Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4OpWLS.cc 106117 2017-09-13 10:23:20Z gcosmo $ 27 // 28 // 28 ////////////////////////////////////////////// 29 //////////////////////////////////////////////////////////////////////// 29 // Optical Photon WaveLength Shifting (WLS) Cl 30 // Optical Photon WaveLength Shifting (WLS) Class Implementation 30 ////////////////////////////////////////////// 31 //////////////////////////////////////////////////////////////////////// 31 // 32 // 32 // File: G4OpWLS.cc 33 // File: G4OpWLS.cc 33 // Description: Discrete Process -- Wavelength 34 // Description: Discrete Process -- Wavelength Shifting of Optical Photons 34 // Version: 1.0 35 // Version: 1.0 35 // Created: 2003-05-13 36 // Created: 2003-05-13 36 // Author: John Paul Archambault 37 // Author: John Paul Archambault 37 // (Adaptation of G4Scintillation 38 // (Adaptation of G4Scintillation and G4OpAbsorption) 38 // Updated: 2005-07-28 - add G4ProcessType 39 // Updated: 2005-07-28 - add G4ProcessType to constructor 39 // 2006-05-07 - add G4VWLSTimeGen 40 // 2006-05-07 - add G4VWLSTimeGeneratorProfile >> 41 // mail: gum@triumf.ca >> 42 // jparcham@phys.ualberta.ca 40 // 43 // 41 ////////////////////////////////////////////// 44 //////////////////////////////////////////////////////////////////////// 42 45 43 #include "G4OpWLS.hh" 46 #include "G4OpWLS.hh" >> 47 44 #include "G4ios.hh" 48 #include "G4ios.hh" 45 #include "G4PhysicalConstants.hh" 49 #include "G4PhysicalConstants.hh" 46 #include "G4SystemOfUnits.hh" 50 #include "G4SystemOfUnits.hh" 47 #include "G4OpProcessSubType.hh" 51 #include "G4OpProcessSubType.hh" 48 #include "G4Poisson.hh" << 52 49 #include "G4OpticalParameters.hh" << 50 #include "G4WLSTimeGeneratorProfileDelta.hh" 53 #include "G4WLSTimeGeneratorProfileDelta.hh" 51 #include "G4WLSTimeGeneratorProfileExponential 54 #include "G4WLSTimeGeneratorProfileExponential.hh" 52 55 53 //....oooOO0OOooo........oooOO0OOooo........oo << 56 ///////////////////////// >> 57 // Class Implementation >> 58 ///////////////////////// >> 59 >> 60 ////////////////////// >> 61 // static data members >> 62 ////////////////////// >> 63 >> 64 ///////////////// >> 65 // Constructors >> 66 ///////////////// >> 67 54 G4OpWLS::G4OpWLS(const G4String& processName, 68 G4OpWLS::G4OpWLS(const G4String& processName, G4ProcessType type) 55 : G4VDiscreteProcess(processName, type) 69 : G4VDiscreteProcess(processName, type) 56 { 70 { 57 WLSTimeGeneratorProfile = nullptr; << 58 Initialise(); << 59 SetProcessSubType(fOpWLS); 71 SetProcessSubType(fOpWLS); 60 theIntegralTable = nullptr; << 61 72 62 if(verboseLevel > 0) << 73 theIntegralTable = NULL; 63 G4cout << GetProcessName() << " is created << 74 >> 75 WLSTimeGeneratorProfile = >> 76 new G4WLSTimeGeneratorProfileDelta("WLSTimeGeneratorProfileDelta"); >> 77 >> 78 if (verboseLevel>0) G4cout << GetProcessName() << " is created " << G4endl; 64 } 79 } 65 80 66 //....oooOO0OOooo........oooOO0OOooo........oo << 81 //////////////// >> 82 // Destructors >> 83 //////////////// >> 84 67 G4OpWLS::~G4OpWLS() 85 G4OpWLS::~G4OpWLS() 68 { 86 { 69 if(theIntegralTable) << 87 if (theIntegralTable) { 70 { << 71 theIntegralTable->clearAndDestroy(); 88 theIntegralTable->clearAndDestroy(); 72 delete theIntegralTable; 89 delete theIntegralTable; 73 } 90 } 74 delete WLSTimeGeneratorProfile; 91 delete WLSTimeGeneratorProfile; 75 } 92 } 76 93 77 //....oooOO0OOooo........oooOO0OOooo........oo << 94 //////////// 78 void G4OpWLS::PreparePhysicsTable(const