculate the new value of the safety an    160 //    Calculate the new value of the safety and return it.
188 //    Store the final time, position and momen    161 //    Store the final time, position and momentum.
189                                                   162 
190 G4double G4Transportation::AlongStepGetPhysica << 163 G4double G4Transportation::
191   const G4Track& track,                        << 164 AlongStepGetPhysicalInteractionLength( const G4Track&  track,
192   G4double,  //  previousStepSize              << 165                                              G4double, //  previousStepSize
193   G4double currentMinimumStep, G4double& curre << 166                                              G4double  currentMinimumStep,
194   G4GPILSelection* selection)                  << 167                                              G4double& currentSafety,
                                                   >> 168                                              G4GPILSelection* selection )
195 {                                                 169 {
196   // Initial actions moved to  StartTrack()    << 170   G4double geometryStepLength= -1.0, newSafety= -1.0; 
                                                   >> 171   fParticleIsLooping = false ;
                                                   >> 172 
                                                   >> 173   // Initial actions moved to  StartTrack()   
197   // --------------------------------------       174   // --------------------------------------
198   // Note: in case another process changes tou    175   // Note: in case another process changes touchable handle
199   //    it will be necessary to add here (for  << 176   //    it will be necessary to add here (for all steps)   
200   // fCurrentTouchableHandle = aTrack->GetTouc    177   // fCurrentTouchableHandle = aTrack->GetTouchableHandle();
201                                                   178 
202   // GPILSelection is set to defaule value of     179   // GPILSelection is set to defaule value of CandidateForSelection
203   // It is a return value                         180   // It is a return value
204   //                                              181   //
205   *selection = CandidateForSelection;          << 182   *selection = CandidateForSelection ;
                                                   >> 183 
                                                   >> 184   fFirstStepInVolume= fNewTrack || fLastStepInVolume;
                                                   >> 185   fLastStepInVolume= false;
                                                   >> 186   fNewTrack = false;
206                                                   187 
207   // Get initial Energy/Momentum of the track     188   // Get initial Energy/Momentum of the track
208   //                                              189   //
209   const G4ThreeVector startPosition    = track << 190   const G4DynamicParticle*    pParticle  = track.GetDynamicParticle() ;
210   const G4ThreeVector startMomentumDir = track << 191   const G4ParticleDefinition* pParticleDef   = pParticle->GetDefinition() ;
                                                   >> 192   G4ThreeVector startMomentumDir       = pParticle->GetMomentumDirection() ;
                                                   >> 193   G4ThreeVector startPosition          = track.GetPosition() ;
211                                                   194 
212   // The Step Point safety can be limited by o << 195   // G4double   theTime        = track.GetGlobalTime() ;
                                                   >> 196 
                                                   >> 197   // The Step Point safety can be limited by other geometries and/or the 
213   // assumptions of any process - it's not alw    198   // assumptions of any process - it's not always the geometrical safety.
214   // We calculate the starting point's isotrop    199   // We calculate the starting point's isotropic safety here.
                                                   >> 200   //
                                                   >> 201   G4ThreeVector OriginShift = startPosition - fPreviousSftOrigin ;
                                                   >> 202   G4double      MagSqShift  = OriginShift.mag2() ;
                                                   >> 203   if( MagSqShift >= sqr(fPreviousSafety) )
215   {                                               204   {
216     const G4double MagSqShift = (startPosition << 205      currentSafety = 0.0 ;
217                                                << 206   }
218     if(MagSqShift >= sqr(fPreviousSafety))     << 207   else
219       currentSafety = 0.0;                     << 208   {
220     else                                       << 209      currentSafety = fPreviousSafety - std::sqrt(MagSqShift) ;
221       currentSafety = fPreviousSafety - std::s << 
222   }                                               210   }
223                                                   211 
224   // Is the particle charged or has it a magne    212   // Is the particle charged or has it a magnetic moment?
225   //                                              213   //
226   const G4DynamicParticle* pParticle = track.G << 214   G4double particleCharge = pParticle->GetCharge() ; 
                                                   >> 215   G4double magneticMoment = pParticle->GetMagneticMoment() ;
                                                   >> 216   G4double       restMass = pParticle->GetMass() ;
227                                                   217 
228   const G4double particleMass   = pParticle->G << 218   fGeometryLimitedStep = false ;
229   const G4double particleCharge = pParticle->G << 219   // fEndGlobalTimeComputed = false ;
230   const G4double kineticEnergy = pParticle->Ge << 
231                                                << 
232   const G4double magneticMoment    = pParticle << 
233   const G4ThreeVector particleSpin = pParticle << 
234                                                   220 
235   // There is no need to locate the current vo    221   // There is no need to locate the current volume. It is Done elsewhere:
236   //   On track construction                   << 222   //   On track construction 
237   //   By the tracking, after all AlongStepDoI    223   //   By the tracking, after all AlongStepDoIts, in "Relocation"
238                                                   224 
239   // Check if the particle has a force, EM or     225   // Check if the particle has a force, EM or gravitational, exerted on it
240   //                                              226   //
                                                   >> 227   G4FieldManager* fieldMgr=0;
                                                   >> 228   G4bool          fieldExertsForce = false ;
241                                                   229 
242   G4bool eligibleEM =                          << 230   G4bool gravityOn = false;
243     (particleCharge != 0.0) || ((magneticMomen << 231   G4bool fieldExists= false;  // Field is not 0 (null pointer)
244   G4bool eligibleGrav = (particleMass != 0.0)  << 
245                                                << 
246   fFieldExertedForce = false;                  << 
247                                                   232 
248   if(eligibleEM || eligibleGrav)               << 233   fieldMgr = fFieldPropagator->FindAndSetFieldManager( track.GetVolume() );
                                                   >> 234   if( fieldMgr != 0 )
249   {                                               235   {
250     if(G4FieldManager* fieldMgr =              << 236      // Message the field Manager, to configure it for this track
251          fFieldPropagator->FindAndSetFieldMana << 237      fieldMgr->ConfigureForTrack( &track );
252     {                                          << 238      // Is here to allow a transition from no-field pointer 
253       // User can configure the field Manager  << 239      //   to finite field (non-zero pointer).
