Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4Transportation.hh,v 1.7 2002/08/29 15:32:00 dressel Exp $ >> 25 // GEANT4 tag $Name: geant4-05-02 $ 27 // 26 // 28 // 27 // 29 // ------------------------------------------- 28 // ------------------------------------------------------------ 30 // GEANT 4 include file implementation << 29 // GEANT 4 include file implementation 31 // ------------------------------------------- << 32 // 30 // 33 // Class description: << 31 // ------------------------------------------------------------ 34 // 32 // 35 // G4Transportation is a process responsible f << 33 // This class' object is a process responsible for the transportation of 36 // a particle, i.e. the geometrical propagatio << 34 // a particle, ie the geometrical propagation that encounters the 37 // geometrical sub-volumes of the detectors. 35 // geometrical sub-volumes of the detectors. 38 // It is also tasked with part of updating the << 36 // 39 << 37 // It is also tasked with part of updating the "safety". >> 38 // 40 // =========================================== 39 // ======================================================================= 41 // Created: 19 March 1997, J. Apostolakis 40 // Created: 19 March 1997, J. Apostolakis 42 // =========================================== 41 // ======================================================================= 43 #ifndef G4Transportation_hh 42 #ifndef G4Transportation_hh 44 #define G4Transportation_hh 1 43 #define G4Transportation_hh 1 45 44 46 #include "G4VProcess.hh" 45 #include "G4VProcess.hh" >> 46 #include "G4FieldManager.hh" 47 47 >> 48 #include "G4Navigator.hh" >> 49 #include "G4TransportationManager.hh" >> 50 #include "G4PropagatorInField.hh" 48 #include "G4Track.hh" 51 #include "G4Track.hh" 49 #include "G4Step.hh" 52 #include "G4Step.hh" 50 #include "G4ParticleChangeForTransport.hh" 53 #include "G4ParticleChangeForTransport.hh" 51 54 52 class G4Navigator; << 53 class G4PropagatorInField; << 54 class G4SafetyHelper; << 55 class G4TransportationLogger; << 56 << 57 class G4Transportation : public G4VProcess 55 class G4Transportation : public G4VProcess 58 { 56 { 59 // Concrete class that does the geometrical 57 // Concrete class that does the geometrical transport 60 58 61 public: // with description << 59 public: 62 << 60 G4Transportation(); 63 G4Transportation( G4int verbosityLevel= 1 << 64 ~G4Transportation(); 61 ~G4Transportation(); 65 62 >> 63 // G4double GetContinuousStepLimit ( 66 G4double AlongStepGetPhysicalInterac 64 G4double AlongStepGetPhysicalInteractionLength( 67 const G4Track& tr 65 const G4Track& track, 68 G4double p << 66 G4double previousStepSize, 69 G4double c << 67 G4double currentMinimumStep, 70 G4double& c << 68 G4double& currentSafety, 71 G4GPILSelec << 69 G4GPILSelection* selection 72 ); // override; << 70 ); 73 71 74 G4VParticleChange* AlongStepDoIt( 72 G4VParticleChange* AlongStepDoIt( 75 const G4Track& tr << 73 const G4Track& track, 76 const G4Step& ste << 74 const G4Step& stepData 77 ); // override; << 75 ); 78 76 >> 77 // This only does the relocation >> 78 // 79 G4VParticleChange* PostStepDoIt( 79 G4VParticleChange* PostStepDoIt( 80 const G4Track& tr << 80 const G4Track& track, 81 const G4Step& st << 81 const G4Step& stepData 82 ); // override; << 82 ); 83 // Responsible for the relocation << 84 83 >> 84 // This forces the PostStepDoIt action to be called, >> 85 // but does not limit the step. >> 86 // 85 G4double PostStepGetPhysicalInteractionLe 87 G4double PostStepGetPhysicalInteractionLength( 86 const G4Track& , 88 const G4Track& , 87 G4double previo << 89 G4double previousStepSize, 88 G4ForceCondition* << 90 G4ForceCondition* pForceCond 89 ); // override; << 91 ); 90 // Forces the PostStepDoIt action to be << 91 // but does not limit the step << 92 92 93 inline G4bool