G4Part << 95 // Methods >> 96 //////////// 79 97 80 //....oooOO0OOooo........oooOO0OOooo........oo << 98 // PostStepDoIt 81 void G4OpWLS::Initialise() << 99 // ------------- 82 { << 100 // 83 G4OpticalParameters* params = G4OpticalParam << 101 G4VParticleChange* 84 SetVerboseLevel(params->GetWLSVerboseLevel() << 102 G4OpWLS::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 85 UseTimeProfile(params->GetWLSTimeProfile()); << 86 } << 87 << 88 //....oooOO0OOooo........oooOO0OOooo........oo << 89 G4VParticleChange* G4OpWLS::PostStepDoIt(const << 90 const << 91 { 103 { 92 std::vector<G4Track*> proposedSecondaries; << 93 aParticleChange.Initialize(aTrack); 104 aParticleChange.Initialize(aTrack); >> 105 94 aParticleChange.ProposeTrackStatus(fStopAndK 106 aParticleChange.ProposeTrackStatus(fStopAndKill); 95 107 96 if(verboseLevel > 1) << 108 if (verboseLevel>0) { 97 { << 109 G4cout << "\n** Photon absorbed! **" << G4endl; 98 G4cout << "\n** G4OpWLS: Photon absorbed! << 99 } 110 } >> 111 >> 112 const G4Material* aMaterial = aTrack.GetMaterial(); 100 113 101 G4StepPoint* pPostStepPoint = aStep.GetPostS 114 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint(); 102 G4MaterialPropertiesTable* MPT = << 115 103 aTrack.GetMaterial()->GetMaterialPropertie << 116 G4MaterialPropertiesTable* aMaterialPropertiesTable = 104 if(!MPT) << 117 aMaterial->GetMaterialPropertiesTable(); 105 { << 118 if (!aMaterialPropertiesTable) 106 return G4VDiscreteProcess::PostStepDoIt(aT 119 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 107 } << 120 108 if(!MPT->GetProperty(kWLSCOMPONENT)) << 121 const G4MaterialPropertyVector* WLS_Intensity = 109 { << 122 aMaterialPropertiesTable->GetProperty(kWLSCOMPONENT); >> 123 >> 124 if (!WLS_Intensity) 110 return G4VDiscreteProcess::PostStepDoIt(aT 125 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 111 } << 112 126 113 G4int NumPhotons = 1; 127 G4int NumPhotons = 1; 114 if(MPT->ConstPropertyExists(kWLSMEANNUMBERPH << 128 115 { << 129 if (aMaterialPropertiesTable->ConstPropertyExists("WLSMEANNUMBERPHOTONS")) { 116 G4double MeanNumberOfPhotons = MPT->GetCon << 130 117 NumPhotons = G4int(G4Poi << 131 G4double MeanNumberOfPhotons = aMaterialPropertiesTable-> 118 if(NumPhotons <= 0) << 132 GetConstProperty(kWLSMEANNUMBERPHOTONS); 119 { << 133 120 // return unchanged particle and no seco << 134 NumPhotons = G4int(G4Poisson(MeanNumberOfPhotons)); 121 aParticleChange.SetNumberOfSecondaries(0 << 135 122 return G4VDiscreteProcess::PostStepDoIt( << 136 if (NumPhotons <= 0) { 123 } << 137 >> 138 // return unchanged particle and no secondaries >> 139 >> 140 aParticleChange.SetNumberOfSecondaries(0); >> 141 >> 142 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 143 >> 144 } >> 145 124 } 146 } 125 147 126 // Retrieve the WLS Integral for this materi << 148 aParticleChange.SetNumberOfSecondaries(NumPhotons); 127 // new G4PhysicsFreeVector allocated to hold << 149 128 G4double primaryEnergy = aTrack.GetDynamicPa 150 G4double primaryEnergy = aTrack.GetDynamicParticle()->GetKineticEnergy(); 129 G4double WLSTime = 0.; << 130 G4PhysicsFreeVector* WLSIntegral = nullptr; << 131 151 132 WLSTime = MPT->GetConstProperty(kWLSTIME << 152 G4int materialIndex = aMaterial->GetIndex(); 133 WLSIntegral = (G4PhysicsFreeVector*) ((*theI << 153 134 aTrack.GetMaterial()->GetIndex())); << 154 // Retrieve the WLS Integral for this material >> 155 // new G4PhysicsOrderedFreeVector allocated to hold CII's 135 156 >> 157 G4double WLSTime = 0.