254       fieldMgr->ConfigureForTrack(&track);     << 240 
255       // Called here to allow a transition fro << 241      // If the field manager has no field ptr, the field is zero 
256       // to finite field (non-zero pointer).   << 242      //     by definition ( = there is no field ! )
257                                                << 243      const G4Field* ptrField= fieldMgr->GetDetectorField();
258       // If the field manager has no field ptr << 244      fieldExists = (ptrField!=0) ;
259       //   by definition ( = there is no field << 245      if( fieldExists ) 
260       if(const G4Field* ptrField = fieldMgr->G << 246      {
261         fFieldExertedForce =                   << 247         gravityOn= ptrField->IsGravityActive();
262           eligibleEM || (eligibleGrav && ptrFi << 248 
263     }                                          << 249         if(  (particleCharge != 0.0) 
264   }                                            << 250             || (fUseMagneticMoment && (magneticMoment != 0.0) )
265                                                << 251             || (gravityOn          && (restMass != 0.0) )
266   G4double geometryStepLength = currentMinimum << 252           )
267                                                << 253         {
268   if(currentMinimumStep == 0.0)                << 254            fieldExertsForce = fieldExists; 
269   {                                            << 255         }
270     fEndPointDistance = 0.0;                   << 256      }
271     fGeometryLimitedStep = false;  //  Old cod << 
272     // Changed to avoid problems when setting  << 
273     fMomentumChanged           = false;        << 
274     fParticleIsLooping         = false;        << 
275     fEndGlobalTimeComputed     = false;        << 
276     fTransportEndPosition      = startPosition << 
277     fTransportEndMomentumDir   = startMomentum << 
278     fTransportEndKineticEnergy = kineticEnergy << 
279     fTransportEndSpin          = particleSpin; << 
280   }                                               257   }
281   else if(!fFieldExertedForce)                 << 258   // G4cout << " G4Transport:  field exerts force= " << fieldExertsForce
                                                   >> 259   //        << "  fieldMgr= " << fieldMgr << G4endl;
                                                   >> 260   fFieldExertedForce = fieldExertsForce; 
                                                   >> 261   
                                                   >> 262   if( !fieldExertsForce ) 
282   {                                               263   {
283     fGeometryLimitedStep = false;              << 264      G4double linearStepLength ;
284     if(geometryStepLength > currentSafety || ! << 265      if( fShortStepOptimisation && (currentMinimumStep <= currentSafety) )
285     {                                          << 266      {
286       const G4double linearStepLength = fLinea << 267        // The Step is guaranteed to be taken
287         startPosition, startMomentumDir, curre << 268        //
288                                                << 269        geometryStepLength   = currentMinimumStep ;
289       if(linearStepLength <= currentMinimumSte << 270        fGeometryLimitedStep = false ;
290       {                                        << 271      }
291         geometryStepLength = linearStepLength; << 272      else
292         fGeometryLimitedStep = true;           << 273      {
293       }                                        << 274        //  Find whether the straight path intersects a volume
294       // Remember last safety origin & value.  << 275        //
295       //                                       << 276        linearStepLength = fLinearNavigator->ComputeStep( startPosition, 
296       fPreviousSftOrigin = startPosition;      << 277                                                          startMomentumDir,
297       fPreviousSafety    = currentSafety;      << 278                                                          currentMinimumStep, 
298       fpSafetyHelper->SetCurrentSafety(current << 279                                                          newSafety) ;
299     }                                          << 280        // Remember last safety origin & value.
300                                                << 281        //
301     fEndPointDistance    = geometryStepLength; << 282        fPreviousSftOrigin = startPosition ;
302                                                << 283        fPreviousSafety    = newSafety ; 
303     fMomentumChanged       = false;            << 284        fpSafetyHelper->SetCurrentSafety( newSafety, startPosition);
304     fParticleIsLooping     = false;            << 285 
305     fEndGlobalTimeComputed = false;            << 286        currentSafety = newSafety ;
306     fTransportEndPosition =                    << 287           
307       startPosition + geometryStepLength * sta << 288        fGeometryLimitedStep= (linearStepLength <= currentMinimumStep); 
308     fTransportEndMomentumDir   = startMomentum << 289        if( fGeometryLimitedStep )
309     fTransportEndKineticEnergy = kineticEnergy << 290        {
310     fTransportEndSpin          = particleSpin; << 291          // The geometry limits the Step size (an intersection was found.)
311   }                                            << 292          geometryStepLength   = linearStepLength ;
312   else  //  A field exerts force               << 293        } 
313   {                                            << 294        else
314     const auto pParticleDef    = pParticle->Ge << 295        {
315     const auto particlePDGSpin = pParticleDef- << 296          // The full Step is taken.
316     const auto particlePDGMagM = pParticleDef- << 297          geometryStepLength   = currentMinimumStep ;
317                                                << 298        }
318     auto equationOfMotion = fFieldPropagator-> << 299      }
319                                                << 300      fEndPointDistance = geometryStepLength ;
320     // The charge can change (dynamic), theref << 
321     //                                         << 
322     equationOfMotion->SetChargeMomentumMass(   << 
323       G4ChargeState(particleCharge, magneticMo << 
324       pParticle->GetTotalMomentum(), particleM << 
325                                                << 
326     G4FieldTrack aFieldTrack(startPosition,    << 
327                              track.GetGlobalTi << 
328                              startMomentumDir, << 
329                              particleCharge, p << 
330                              0.0,  // Length a << 
331                              particlePDGSpin); << 
332                                                << 
333     // Do the Transport in the field (non rect << 
334     //                                         << 
335     const G4double lengthAlongCurve = fFieldPr << 
336       aFieldTrack, currentMinimumStep, current << 
337       kineticEnergy < fThreshold_Important_Ene << 
338                                                << 
339     if(lengthAlongCurve < geometryStepLength)  << 
340       geometryStepLength = lengthAlongCurve;   << 
341                                                << 
342     // Remember last safety origin & value.    << 
343     //                                         << 
344     fPreviousSftOrigin = startPosition;        << 
345     fPreviousSafety    = currentSafety;        << 
346     fpSafetyHelper->SetCurrentSafety(currentSa << 
347                                                   301 
348     fGeometryLimitedStep = fFieldPropagator->I << 302      // Calculate final position
349     //                                         << 303      //
350     // It is possible that step was reduced in << 304      fTransportEndPosition = startPosition+geometryStepLength*startMomentumDir ;
351     // previous zero steps. To cope with case  << 
352     // in full, we must rely on PiF to obtain  << 
353                                                << 
354     G4bool changesEnergy =                     << 
355       fFieldPropagator->GetCurrentFieldManager << 
356                                                << 
357     fMomentumChanged   = true;                 << 
358     fParticleIsLooping = fFieldPropagator->IsP << 
359                                                   305 
360     fEndGlobalTimeComputed = changesEnergy;    << 306      // Momentum direction, energy and polarisation are unchanged by transport
361     fTransportEndPosition    = aFieldTrack.Get << 307      //
362     fTransportEndMomentumDir = aFieldTrack.Get << 308      fTransportEndMomentumDir   = startMomentumDir ; 
                                                   >> 309      fTransportEndKineticEnergy = track.GetKineticEnergy() ;
                                                   >> 310      fTransportEndSpin          = track.GetPolarization();
                                                   >> 311      fParticleIsLooping         = false ;
                                                   >> 312      fMomentumChanged           = false ; 
                                                   >> 313      fEndGlobalTimeComputed     = false ;
                                                   >> 314   }
                                                   >> 315   else   //  A field exerts force
                                                   >> 316   {
                                                   >> 317      G4double       momentumMagnitude = pParticle->GetTotalMomentum() ;
                                                   >> 318      G4ThreeVector  EndUnitMomentum ;
                                                   >> 319      G4double       lengthAlongCurve ;
                                                   >> 320 
                                                   >> 321      G4ChargeState chargeState(particleCharge,             // The charge can change (dynamic)
                                                   >> 322                                magneticMoment,
                                                   >> 323                                pParticleDef->GetPDGSpin() ); 
                                                   >> 324      // For insurance, could set it again
                                                   >> 325      // chargeState.SetPDGSpin(pParticleDef->GetPDGSpin() );   // Provisionally in same object
                                                   >> 326 
                                                   >> 327      G4EquationOfMotion* equationOfMotion = fFieldPropagator->GetCurrentEquationOfMotion();
                                                   >> 328 
                                                   >> 329      equationOfMotion->SetChargeMomentumMass( chargeState,
                                                   >> 330                                               momentumMagnitude,
                                                   >> 331                                               restMass);
                                                   >> 332       
                                                   >> 333      G4FieldTrack  aFieldTrack = G4FieldTrack( startPosition, 
                                                   >> 334                                                track.GetGlobalTime(), // Lab.