FieldExertedForce() { retur << 93 // Access/set the assistant class that Propagate in a Field 94 << 95 G4PropagatorInField* GetPropagatorInField 94 G4PropagatorInField* GetPropagatorInField(); 96 void SetPropagatorInField( G4PropagatorIn 95 void SetPropagatorInField( G4PropagatorInField* pFieldPropagator); 97 // Access/set the assistant class that << 98 96 99 inline G4double GetThresholdWarningEnergy << 97 // no operation in AtRestDoIt 100 inline G4double GetThresholdImportantEner << 98 G4double AtRestGetPhysicalInteractionLength( 101 inline G4int GetThresholdTrials() const; << 99 const G4Track& , 102 << 100 G4ForceCondition* 103 inline void SetThresholdWarningEnergy( G4 << 101 ) { return -1.0; }; 104 inline void SetThresholdImportantEnergy( << 105 inline void SetThresholdTrials(G4int newM << 106 // Get/Set parameters for killing loopers << 107 // Above 'important' energy a 'looping' << 108 // *NOT* be abandoned, except after fTh << 109 // Below Warning energy, no verbosity for << 110 << 111 void SetHighLooperThresholds(); // Shortc << 112 void SetLowLooperThresholds(); // Set low << 113 void PushThresholdsToLogger(); // Inform << 114 void ReportLooperThresholds(); // Print v << 115 << 116 inline G4double GetMaxEnergyKilled() cons << 117 inline G4double GetSumEnergyKilled() cons << 118 inline void ResetKilledStatistics( G4int << 119 // Statistics for tracks killed (currentl << 120 << 121 inline void EnableShortStepOptimisation(G << 122 // Whether short steps < safety will avoi << 123 << 124 static G4bool EnableMagneticMoment(G4bool << 125 // Whether to enable particles to be defl << 126 << 127 static G4bool EnableGravity(G4bool useGra << 128 // Whether to enable particles to be defl << 129 << 130 static void SetSilenceLooperWarnings( G << 131 // Do not warn (or throw exception) about << 132 static G4bool GetSilenceLooperWarnings(); << 133 << 134 public: // without description << 135 static G4bool EnableUseMagneticMoment(G4b << 136 { return EnableMagneticMoment(useMoment); << 137 << 138 public: // without description << 139 << 140 G4double AtRestGetPhysicalInteractionLeng << 141 << 142 { return -1.0; } // No operation in At << 143 << 144 G4VParticleChange* AtRestDoIt( const G4Tr << 145 { return 0; } // No operation in At << 146 << 147 void StartTracking(G4Track* aTrack); << 148 // Reset state for new (potentially res << 149 << 150 virtual void ProcessDescription(std::ostr << 151 void PrintStatistics( std::ostream& outSt << 152 << 153 protected: << 154 << 155 void SetTouchableInformation(const G4Touc << 156 102 157 void ReportMissingLogger(const char * met << 103 // no operation in AtRestDoIt 158 << 104 G4VParticleChange* AtRestDoIt( >> 105 const G4Track& , >> 106 const G4Step& >> 107 ) {return NULL;}; 159 protected: 108 protected: >> 109 // Checks whether a field exists for the "global" field manager. >> 110 G4bool DoesGlobalFieldExist(); 160 111 161 G4Navigator* fLinearNavigator; << 112 private: 162 // The navigator for the 'mass' geometr << 113 // The Propagators used to transport the particle 163 // (the real one, that physics occurs i << 114 G4Navigator* fLinearNavigator; 164 G4PropagatorInField* fFieldPropagator; 115 G4PropagatorInField* fFieldPropagator; 165 // The Propagators used to transport th << 166 116 167 G4ThreeVector fTransportEndPosition= << 117 // Field Manager for the whole Detector 168 G4ThreeVector fTransportEndMomentumDir= << 118 // G4FieldManager* fGlobalFieldMgr; // Used MagneticField CC 169 G4double fTransportEndKineticEnergy= << 170 G4ThreeVector fTransportEndSpin= G4Three << 171 G4bool fMomentumChanged= true; << 172 G4bool fEndGlobalTimeComputed= fal << 173 G4double fCandidateEndGlobalTime= 0. << 174 // The particle's state after this Step << 175 << 176 G4bool fAnyFieldExists= false; << 177 << 178 G4bool fParticleIsLooping = false; << 179 G4bool