*ns; >> 158 G4PhysicsOrderedFreeVector* WLSIntegral = 0; >> 159 >> 160 WLSTime = aMaterialPropertiesTable-> >> 161 GetConstProperty(kWLSTIMECONSTANT); >> 162 WLSIntegral = >> 163 (G4PhysicsOrderedFreeVector*)((*theIntegralTable)(materialIndex)); >> 164 136 // Max WLS Integral 165 // Max WLS Integral 137 G4double CIImax = WLSIntegral->GetMaxV << 166 >> 167 G4double CIImax = WLSIntegral->GetMaxValue(); >> 168 138 G4int NumberOfPhotons = NumPhotons; 169 G4int NumberOfPhotons = NumPhotons; >> 170 >> 171 for (G4int i = 0; i < NumPhotons; i++) { 139 172 140 for(G4int i = 0; i < NumPhotons; ++i) << 141 { << 142 G4double sampledEnergy; 173 G4double sampledEnergy; >> 174 143 // Make sure the energy of the secondary i 175 // Make sure the energy of the secondary is less than that of the primary 144 for(G4int j = 1; j <= 100; ++j) << 176 145 { << 177 for (G4int j = 1; j <= 100; j++) { 146 // Determine photon energy << 178 147 G4double CIIvalue = G4UniformRand() * CI << 179 // Determine photon energy 148 sampledEnergy = WLSIntegral->GetEner << 180 149 if(sampledEnergy <= primaryEnergy) << 181 G4double CIIvalue = G4UniformRand()*CIImax; 150 break; << 182 sampledEnergy = WLSIntegral->GetEnergy(CIIvalue); 151 } << 183 152 // If no such energy can be sampled, retur << 184 if (verboseLevel>1) { 153 if(sampledEnergy > primaryEnergy) << 185 G4cout << "sampledEnergy = " << sampledEnergy << G4endl; 154 { << 186 G4cout << "CIIvalue = " << CIIvalue << G4endl; 155 if(verboseLevel > 1) << 156 { << 157 G4cout << " *** G4OpWLS: One less WLS << 158 << G4endl; << 159 } << 160 NumberOfPhotons--; << 161 if(NumberOfPhotons == 0) << 162 { << 163 if(verboseLevel > 1) << 164 { << 165 G4cout << 166 << " *** G4OpWLS: No WLS photon ca << 167 << G4endl; << 168 } 187 } 169 // return unchanged particle and no se << 188 170 aParticleChange.SetNumberOfSecondaries << 189 if (sampledEnergy <= primaryEnergy) break; 171 return G4VDiscreteProcess::PostStepDoI << 172 } << 173 continue; << 174 } 190 } 175 else if(verboseLevel > 1) << 191 176 { << 192 // If no such energy can be sampled, return one less secondary, or none 177 G4cout << "G4OpWLS: Created photon with << 193 178 << G4endl; << 194 if (sampledEnergy > primaryEnergy) { >> 195 if (verboseLevel>1) >> 196 G4cout << " *** One less WLS photon will be returned ***" << G4endl; >> 197 NumberOfPhotons--; >> 198 aParticleChange.SetNumberOfSecondaries(NumberOfPhotons); >> 199 if (NumberOfPhotons == 0) { >> 200 if (verboseLevel>1) >> 201 G4cout << " *** No WLS photon can be sampled for this primary ***" >> 202 << G4endl; >> 203 // return unchanged particle and no secondaries >> 204 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); >> 205 } >> 206 continue; 179 } 207 } 180 208 181 // Generate random photon direction 209 // Generate random photon direction 182 G4double cost = 1. - 2. * G4UniformRand(); << 210 183 G4double sint = std::sqrt((1. - cost) * (1 << 211 G4double cost = 1. - 2.*G4UniformRand(); 184 G4double phi = twopi * G4UniformRand(); << 212 G4double sint = std::sqrt((1.-cost)*(1.