                                                   >> 335                                                // track.GetProperTime(), // Particle rest frame
                                                   >> 336                                                track.GetMomentumDirection(),
                                                   >> 337                                                track.GetKineticEnergy(),
                                                   >> 338                                                restMass,
                                                   >> 339                                                particleCharge, 
                                                   >> 340                                                track.GetPolarization(), 
                                                   >> 341                                                pParticleDef->GetPDGMagneticMoment(),
                                                   >> 342                                                0.0,                    // Length along track
                                                   >> 343                                                pParticleDef->GetPDGSpin()
                                                   >> 344         ) ;
                                                   >> 345 
                                                   >> 346      if( currentMinimumStep > 0 ) 
                                                   >> 347      {
                                                   >> 348         // Do the Transport in the field (non recti-linear)
                                                   >> 349         //
                                                   >> 350         lengthAlongCurve = fFieldPropagator->ComputeStep( aFieldTrack,
                                                   >> 351                                                           currentMinimumStep, 
                                                   >> 352                                                           currentSafety,
                                                   >> 353                                                           track.GetVolume() ) ;
                                                   >> 354 
                                                   >> 355         fGeometryLimitedStep= fFieldPropagator->IsLastStepInVolume();
                                                   >> 356         // It is possible that step was reduced in PropagatorInField due to previous zero steps
                                                   >> 357         // To cope with case that reduced step is taken in full, we must rely on PiF to obtain this
                                                   >> 358         // value.
363                                                   359 
364     // G4cout << " G4Transport: End of step pM << 360         geometryStepLength = std::min( lengthAlongCurve, currentMinimumStep );
                                                   >> 361         
                                                   >> 362         // Remember last safety origin & value.
                                                   >> 363         //
                                                   >> 364         fPreviousSftOrigin = startPosition ;
                                                   >> 365         fPreviousSafety    = currentSafety ;         
                                                   >> 366         fpSafetyHelper->SetCurrentSafety( currentSafety, startPosition);
                                                   >> 367      }
                                                   >> 368      else
                                                   >> 369      {
                                                   >> 370         geometryStepLength   = lengthAlongCurve= 0.0 ;
                                                   >> 371         fGeometryLimitedStep = false ;
                                                   >> 372      }
                                                   >> 373       
                                                   >> 374      // Get the End-Position and End-Momentum (Dir-ection)
                                                   >> 375      //
                                                   >> 376      fTransportEndPosition = aFieldTrack.GetPosition() ;
365                                                   377 
366     fEndPointDistance  = (fTransportEndPositio << 378      // Momentum:  Magnitude and direction can be changed too now ...
                                                   >> 379      //
                                                   >> 380      fMomentumChanged         = true ; 
                                                   >> 381      fTransportEndMomentumDir = aFieldTrack.GetMomentumDir() ;
367                                                   382 
368     // Ignore change in energy for fields that << 383      fTransportEndKineticEnergy  = aFieldTrack.GetKineticEnergy() ; 
369     // This hides the integration error, but g << 
370     fTransportEndKineticEnergy =               << 
371       changesEnergy ? aFieldTrack.GetKineticEn << 
372     fTransportEndSpin = aFieldTrack.GetSpin(); << 
373                                                   384 
374     if(fEndGlobalTimeComputed)                 << 385      if( fFieldPropagator->GetCurrentFieldManager()->DoesFieldChangeEnergy() )
375     {                                          << 386      {
376       // If the field can change energy, then  << 387         // If the field can change energy, then the time must be integrated
377       //    - so this should have been updated << 388         //    - so this should have been updated
378       //                                       << 389         //
379       fCandidateEndGlobalTime = aFieldTrack.Ge << 390         fCandidateEndGlobalTime   = aFieldTrack.GetLabTimeOfFlight();
                                                   >> 391         fEndGlobalTimeComputed    = true;
380                                                   392 
381       // was ( fCandidateEndGlobalTime != trac << 393         // was ( fCandidateEndGlobalTime != track.GetGlobalTime() );
382       // a cleaner way is to have FieldTrack k << 394         // a cleaner way is to have FieldTrack knowing whether time is updated.
383     }                                          << 395      }
384 #if defined(G4VERBOSE) || defined(G4DEBUG_TRAN << 396      else
385     else                                       << 397      {
386     {                                          << 398         // The energy should be unchanged by field transport,
387       // The energy should be unchanged by fie << 399         //    - so the time changed will be calculated elsewhere
388       //    - so the time changed will be calc << 400         //
389       //                                       << 401         fEndGlobalTimeComputed = false;
390       // Check that the integration preserved  << 
391       //     -  and if not correct this!       << 
392       G4double startEnergy = kineticEnergy;    << 
393       G4double endEnergy   = fTransportEndKine << 
394                                                   402 
395       static G4ThreadLocal G4int no_large_edif << 403         // Check that the integration preserved the energy 
396       if(verboseLevel > 1)                     << 404         //     -  and if not correct this!
397       {                                        << 405         G4double  startEnergy= track.GetKineticEnergy();
398         if(std::fabs(startEnergy - endEnergy)  << 406         G4double  endEnergy= fTransportEndKineticEnergy; 
                                                   >> 407 
                                                   >> 408         static G4ThreadLocal G4int no_inexact_steps=0, no_large_ediff;
                                                   >> 409         G4double absEdiff = std::fabs(startEnergy- endEnergy);
                                                   >> 410         if( absEdiff > perMillion * endEnergy )
399         {                                         411         {
400           static G4ThreadLocal G4int no_warnin << 412           no_inexact_steps++;
401                                      moduloFac << 413           // Possible statistics keeping here ...
402           no_large_ediff++;                    << 414         }
403           if((no_large_ediff % warnModulo) ==  << 415         if( verboseLevel > 1 )
                                                   >> 416         {
                                                   >> 417           if( std::fabs(startEnergy- endEnergy) > perThousand * endEnergy )
404           {                                       418           {
405             no_warnings++;                     << 419             static G4ThreadLocal G4int no_warnings= 0, warnModulo=1,
406             std::ostringstream message;        << 420                                        moduloFactor= 10; 
407             message << "Energy change in Step  << 421             no_large_ediff ++;
408                     << G4endl << "     Relativ << 422             if( (no_large_ediff% warnModulo) == 0 )
409                     << std::setw(15) << (endEn << 
410                     << G4endl << "     Startin << 
411                     << startEnergy / MeV << "  << 
412                     << "     Ending   E= " <<  << 
413                     << " MeV " << G4endl       << 
414                     << "Energy has been correc << 
415                     << " field propagation par << 
416             if((verboseLevel > 2) || (no_warni << 
417                (no_large_ediff == warnModulo * << 
418             {                                  << 
419               message << "These include Epsilo << 
420                       << G4endl                << 
421                       << "which determine frac << 
422                          "integrated quantitie << 
423                       << G4endl                << 
424                       << "Note also the influe << 
425                          "integration steps."  << 
426                       << G4endl;               << 
427             }                                  << 
428             message << "Bad 'endpoint'. Energy << 
429                     << G4endl << "Has occurred << 
430                     << " times.";              << 
431             G4Exception("G4Transportation::Alo << 
432                         JustWarning, message); << 
433             if(no_large_ediff == warnModulo *  << 
434             {                                     423             {
435               warnModulo *= moduloFactor;      << 424                no_warnings++;
                                                   >> 425                G4cout << "WARNING - G4Transportation::AlongStepGetPIL() " 
                                                   >> 426                       << "   Energy change in Step is above 1^-3 relative value. " << G4endl
                                                   >> 427                       << "   Relative change in 'tracking' step = " 
                                                   >> 428                       << std::setw(15) << (endEnergy-startEnergy)/startEnergy << G4endl
                                                   >> 429                       << "     Starting E= " << std::setw(12) << startEnergy / MeV << " MeV " << G4endl
                                                   >> 430                       << "     Ending   E= " << std::setw(12) << endEnergy   / MeV << " MeV " << G4endl;       
                                                   >> 431                G4cout << " Energy has been corrected -- however, review"
                                                   >> 432                       << " field propagation parameters for accuracy."  << G4endl;
                                                   >> 433                if( (verboseLevel > 2 ) || (no_warnings<4) || (no_large_ediff == warnModulo * moduloFactor) )
                                                   >> 434                {
                                                   >> 435                  G4cout << " These include EpsilonStepMax(/Min) in G4FieldManager "
                                                   >> 436                         << " which determine fractional error per step for integrated quantities. " << G4endl
                                                   >> 437                         << " Note also the influence of the permitted number of integration steps."