fNewTrack= true; // Flag << 180 G4bool fFirstStepInVolume= true; << 181 G4bool fLastStepInVolume= false; // Last << 182 // (temporary << 183 G4bool fGeometryLimitedStep= true; << 184 // Flag to determine whether a boundary << 185 119 186 G4bool fFieldExertedForce= false; // Duri << 120 // The particle's state after this Step, Store for DoIt >> 121 G4ThreeVector fTransportEndPosition; >> 122 G4ThreeVector fTransportEndMomentumDir; >> 123 G4double fTransportEndKineticEnergy; >> 124 G4ThreeVector fTransportEndSpin; >> 125 G4bool fMomentumChanged; >> 126 G4bool fEnergyChanged; >> 127 G4bool fEndGlobalTimeComputed; >> 128 G4double fCandidateEndGlobalTime; 187 129 188 G4TouchableHandle fCurrentTouchableHandle << 130 G4bool fParticleIsLooping; >> 131 >> 132 G4TouchableHandle fCurrentTouchableHandle; 189 133 190 G4ThreeVector fPreviousSftOrigin; << 134 // Whether a magnetic field exists ... 191 G4double fPreviousSafety; << 135 // G4bool fFieldExists; 192 // Remember last safety origin & value. << 136 // The above data member is problematic: it is useful only if >> 137 // it is initialised. However the transportation process(es) are not >> 138 // capable of doing this initialisation itself (themselves) and there >> 139 // seems no alternative agent capable of doing it right now. >> 140 // Eg, at construction time it is likely that the field manager has >> 141 // not yet been informed about the detector's field >> 142 // I cannot foresee how the transportation can be informed later. JA >> 143 // The current answer is to ignore this data member and use >> 144 // the member function DoesGlobalFieldExist() in its place ... >> 145 // John Apostolakis, July 7, 1997 >> 146 >> 147 // Flag to determine whether a boundary was reached. >> 148 G4bool fGeometryLimitedStep; >> 149 >> 150 // Remember last safety origin & value. >> 151 G4ThreeVector fPreviousSftOrigin; >> 152 G4double fPreviousSafety; 193 153 >> 154 // New ParticleChange 194 G4ParticleChangeForTransport fParticleCha 155 G4ParticleChangeForTransport fParticleChange; 195 // New ParticleChange << 196 << 197 G4double fEndPointDistance; << 198 << 199 // Thresholds for looping particles: << 200 // << 201 G4double fThreshold_Warning_Energy = 1. << 202 G4double fThreshold_Important_Energy = 1. << 203 G4int fThresholdTrials = 10; // << 204 // Above 'important' energy a 'looping' << 205 // *NOT* be abandoned, except after fTh << 206 G4int fAbandonUnstableTrials = 0; // << 207 // << 208 // Counter for steps in which particle re << 209 // ( Used if it is above 'Important' Ene << 210 G4int fNoLooperTrials= 0; << 211 << 212 // Statistics for tracks abandoned due to << 213 // << 214 G4double fSumEnergyKilled= 0.0; << 215 G4double fSumEnerSqKilled= 0.0; << 216 G4double fMaxEnergyKilled= -1.0; << 217 G4int fMaxEnergyKilledPDG= 0; << 218 unsigned long fNumLoopersKilled= 0; << 219 G4double fSumEnergyKilled_NonElectron= 0. << 220 G4double fSumEnerSqKilled_NonElectron= 0. << 221 G4double fMaxEnergyKilled_NonElectron= -1 << 222 G4int fMaxEnergyKilled_NonElecPDG= 0; << 223 unsigned long fNumLoopersKilled_NonElectr << 224 G4double fSumEnergySaved= 0.0; << 225 G4double fMaxEnergySaved= -1.0; << 226 G4double fSumEnergyUnstableSaved = 0.0; << 227 // Whether to avoid calling G4Navigator f << 228 // If using it, the safety estimate for e << 229 // << 230 G4bool fShortStepOptimisation; << 231 << 232 G4SafetyHelper* fpSafetyHelper; // To << 233 G4TransportationLogger* fpLogger; // Rep << 234 << 235 protected: << 236 156 237 static G4bool fUseMagneticMoment; << 157 G4double endpointDistance; 238 static G4bool fUseGravity; << 239 static G4bool fSilenceLooperWarnings; // << 240 << 241 }; 158 }; 242 159 >> 160 243 #include "G4Transportation.icc" 161 #include "G4Transportation.icc" 244 162 245 #endif 163 #endif >> 164 >> 165 // End of G4Transportation.hh 246 166