+cost)); >> 213 >> 214 G4double phi = twopi*G4UniformRand(); 185 G4double sinp = std::sin(phi); 215 G4double sinp = std::sin(phi); 186 G4double cosp = std::cos(phi); 216 G4double cosp = std::cos(phi); 187 G4ParticleMomentum photonMomentum(sint * c << 217 188 << 218 G4double px = sint*cosp; 189 G4ThreeVector photonPolarization(cost * co << 219 G4double py = sint*sinp; >> 220 G4double pz = cost; >> 221 >> 222 // Create photon momentum direction vector >> 223 >> 224 G4ParticleMomentum photonMomentum(px, py, pz); >> 225 >> 226 // Determine polarization of new photon >> 227 >> 228 G4double sx = cost*cosp; >> 229 G4double sy = cost*sinp; >> 230 G4double sz = -sint; >> 231 >> 232 G4ThreeVector photonPolarization(sx, sy, sz); >> 233 190 G4ThreeVector perp = photonMomentum.cross( 234 G4ThreeVector perp = photonMomentum.cross(photonPolarization); 191 << 235 192 phi = twopi * G4UniformRand << 236 phi = twopi*G4UniformRand(); 193 sinp = std::sin(phi); << 237 sinp = std::sin(phi); 194 cosp = std::cos(phi); << 238 cosp = std::cos(phi); 195 photonPolarization = (cosp * photonPolariz << 239 196 << 240 photonPolarization = cosp * photonPolarization + sinp * perp; >> 241 >> 242 photonPolarization = photonPolarization.unit(); >> 243 197 // Generate a new photon: 244 // Generate a new photon: 198 auto sec_dp = << 245 199 new G4DynamicParticle(G4OpticalPhoton::O << 246 G4DynamicParticle* aWLSPhoton = 200 sec_dp->SetPolarization(photonPolarization << 247 new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(), 201 sec_dp->SetKineticEnergy(sampledEnergy); << 248 photonMomentum); 202 << 249 aWLSPhoton->SetPolarization 203 G4double secTime = pPostStepPoint->GetGlob << 250 (photonPolarization.x(), 204 WLSTimeGeneratorProfile << 251 photonPolarization.y(), 205 G4ThreeVector secPos = pPostStepPoint->Get << 252 photonPolarization.z()); 206 G4Track* secTrack = new G4Track(sec_dp, << 253 207 << 254 aWLSPhoton->SetKineticEnergy(sampledEnergy); 208 secTrack->SetTouchableHandle(aTrack.GetTou << 255 209 secTrack->SetParentID(aTrack.GetTrackID()) << 256 // Generate new G4Track object: 210 << 257 211 proposedSecondaries.push_back(secTrack); << 258 // Must give position of WLS optical photon 212 } << 259 213 << 260 G4double TimeDelay = WLSTimeGeneratorProfile->GenerateTime(WLSTime); 214 aParticleChange.SetNumberOfSecondaries((G4in << 261 G4double aSecondaryTime = (pPostStepPoint->GetGlobalTime()) + TimeDelay; 215 for(auto sec : proposedSecondaries) << 262 216 { << 263 G4ThreeVector aSecondaryPosition = pPostStepPoint->GetPosition(); 217 aParticleChange.AddSecondary(sec); << 264 218 } << 265 G4Track* aSecondaryTrack = 219 if(verboseLevel > 1) << 266 new G4Track(aWLSPhoton,aSecondaryTime,aSecondaryPosition); 220 { << 267 221 G4cout << "\n Exiting from G4OpWLS::DoIt - << 268 aSecondaryTrack->SetTouchableHandle(aTrack.GetTouchableHandle()); 222 << aParticleChange.GetNumberOfSecon << 269 // aSecondaryTrack->SetTouchableHandle((G4VTouchable*)0); >> 270 >> 271 aSecondaryTrack->SetParentID(aTrack.GetTrackID()); >> 272 >> 273 aParticleChange.AddSecondary(aSecondaryTrack); >> 274 } >> 275 >> 276 if (verboseLevel>0) { >> 277 G4cout << "\n Exiting from G4OpWLS::DoIt -- NumberOfSecondaries = " >> 278 << aParticleChange.GetNumberOfSecondaries() << G4endl; 223 } 279 } 224 << 280 225 return G4VDiscreteProcess::PostStepDoIt(aTra 281 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 226 } 282 } 227 283 228 //....oooOO0OOooo........oooOO0OOooo........oo << 284 // BuildPhysicsTable for the wavelength shifting process >> 285 // -------------------------------------------------- >> 286 229 void G4OpWLS::BuildPhysicsTable(const G4Partic 287 void G4OpWLS::BuildPhysicsTable(const G4ParticleDefinition&) 230 { 288 { 231 if(theIntegralTable) << 289 if (theIntegralTable) { 232 { << 290 theIntegralTable->clearAndDestroy(); 233 theIntegralTable->clearAndDestroy(); << 291 delete theIntegralTable; 234 delete theIntegralTable; << 