                                                   >> 438                         << G4endl;
                                                   >> 439                }
                                                   >> 440                G4cerr << "ERROR - G4Transportation::AlongStepGetPIL()" << G4endl
                                                   >> 441                       << "        Bad 'endpoint'. Energy change detected"
                                                   >> 442                       << " and corrected. " 
                                                   >> 443                       << " Has occurred already "
                                                   >> 444                       << no_large_ediff << " times." << G4endl;
                                                   >> 445                if( no_large_ediff == warnModulo * moduloFactor )
                                                   >> 446                {
                                                   >> 447                   warnModulo *= moduloFactor;
                                                   >> 448                }
436             }                                     449             }
437           }                                       450           }
438         }                                      << 451         }  // end of if (verboseLevel)
439       }  // end of if (verboseLevel)           << 452 
440     }                                          << 453         // Correct the energy for fields that conserve it
441 #endif                                         << 454         //  This - hides the integration error
                                                   >> 455         //       - but gives a better physical answer
                                                   >> 456         fTransportEndKineticEnergy= track.GetKineticEnergy(); 
                                                   >> 457      }
                                                   >> 458 
                                                   >> 459      fTransportEndSpin = aFieldTrack.GetSpin();
                                                   >> 460      fParticleIsLooping = fFieldPropagator->IsParticleLooping() ;
                                                   >> 461      fEndPointDistance   = (fTransportEndPosition - startPosition).mag() ;
                                                   >> 462   }
                                                   >> 463 
                                                   >> 464   // If we are asked to go a step length of 0, and we are on a boundary
                                                   >> 465   // then a boundary will also limit the step -> we must flag this.
                                                   >> 466   //
                                                   >> 467   if( currentMinimumStep == 0.0 ) 
                                                   >> 468   {
                                                   >> 469       if( currentSafety == 0.0 )  { fGeometryLimitedStep = true; }
442   }                                               470   }
443                                                   471 
444   // Update the safety starting from the end-p    472   // Update the safety starting from the end-point,
445   // if it will become negative at the end-poi    473   // if it will become negative at the end-point.
446   //                                              474   //
447   if(currentSafety < fEndPointDistance)        << 475   if( currentSafety < fEndPointDistance ) 
448   {                                               476   {
449     if(particleCharge != 0.0)                  << 477       if( particleCharge != 0.0 ) 
450     {                                          << 478       {
451       G4double endSafety =                     << 479          G4double endSafety =
452         fLinearNavigator->ComputeSafety(fTrans << 480                fLinearNavigator->ComputeSafety( fTransportEndPosition) ;
453       currentSafety      = endSafety;          << 481          currentSafety      = endSafety ;
454       fPreviousSftOrigin = fTransportEndPositi << 482          fPreviousSftOrigin = fTransportEndPosition ;
455       fPreviousSafety    = currentSafety;      << 483          fPreviousSafety    = currentSafety ; 
456       fpSafetyHelper->SetCurrentSafety(current << 484          fpSafetyHelper->SetCurrentSafety( currentSafety, fTransportEndPosition);
457                                                << 485 
458       // Because the Stepping Manager assumes  << 486          // Because the Stepping Manager assumes it is from the start point, 
459       //  add the StepLength                   << 487          //  add the StepLength
460       //                                       << 488          //
461       currentSafety += fEndPointDistance;      << 489          currentSafety     += fEndPointDistance ;
462                                                << 490 
463 #ifdef G4DEBUG_TRANSPORT                       << 491 #ifdef G4DEBUG_TRANSPORT 
464       G4cout.precision(12);                    << 492          G4cout.precision(12) ;
465       G4cout << "***G4Transportation::AlongSte << 493          G4cout << "***G4Transportation::AlongStepGPIL ** " << G4endl  ;
466       G4cout << "  Called Navigator->ComputeSa << 494          G4cout << "  Called Navigator->ComputeSafety at " << fTransportEndPosition
467              << "    and it returned safety=   << 495                 << "    and it returned safety=  " << endSafety << G4endl ; 
468       G4cout << "  Adding endpoint distance    << 496          G4cout << "  Adding endpoint distance   " << fEndPointDistance  
469              << "    to obtain pseudo-safety=  << 497                 << "    to obtain pseudo-safety= " << currentSafety << G4endl ; 
470     }                                          << 498       }
471     else                                       << 499       else
472     {                                          << 500       {
473       G4cout << "***G4Transportation::AlongSte << 501          G4cout << "***G4Transportation::AlongStepGPIL ** " << G4endl  ;
474       G4cout << "  Avoiding call to ComputeSaf << 502          G4cout << "  Avoiding call to ComputeSafety : " << G4endl;
475       G4cout << "    charge     = " << particl << 503          G4cout << "    charge     = " << particleCharge     << G4endl;
476       G4cout << "    mag moment = " << magneti << 504          G4cout << "    mag moment = " << magneticMoment     << G4endl;
477 #endif                                            505 #endif
478     }                                          << 506       }
479   }                                            << 507   }            
480                                                << 
481   fFirstStepInVolume = fNewTrack || fLastStepI << 
482   fLastStepInVolume  = false;                  << 
483   fNewTrack          = false;                  << 
484                                                   508 
485   fParticleChange.ProposeFirstStepInVolume(fFi << 509   fParticleChange.ProposeTrueStepLength(geometryStepLength) ;
486   fParticleChange.ProposeTrueStepLength(geomet << 
487                                                   510 
488   return geometryStepLength;                   << 511   return geometryStepLength ;
489 }                                                 512 }
490                                                   513 
491 //////////////////////////////////////////////    514 //////////////////////////////////////////////////////////////////////////
492 //                                                515 //
493 //   Initialize ParticleChange  (by setting al    516 //   Initialize ParticleChange  (by setting all its members equal
494 //                               to correspond    517 //                               to corresponding members in G4Track)
495                                                   518 
496 G4VParticleChange* G4Transportation::AlongStep    519 G4VParticleChange* G4Transportation::AlongStepDoIt( const G4Track& track,
497                                                   520                                                     const G4Step&  stepData )
498 {                                                 521 {
499 #if defined(G4VERBOSE) || defined(G4DEBUG_TRAN << 522   static G4ThreadLocal G4int noCalls=0;
500   static G4ThreadLocal G4long noCallsASDI=0;   << 523   noCalls++;
501   noCallsASDI++;                               << 
502 #else                                          << 
503   #define noCallsASDI 0                        << 
504 #endif                                         << 
505                                                << 
506   if(fGeometryLimitedStep)                     << 
507   {                                            << 
508     stepData.GetPostStepPoint()->SetStepStatus << 
509   }                                            << 
510                                                   524 
511   fParticleChange.Initialize(track) ;             525   fParticleChange.Initialize(track) ;
512                                                   526 
513   //  Code for specific process                   527   //  Code for specific process 
514   //                                              528   //
515   fParticleChange.ProposePosition(fTransportEn    529   fParticleChange.ProposePosition(fTransportEndPosition) ;
516   fParticleChange.ProposeMomentumDirection(fTr    530   fParticleChange.ProposeMomentumDirection(fTransportEndMomentumDir) ;
517   fParticleChange.ProposeEnergy(fTransportEndK    531   fParticleChange.ProposeEnergy(fTransportEndKineticEnergy) ;
518   fParticleChange.SetMomentumChanged(fMomentum    532   fParticleChange.SetMomentumChanged(fMomentumChanged) ;
519                                                   533 
520   fParticleChange.ProposePolarization(fTranspo    534   fParticleChange.ProposePolarization(fTransportEndSpin);
521                                                   535 
522   G4double deltaTime = 0.0 ;                      536   G4double deltaTime = 0.0 ;
523                                                   537 
524   // Calculate  Lab Time of Flight (ONLY if fi    538   // Calculate  Lab Time of Flight (ONLY if field Equations used it!)