292 theIntegralTable = NULL; 235 theIntegralTable = nullptr; << 236 } 293 } 237 294 238 const G4MaterialTable* materialTable = G4Mat << 295 const G4MaterialTable* theMaterialTable = 239 std::size_t numOfMaterials = G4Mat << 296 G4Material::GetMaterialTable(); 240 theIntegralTable = new G << 297 G4int numOfMaterials = G4Material::GetNumberOfMaterials(); 241 << 298 >> 299 // create new physics table >> 300 >> 301 theIntegralTable = new G4PhysicsTable(numOfMaterials); >> 302 242 // loop for materials 303 // loop for materials 243 for(std::size_t i = 0; i < numOfMaterials; + << 304 244 { << 305 for (G4int i=0 ; i < numOfMaterials; i++) 245 auto physVector = new G4PhysicsFreeVector( << 246 << 247 // Retrieve vector of WLS wavelength inten << 248 // the material from the material's optica << 249 G4MaterialPropertiesTable* MPT = << 250 (*materialTable)[i]->GetMaterialProperti << 251 if(MPT) << 252 { 306 { 253 G4MaterialPropertyVector* wlsVector = MP << 307 G4PhysicsOrderedFreeVector* aPhysicsOrderedFreeVector = 254 if(wlsVector) << 308 new G4PhysicsOrderedFreeVector(); 255 { << 309 256 // Retrieve the first intensity point << 310 // Retrieve vector of WLS wavelength intensity for 257 // of (photon energy, intensity) pairs << 311 // the material from the material's optical properties table. 258 G4double currentIN = (*wlsVector)[0]; << 312 259 if(currentIN >= 0.0) << 313 G4Material* aMaterial = (*theMaterialTable)[i]; 260 { << 314 261 // Create first (photon energy) << 315 G4MaterialPropertiesTable* aMaterialPropertiesTable = 262 G4double currentPM = wlsVector->Ene << 316 aMaterial->GetMaterialPropertiesTable(); 263 G4double currentCII = 0.0; << 317 264 physVector->InsertValues(currentPM, << 318 if (aMaterialPropertiesTable) { 265 << 319 266 // Set previous values to current on << 320 G4MaterialPropertyVector* theWLSVector = 267 G4double prevPM = currentPM; << 321 aMaterialPropertiesTable->GetProperty(kWLSCOMPONENT); 268 G4double prevCII = currentCII; << 322 269 G4double prevIN = currentIN; << 323 if (theWLSVector) { 270 << 324 271 // loop over all (photon energy, int << 325 // Retrieve the first intensity point in vector 272 // pairs stored for this material << 326 // of (photon energy, intensity) pairs 273 for(std::size_t j = 1; j < wlsVector << 327 274 { << 328 G4double currentIN = (*theWLSVector)[0]; 275 currentPM = wlsVector->Energy(j); << 329 276 currentIN = (*wlsVector)[j]; << 330 if (currentIN >= 0.0) { 277 currentCII = << 331 278 prevCII + 0.5 * (currentPM - pre << 332 // Create first (photon energy) 279 << 333 280 physVector->InsertValues(currentPM << 334 G4double currentPM = theWLSVector->Energy(0); 281 << 335 282 prevPM = currentPM; << 336 G4double currentCII = 0.0; 283 prevCII = currentCII; << 337 284 prevIN = currentIN; << 338 aPhysicsOrderedFreeVector-> 285 } << 339 InsertValues(currentPM , currentCII); 286 } << 340 >> 341 // Set previous values to current ones prior to loop >> 342 >> 343 G4double prevPM = currentPM; >> 344 G4double prevCII = currentCII; >> 345 G4double prevIN = currentIN; >> 346 >> 347 // loop over all (photon energy, intensity) >> 348 // pairs stored for this material >> 349 >> 350 for (size_t j = 1; >> 351 j < theWLSVector->GetVectorLength(); >> 352 j++) >> 353 { >> 354 currentPM = theWLSVector->Energy(j); >> 355 currentIN = (*theWLSVector)[j]; >> 356 >> 357 currentCII = 0.5 * (prevIN + currentIN); >> 358 >> 359 currentCII = prevCII + >> 360 (currentPM - prevPM) * currentCII; >> 361 >> 362 aPhysicsOrderedFreeVector-> >> 