525   // G4double endTime   = fCandidateEndGlobalT    539   // G4double endTime   = fCandidateEndGlobalTime;
526   // G4double delta_time = endTime - startTime    540   // G4double delta_time = endTime - startTime;
527                                                   541 
528   G4double startTime = track.GetGlobalTime() ;    542   G4double startTime = track.GetGlobalTime() ;
529                                                   543   
530   if (!fEndGlobalTimeComputed)                    544   if (!fEndGlobalTimeComputed)
531   {                                               545   {
532      // The time was not integrated .. make th    546      // The time was not integrated .. make the best estimate possible
533      //                                           547      //
534      G4double initialVelocity = stepData.GetPr    548      G4double initialVelocity = stepData.GetPreStepPoint()->GetVelocity();
535      G4double stepLength      = track.GetStepL    549      G4double stepLength      = track.GetStepLength();
536                                                   550 
537      deltaTime= 0.0;  // in case initialVeloci    551      deltaTime= 0.0;  // in case initialVelocity = 0 
538      if ( initialVelocity > 0.0 )  { deltaTime    552      if ( initialVelocity > 0.0 )  { deltaTime = stepLength/initialVelocity; }
539                                                   553 
540      fCandidateEndGlobalTime   = startTime + d    554      fCandidateEndGlobalTime   = startTime + deltaTime ;
541      fParticleChange.ProposeLocalTime(  track.    555      fParticleChange.ProposeLocalTime(  track.GetLocalTime() + deltaTime) ;
542   }                                               556   }
543   else                                            557   else
544   {                                               558   {
545      deltaTime = fCandidateEndGlobalTime - sta    559      deltaTime = fCandidateEndGlobalTime - startTime ;
546      fParticleChange.ProposeGlobalTime( fCandi    560      fParticleChange.ProposeGlobalTime( fCandidateEndGlobalTime ) ;
547   }                                               561   }
548                                                   562 
549                                                   563 
550   // Now Correct by Lorentz factor to get delt    564   // Now Correct by Lorentz factor to get delta "proper" Time
551                                                   565   
552   G4double  restMass       = track.GetDynamicP    566   G4double  restMass       = track.GetDynamicParticle()->GetMass() ;
553   G4double deltaProperTime = deltaTime*( restM    567   G4double deltaProperTime = deltaTime*( restMass/track.GetTotalEnergy() ) ;
554                                                   568 
555   fParticleChange.ProposeProperTime(track.GetP    569   fParticleChange.ProposeProperTime(track.GetProperTime() + deltaProperTime) ;
556   //fParticleChange.ProposeTrueStepLength( tra << 570   //fParticleChange. ProposeTrueStepLength( track.GetStepLength() ) ;
557                                                   571 
558   // If the particle is caught looping or is s    572   // If the particle is caught looping or is stuck (in very difficult
559   // boundaries) in a magnetic field (doing ma << 573   // boundaries) in a magnetic field (doing many steps) 
                                                   >> 574   //   THEN this kills it ...
560   //                                              575   //
561   if ( fParticleIsLooping )                       576   if ( fParticleIsLooping )
562   {                                               577   {
563       G4double endEnergy= fTransportEndKinetic    578       G4double endEnergy= fTransportEndKineticEnergy;
564       fNoLooperTrials ++;                      << 579 
565       auto particleType= track.GetDynamicParti << 580       if( (endEnergy < fThreshold_Important_Energy) 
566                                                << 581           || (fNoLooperTrials >= fThresholdTrials ) )
567       G4bool stable = particleType->GetPDGStab << 
568       G4bool candidateForEnd = (endEnergy < fT << 
569                             || (fNoLooperTrial << 
570       G4bool unstableAndKillable = !stable &&  << 
571       G4bool unstableForEnd = (endEnergy < fTh << 
572                               && (fNoLooperTri << 
573       if( (candidateForEnd && stable) || (unst << 
574       {                                           582       {
575         // Kill the looping particle              583         // Kill the looping particle 
576         //                                        584         //
577         fParticleChange.ProposeTrackStatus( fS    585         fParticleChange.ProposeTrackStatus( fStopAndKill )  ;
578         G4int particlePDG= particleType->GetPD << 
579         const G4int electronPDG= 11; // G4Elec << 
580                                                   586 
581         // Simple statistics                   << 587         // 'Bare' statistics
582         fSumEnergyKilled += endEnergy;         << 588         fSumEnergyKilled += endEnergy; 
583         fSumEnerSqKilled += endEnergy * endEne << 589         if( endEnergy > fMaxEnergyKilled) { fMaxEnergyKilled= endEnergy; }
584         fNumLoopersKilled++;                   << 
585                                                << 
586         if( endEnergy > fMaxEnergyKilled ) {   << 
587            fMaxEnergyKilled = endEnergy;       << 
588            fMaxEnergyKilledPDG = particlePDG;  << 
589         }                                      << 
590         if(  particleType->GetPDGEncoding() != << 
591         {                                      << 
592            fSumEnergyKilled_NonElectron += end << 
593            fSumEnerSqKilled_NonElectron += end << 
594            fNumLoopersKilled_NonElectron++;    << 
595                                                << 
596            if( endEnergy > fMaxEnergyKilled_No << 
597            {                                   << 
598               fMaxEnergyKilled_NonElectron = e << 
599               fMaxEnergyKilled_NonElecPDG =  p << 
600            }                                   << 
601         }                                      << 
602                                                   590 
603         if( endEnergy > fThreshold_Warning_Ene << 591 #ifdef G4VERBOSE
604         {                                      << 592         if( (verboseLevel > 1) && 
605           fpLogger->ReportLoopingTrack( track, << 593             ( endEnergy > fThreshold_Warning_Energy )  )
606                                         noCall << 594         { 
                                                   >> 595           G4cout << " G4Transportation is killing track that is looping or stuck "
                                                   >> 596                  << G4endl
                                                   >> 597                  << "   This track has " << track.GetKineticEnergy() / MeV
                                                   >> 598                  << " MeV energy." << G4endl;
                                                   >> 599           G4cout << "   Number of trials = " << fNoLooperTrials 
                                                   >> 600                  << "   No of calls to AlongStepDoIt = " << noCalls 
                                                   >> 601                  << G4endl;
607         }                                         602         }
                                                   >> 603 #endif
608         fNoLooperTrials=0;                        604         fNoLooperTrials=0; 
609       }                                           605       }
610       else                                        606       else
611       {                                           607       {
612         fMaxEnergySaved = std::max( endEnergy, << 608         fNoLooperTrials ++; 
613         if( fNoLooperTrials == 1 ) {           << 
614           fSumEnergySaved += endEnergy;        << 
615           if ( !stable )                       << 
616              fSumEnergyUnstableSaved += endEne << 
617         }                                      << 
618 #ifdef G4VERBOSE                                  609 #ifdef G4VERBOSE
619         if( verboseLevel > 2 && ! fSilenceLoop << 610         if( (verboseLevel > 2) )
620         {                                         611         {
621           G4cout << "   " << __func__          << 612           G4cout << "   G4Transportation::AlongStepDoIt(): Particle looping -  "
622                  << " Particle is looping but  << 613                  << "   Number of trials = " << fNoLooperTrials 
623                  << "   Number of trials = " < << 614                  << "   No of calls to  = " << noCalls 
624                  << "   No of calls to  = " << << 615                  << G4endl;
625         }                                         616         }
626 #endif                                            617 #endif
627       }                                           618       }
628   }                                               619   }
629   else                                            620   else
630   {                                               621   {
631       fNoLooperTrials=0;                          622       fNoLooperTrials=0; 
632   }                                               623   }
633                                                   624 
634   // Another (sometimes better way) is to use     625   // Another (sometimes better way) is to use a user-limit maximum Step size
635   // to alleviate this problem ..                 626   // to alleviate this problem .. 
636                                                   627 
637   // Introduce smooth curved trajectories to p    628   // Introduce smooth curved trajectories to particle-change
638   //                                              629   //
639   fParticleChange.SetPointerToVectorOfAuxiliar    630   fParticleChange.SetPointerToVectorOfAuxiliaryPoints
640     (fFieldPropagator->GimmeTrajectoryVectorAn    631     (fFieldPropagator->GimmeTrajectoryVectorAndForgetIt() );
641                                                   632 
642   return &fParticleChange ;                       633   return &fParticleChange ;
643 }                                                 634 }
644                                                   635 
645 //////////////////////////////////////////////    636 //////////////////////////////////////////////////////////////////////////
646 //                                                637 //
647 //  This ensures that the PostStep action is a    638 //  This ensures that the PostStep action is always called,
648 //  so that it can do the relocation if it is     639 //  so that it can do the relocation if it is needed.
649 //                                                640 // 
650                                                   641 
651 G4double G4Transportation::                       642 G4double G4Transportation::
652 PostStepGetPhysicalInteractionLength( const G4    643 PostStepGetPhysicalInteractionLength( const G4Track&,
653                                             G4    644                                             G4double, // previousStepSize
654                                             G4    645                                             G4ForceCondition* pForceCond )
655 {                                                 646 {
656   fFieldExertedForce = false; // Not known        647   fFieldExertedForce = false; // Not known
657   *pForceCond = Forced ;                          648   *pForceCond = Forced ; 
658   return DBL_MAX ;  // was kInfinity ; but con    649   return DBL_MAX ;  // was kInfinity ; but convention now is DBL_MAX
659 }                                                 650 }
660                                                   651 
661 //////////////////////////////////////////////    652 /////////////////////////////////////////////////////////////////////////////
662                                                << 
663 void G4Transportation::SetTouchableInformation << 
664 {                                              << 
665   const G4VPhysicalVolume* pNewVol = touchable << 
666   const G4Material* pNewMaterial   = 0 ;       << 
667   G4VSensitiveDetector* pNewSensitiveDetector  << 
668                                                << 
669   if( pNewVol != 0 )                           << 
670   {                                            << 
671     pNewMaterial= pNewVol->GetLogicalVolume()- << 
672     pNewSensitiveDetector= pNewVol->GetLogical << 
673   }                                            << 
674                                                << 
675   fParticleChange.SetMaterialInTouchable( (G4M << 
676   fParticleChange.SetSensitiveDetectorInToucha << 
677   // temporarily until Get/Set Material of Par << 
678   // and StepPoint can be made const.          << 
679                                                << 
680   const G4MaterialCutsCouple* pNewMaterialCuts << 
681   if( pNewVol != 0 )                           << 
682   {                                            << 
683     pNewMaterialCutsCouple=pNewVol->GetLogical << 
684   }                                            << 
685                                                << 
686   if ( pNewVol!=0 && pNewMaterialCutsCouple!=0 << 
687     && pNewMaterialCutsCouple->GetMaterial()!= << 
688   {                                            << 
689     // for parametrized volume                 << 
690     //                                         << 
691     pNewMaterialCutsCouple =                   << 
692       G4ProductionCutsTable::GetProductionCuts << 
693                              ->GetMaterialCuts << 
694                                pNewMaterialCut << 
695   }                                            << 
696   fParticleChange.SetMaterialCutsCoupleInTouch << 
697                                                << 
698   // Set the touchable in ParticleChange       << 
699   // this must always be done because the part << 
700   // uses this value to overwrite the current  << 
701   //                                           << 
702   fParticleChange.SetTouchableHandle(touchable << 
703 }                                              << 
704                                                << 
705 ////////////////////////////////////////////// << 
706 //                                                653 //
707                                                   654 
708 G4VParticleChange* G4Transportation::PostStepD    655 G4VParticleChange* G4Transportation::PostStepDoIt( const G4Track& track,
709                                                   656                                                    const G4Step& )
710 {                                                 657 {
711    G4TouchableHandle retCurrentTouchable ;   /    658    G4TouchableHandle retCurrentTouchable ;   // The one to return
712    G4bool isLastStep= false;                      659    G4bool isLastStep= false; 
713                                                   660 
714   // Initialize ParticleChange  (by setting al    661   // Initialize ParticleChange  (by setting all its members equal
715   //                             to correspond    662   //                             to corresponding members in G4Track)
716   // fParticleChange.Initialize(track) ;  // T    663   // fParticleChange.Initialize(track) ;  // To initialise TouchableChange
717                                                   664 
718   fParticleChange.ProposeTrackStatus(track.Get    665   fParticleChange.ProposeTrackStatus(track.GetTrackStatus()) ;
719                                                   666 
720   // If the Step was determined by the volume     667   // If the Step was determined by the volume boundary,
721   // logically relocate the particle              668   // logically relocate the particle
722                                                   669 
723   if(fGeometryLimitedStep)                        670   if(fGeometryLimitedStep)
724   {                                               671   {  
725     // fCurrentTouchable will now become the p    672     // fCurrentTouchable will now become the previous touchable, 
726     // and what was the previous will be freed    673     // and what was the previous will be freed.