363 InsertValues(currentPM, currentCII); >> 364 >> 365 prevPM = currentPM; >> 366 prevCII = currentCII; >> 367 prevIN = currentIN; >> 368 } >> 369 } >> 370 } 287 } 371 } >> 372 // The WLS integral for a given material >> 373 // will be inserted in the table according to the >> 374 // position of the material in the material table. >> 375 >> 376 theIntegralTable->insertAt(i,aPhysicsOrderedFreeVector); 288 } 377 } 289 theIntegralTable->insertAt(i, physVector); << 290 } << 291 } 378 } 292 379 293 //....oooOO0OOooo........oooOO0OOooo........oo << 380 // GetMeanFreePath 294 G4double G4OpWLS::GetMeanFreePath(const G4Trac << 381 // --------------- 295 G4ForceCondi << 382 // >> 383 G4double G4OpWLS::GetMeanFreePath(const G4Track& aTrack, >> 384 G4double , >> 385 G4ForceCondition* ) 296 { 386 { 297 G4double thePhotonEnergy = aTrack.GetDynamic << 387 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 298 G4double attLength = DBL_MAX; << 388 const G4Material* aMaterial = aTrack.GetMaterial(); 299 G4MaterialPropertiesTable* MPT = << 389 300 aTrack.GetMaterial()->GetMaterialPropertie << 390 G4double thePhotonEnergy = aParticle->GetTotalEnergy(); 301 << 391 302 if(MPT) << 392 G4MaterialPropertiesTable* aMaterialPropertyTable; 303 { << 393 G4MaterialPropertyVector* AttenuationLengthVector; 304 G4MaterialPropertyVector* attVector = MPT- << 394 305 if(attVector) << 395 G4double AttenuationLength = DBL_MAX; 306 { << 396 307 attLength = attVector->Value(thePhotonEn << 397 aMaterialPropertyTable = aMaterial->GetMaterialPropertiesTable(); >> 398 >> 399 if ( aMaterialPropertyTable ) { >> 400 AttenuationLengthVector = aMaterialPropertyTable-> >> 401 GetProperty(kWLSABSLENGTH); >> 402 if ( AttenuationLengthVector ){ >> 403 AttenuationLength = AttenuationLengthVector-> >> 404 Value(thePhotonEnergy); 308 } 405 } >> 406 else { >> 407 // G4cout << "No WLS absorption length specified" << G4endl; >> 408 } >> 409 } >> 410 else { >> 411 // G4cout << "No WLS absortion length specified" << G4endl; 309 } 412 } 310 return attLength; << 413 >> 414 return AttenuationLength; 311 } 415 } 312 416 313 //....oooOO0OOooo........oooOO0OOooo........oo << 314 void G4OpWLS::UseTimeProfile(const G4String na 417 void G4OpWLS::UseTimeProfile(const G4String name) 315 { 418 { 316 if(WLSTimeGeneratorProfile) << 419 if (name == "delta") 317 { << 420 { 318 delete WLSTimeGeneratorProfile; << 421 delete WLSTimeGeneratorProfile; 319 WLSTimeGeneratorProfile = nullptr; << 422 WLSTimeGeneratorProfile = 320 } << 423 new G4WLSTimeGeneratorProfileDelta("delta"); 321 if(name == "delta") << 424 } 322 { << 425 else if (name == "exponential") 323 WLSTimeGeneratorProfile = new G4WLSTimeGen << 426 { 324 } << 427 delete WLSTimeGeneratorProfile; 325 else if(name == "exponential") << 428 WLSTimeGeneratorProfile = 326 { << 429 new G4WLSTimeGeneratorProfileExponential("exponential"); 327 WLSTimeGeneratorProfile = << 430 } 328 new G4WLSTimeGeneratorProfileExponential << 329 } << 330 else 431 else 331 { << 432 { 332 G4Exception("G4OpWLS::UseTimeProfile", "em << 433 G4Exception("G4OpWLS::UseTimeProfile", "em0202", 333 "generator does not exist"); << 434 FatalException, 334 } << 435 "generator does not exist"); 335 G4OpticalParameters::Instance()->SetWLSTimeP << 436 } 336 } << 337 << 338 //....oooOO0OOooo........oooOO0OOooo........oo << 339 void G4OpWLS::SetVerboseLevel(G4int verbose) << 340 { << 341 verboseLevel = verbose; << 342 G4OpticalParameters::Instance()->SetWLSVerbo << 343 } 437 } 344 438