727     // (Needed because the preStepPoint can po    674     // (Needed because the preStepPoint can point to the previous touchable)
728                                                   675 
729     fLinearNavigator->SetGeometricallyLimitedS    676     fLinearNavigator->SetGeometricallyLimitedStep() ;
730     fLinearNavigator->                            677     fLinearNavigator->
731     LocateGlobalPointAndUpdateTouchableHandle(    678     LocateGlobalPointAndUpdateTouchableHandle( track.GetPosition(),
732                                                   679                                                track.GetMomentumDirection(),
733                                                   680                                                fCurrentTouchableHandle,
734                                                   681                                                true                      ) ;
735     // Check whether the particle is out of th    682     // Check whether the particle is out of the world volume 
736     // If so it has exited and must be killed.    683     // If so it has exited and must be killed.
737     //                                            684     //
738     if( fCurrentTouchableHandle->GetVolume() =    685     if( fCurrentTouchableHandle->GetVolume() == 0 )
739     {                                             686     {
740        fParticleChange.ProposeTrackStatus( fSt    687        fParticleChange.ProposeTrackStatus( fStopAndKill ) ;
741     }                                             688     }
742     retCurrentTouchable = fCurrentTouchableHan    689     retCurrentTouchable = fCurrentTouchableHandle ;
743     fParticleChange.SetTouchableHandle( fCurre    690     fParticleChange.SetTouchableHandle( fCurrentTouchableHandle ) ;
744                                                   691 
745     // Update the Step flag which identifies t    692     // Update the Step flag which identifies the Last Step in a volume
746     if( !fFieldExertedForce )                     693     if( !fFieldExertedForce )
747        isLastStep =  fLinearNavigator->ExitedM    694        isLastStep =  fLinearNavigator->ExitedMotherVolume() 
748                   || fLinearNavigator->Entered << 695                    | fLinearNavigator->EnteredDaughterVolume() ;
749     else                                          696     else
750        isLastStep = fFieldPropagator->IsLastSt    697        isLastStep = fFieldPropagator->IsLastStepInVolume(); 
751   }                                               698   }
752   else                 // fGeometryLimitedStep    699   else                 // fGeometryLimitedStep  is false
753   {                                               700   {                    
754     // This serves only to move the Navigator'    701     // This serves only to move the Navigator's location
755     //                                            702     //
756     fLinearNavigator->LocateGlobalPointWithinV    703     fLinearNavigator->LocateGlobalPointWithinVolume( track.GetPosition() ) ;
757                                                   704 
758     // The value of the track's current Toucha    705     // The value of the track's current Touchable is retained. 
759     // (and it must be correct because we must    706     // (and it must be correct because we must use it below to
760     // overwrite the (unset) one in particle c    707     // overwrite the (unset) one in particle change)
761     //  It must be fCurrentTouchable too ??       708     //  It must be fCurrentTouchable too ??
762     //                                            709     //
763     fParticleChange.SetTouchableHandle( track.    710     fParticleChange.SetTouchableHandle( track.GetTouchableHandle() ) ;
764     retCurrentTouchable = track.GetTouchableHa    711     retCurrentTouchable = track.GetTouchableHandle() ;
765                                                   712 
766     isLastStep= false;                            713     isLastStep= false;
767   }         // endif ( fGeometryLimitedStep )     714   }         // endif ( fGeometryLimitedStep ) 
768   fLastStepInVolume= isLastStep;                  715   fLastStepInVolume= isLastStep; 
769                                                   716   
770   fParticleChange.ProposeFirstStepInVolume(fFi    717   fParticleChange.ProposeFirstStepInVolume(fFirstStepInVolume);
771   fParticleChange.ProposeLastStepInVolume(isLa    718   fParticleChange.ProposeLastStepInVolume(isLastStep);    
772                                                   719 
773   SetTouchableInformation(retCurrentTouchable) << 720   const G4VPhysicalVolume* pNewVol = retCurrentTouchable->GetVolume() ;
                                                   >> 721   const G4Material* pNewMaterial   = 0 ;
                                                   >> 722   const G4VSensitiveDetector* pNewSensitiveDetector   = 0 ;
                                                   >> 723                                                                                        
                                                   >> 724   if( pNewVol != 0 )
                                                   >> 725   {
                                                   >> 726     pNewMaterial= pNewVol->GetLogicalVolume()->GetMaterial();
                                                   >> 727     pNewSensitiveDetector= pNewVol->GetLogicalVolume()->GetSensitiveDetector();
                                                   >> 728   }
                                                   >> 729 
                                                   >> 730   // ( <const_cast> pNewMaterial ) ;
                                                   >> 731   // ( <const_cast> pNewSensitiveDetector) ;
                                                   >> 732 
                                                   >> 733   fParticleChange.SetMaterialInTouchable( (G4Material *) pNewMaterial ) ;
                                                   >> 734   fParticleChange.SetSensitiveDetectorInTouchable( (G4VSensitiveDetector *) pNewSensitiveDetector ) ;
                                                   >> 735 
                                                   >> 736   const G4MaterialCutsCouple* pNewMaterialCutsCouple = 0;
                                                   >> 737   if( pNewVol != 0 )
                                                   >> 738   {
                                                   >> 739     pNewMaterialCutsCouple=pNewVol->GetLogicalVolume()->GetMaterialCutsCouple();
                                                   >> 740   }
                                                   >> 741 
                                                   >> 742   if( pNewVol!=0 && pNewMaterialCutsCouple!=0 && pNewMaterialCutsCouple->GetMaterial()!=pNewMaterial )
                                                   >> 743   {
                                                   >> 744     // for parametrized volume
                                                   >> 745     //
                                                   >> 746     pNewMaterialCutsCouple =
                                                   >> 747       G4ProductionCutsTable::GetProductionCutsTable()
                                                   >> 748                              ->GetMaterialCutsCouple(pNewMaterial,
                                                   >> 749                                pNewMaterialCutsCouple->GetProductionCuts());
                                                   >> 750   }
                                                   >> 751   fParticleChange.SetMaterialCutsCoupleInTouchable( pNewMaterialCutsCouple );
                                                   >> 752 
                                                   >> 753   // temporarily until Get/Set Material of ParticleChange, 
                                                   >> 754   // and StepPoint can be made const. 
                                                   >> 755   // Set the touchable in ParticleChange
                                                   >> 756   // this must always be done because the particle change always
                                                   >> 757   // uses this value to overwrite the current touchable pointer.
                                                   >> 758   //
                                                   >> 759   fParticleChange.SetTouchableHandle(retCurrentTouchable) ;
774                                                   760 
775   return &fParticleChange ;                       761   return &fParticleChange ;
776 }                                                 762 }
777                                                   763 
778 ////////////////////////////////////////////// << 764 // New method takes over the responsibility to reset the state of G4Transportation
779 // New method takes over the responsibility to << 765 //   object at the start of a new track or the resumption of a suspended track. 
780 // G4Transportation object at the start of a n << 
781 // of a suspended track.                       << 
782 //                                             << 
783                                                   766 
784 void                                              767 void 
785 G4Transportation::StartTracking(G4Track* aTrac    768 G4Transportation::StartTracking(G4Track* aTrack)
786 {                                                 769 {
787   G4VProcess::StartTracking(aTrack);              770   G4VProcess::StartTracking(aTrack);
788   fNewTrack= true;                                771   fNewTrack= true;
789   fFirstStepInVolume= true;                       772   fFirstStepInVolume= true;
790   fLastStepInVolume= false;                       773   fLastStepInVolume= false;
791                                                   774   
792   // The actions here are those that were take    775   // The actions here are those that were taken in AlongStepGPIL
793   // when track.GetCurrentStepNumber()==1      << 776   //   when track.GetCurrentStepNumber()==1
794                                                   777 
795   // Whether field exists should be determined << 
796   G4FieldManagerStore* fieldMgrStore= G4FieldM << 
797   fAnyFieldExists = fieldMgrStore->size() > 0; << 
798                                                << 
799   // reset safety value and center                778   // reset safety value and center
800   //                                              779   //
801   fPreviousSafety    = 0.0 ;                      780   fPreviousSafety    = 0.0 ; 
802   fPreviousSftOrigin = G4ThreeVector(0.,0.,0.)    781   fPreviousSftOrigin = G4ThreeVector(0.,0.,0.) ;
803                                                   782   
804   // reset looping counter -- for motion in fi    783   // reset looping counter -- for motion in field
805   fNoLooperTrials= 0;                             784   fNoLooperTrials= 0; 
806   // Must clear this state .. else it depends     785   // Must clear this state .. else it depends on last track's value
807   //  --> a better solution would set this fro    786   //  --> a better solution would set this from state of suspended track TODO ? 
808   // Was if( aTrack->GetCurrentStepNumber()==1    787   // Was if( aTrack->GetCurrentStepNumber()==1 ) { .. }
809                                                   788 
810   // ChordFinder reset internal state             789   // ChordFinder reset internal state
811   //                                              790   //
812   if( fFieldPropagator && fAnyFieldExists )    << 791   if( DoesGlobalFieldExist() )
813   {                                               792   {
814      fFieldPropagator->ClearPropagatorState();    793      fFieldPropagator->ClearPropagatorState();   
815        // Resets all state of field propagator << 794        // Resets all state of field propagator class (ONLY)
816        // values (in case of overlaps and to w << 795        //  including safety values (in case of overlaps and to wipe for first track).
                                                   >> 796 
                                                   >> 797      // G4ChordFinder* chordF= fFieldPropagator->GetChordFinder();
                                                   >> 798      // if( chordF ) chordF->ResetStepEstimate();
817   }                                               799   }
818                                                   800 
819   // Make sure to clear the chord finders of a << 801   // Make sure to clear the chord finders of all fields (ie managers)
820   //                                              802   //
                                                   >> 803   G4FieldManagerStore* fieldMgrStore = G4FieldManagerStore::GetInstance();
821   fieldMgrStore->ClearAllChordFindersState();     804   fieldMgrStore->ClearAllChordFindersState(); 
822                                                   805 
823   // Update the current touchable handle  (fro    806   // Update the current touchable handle  (from the track's)
824   //                                              807   //
825   fCurrentTouchableHandle = aTrack->GetTouchab    808   fCurrentTouchableHandle = aTrack->GetTouchableHandle();
826                                                   809 
827   // Inform field propagator of new track         810   // Inform field propagator of new track
828   //                                           << 
829   fFieldPropagator->PrepareNewTrack();            811   fFieldPropagator->PrepareNewTrack();
830 }                                                 812 }
831                                                   813 
832 ////////////////////////////////////////////// << 814 #include "G4CoupledTransportation.hh"
833 //                                             << 815 G4bool G4Transportation::EnableUseMagneticMoment(G4bool useMoment)
834                                                << 
835 G4bool G4Transportation::EnableMagneticMoment( << 
836 {                                                 816 {
837   G4bool lastValue= fUseMagneticMoment;           817   G4bool lastValue= fUseMagneticMoment;
838   fUseMagneticMoment= useMoment;                  818   fUseMagneticMoment= useMoment;
                                                   >> 819   G4CoupledTransportation::fUseMagneticMoment= useMoment;
839   return lastValue;                               820   return lastValue;
840 }                                              << 
841                                                << 
842 ////////////////////////////////////////////// << 
843 //                                             << 
844                                                << 
845 G4bool G4Transportation::EnableGravity(G4bool  << 
846 {                                              << 
847   G4bool lastValue= fUseGravity;               << 
848   fUseGravity= useGravity;                     << 
849   return lastValue;                            << 
850 }                                              << 
851                                                << 
852 ////////////////////////////////////////////// << 
853 //                                             << 
854 //  Supress (or not) warnings about 'looping'  << 
855                                                << 
856 void G4Transportation::SetSilenceLooperWarning << 
857 {                                              << 
858   fSilenceLooperWarnings= val;  // Flag to *Su << 
859 }                                              << 
860                                                << 
861 ////////////////////////////////////////////// << 
862 //                                             << 
863 G4bool G4Transportation::GetSilenceLooperWarni << 
864 {                                              << 
865   return fSilenceLooperWarnings;               << 
866 }                                              << 
867                                                << 
868                                                << 
869 ////////////////////////////////////////////// << 
870 //                                             << 
871 void G4Transportation::SetHighLooperThresholds << 
872 {                                              << 
873   // Restores the old high values -- potential << 
874   //   HEP experiments.                        << 
875   // Caution:  All tracks with E < 100 MeV tha << 
876   SetThresholdWarningEnergy(    100.0 * CLHEP: << 
877   SetThresholdImportantEnergy(  250.0 * CLHEP: << 
878                                                << 
879   G4int maxTrials = 10;                        << 
880   SetThresholdTrials( maxTrials );             << 
881                                                << 
882   PushThresholdsToLogger();  // Again, to be s << 
883   if( verboseLevel )  ReportLooperThresholds() << 
884 }                                              << 
885                                                << 
886 ////////////////////////////////////////////// << 
887 void G4Transportation::SetLowLooperThresholds( << 
888 {                                              << 
889   // These values were the default in Geant4 1 << 
890   SetThresholdWarningEnergy(     1.0 * CLHEP:: << 
891   SetThresholdImportantEnergy(   1.0 * CLHEP:: << 
892                                                << 
893   G4int maxTrials = 30; //  A new value - was  << 
894   SetThresholdTrials( maxTrials );             << 
895                                                << 
896   PushThresholdsToLogger();  // Again, to be s << 
897   if( verboseLevel )  ReportLooperThresholds() << 
898 }                                              << 
899                                                << 
900 ////////////////////////////////////////////// << 
901 //                                             << 
902 void                                           << 
903 G4Transportation::ReportMissingLogger( const c << 
904 {                                              << 
905    const char* message= "Logger object missing << 
906    G4String classAndMethod= G4String("G4Transp << 
907    G4Exception(classAndMethod, "Missing Logger << 
908 }                                              << 
909                                                << 
910                                                << 
911 ////////////////////////////////////////////// << 
912 //                                             << 
913 void                                           << 
914 G4Transportation::ReportLooperThresholds()     << 
915 {                                              << 
916    PushThresholdsToLogger();  // To be absolut << 
917    fpLogger->ReportLooperThresholds("G4Transpo << 
918 }                                              << 
919                                                << 
920 ////////////////////////////////////////////// << 
921 //                                             << 
922 void G4Transportation::ProcessDescription(std: << 
923                                                << 
924 // StreamInfo(std::ostream& out, const G4Parti << 
925                                                << 
926 {                                              << 
927   G4String indent = "  "; //  : "");           << 
928   G4long oldPrec= outStr.precision(6);         << 
929   // outStr << std::setprecision(6);           << 
930   outStr << G4endl << indent << GetProcessName << 
931                                                << 
932   outStr << "   Parameters for looping particl << 
933          << "     warning-E = " << fThreshold_ << 
934          << "     important E = " << fThreshol << 
935          << "     thresholdTrials " << fThresh << 
936   outStr.precision(oldPrec);                   << 
937 }                                                 821 }
938                                                   822