Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id$ 27 // 28 // 28 // << 29 // 29 ////////////////////////////////////////////// 30 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Rayleigh Scattering Class Im 31 // Optical Photon Rayleigh Scattering Class Implementation 31 ////////////////////////////////////////////// 32 //////////////////////////////////////////////////////////////////////// 32 // 33 // 33 // File: G4OpRayleigh.cc << 34 // File: G4OpRayleigh.cc 34 // Description: Discrete Process -- Rayleigh s << 35 // Description: Discrete Process -- Rayleigh scattering of optical 35 // photons << 36 // photons 36 // Version: 1.0 37 // Version: 1.0 37 // Created: 1996-05-31 << 38 // Created: 1996-05-31 38 // Author: Juliet Armstrong 39 // Author: Juliet Armstrong 39 // Updated: 2014-10-10 - This version cal << 40 // Updated: 2010-06-11 - Fix Bug 207; Thanks to Xin Qian 40 // length for more materials than << 41 // default is kept). To do this t << 42 // ISOTHERMAL_COMPRESSIBILITY as << 43 // optionally an RS_SCALE_LENGTH << 44 // from Philip Graham (Queen Mary << 45 // 2010-06-11 - Fix Bug 207; Than << 46 // (Kellogg Radiation Lab of Calt 41 // (Kellogg Radiation Lab of Caltech) 47 // 2005-07-28 - add G4ProcessType 42 // 2005-07-28 - add G4ProcessType to constructor 48 // 2001-10-18 by Peter Gumplinger 43 // 2001-10-18 by Peter Gumplinger 49 // eliminate unused variable warn 44 // eliminate unused variable warning on Linux (gcc-2.95.2) 50 // 2001-09-18 by mma 45 // 2001-09-18 by mma 51 // >numOfMaterials=G4Material::Ge << 46 // >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy 52 // 2001-01-30 by Peter Gumplinger 47 // 2001-01-30 by Peter Gumplinger 53 // > allow for positiv and negati 48 // > allow for positiv and negative CosTheta and force the 54 // > new momentum direction to be 49 // > new momentum direction to be in the same plane as the 55 // > new and old polarization vec 50 // > new and old polarization vectors 56 // 2001-01-29 by Peter Gumplinger 51 // 2001-01-29 by Peter Gumplinger 57 // > fix calculation of SinTheta 52 // > fix calculation of SinTheta (from CosTheta) 58 // 1997-04-09 by Peter Gumplinger 53 // 1997-04-09 by Peter Gumplinger 59 // > new physics/tracking scheme 54 // > new physics/tracking scheme >> 55 // mail: gum@triumf.ca 60 // 56 // 61 ////////////////////////////////////////////// 57 //////////////////////////////////////////////////////////////////////// 62 58 63 #include "G4OpRayleigh.hh" 59 #include "G4OpRayleigh.hh" >> 60 64 #include "G4ios.hh" 61 #include "G4ios.hh" 65 #include "G4PhysicalConstants.hh" 62 #include "G4PhysicalConstants.hh" 66 #include "G4SystemOfUnits.hh" 63 #include "G4SystemOfUnits.hh" 67 #include "G4OpticalParameters.hh" << 68 #include "G4OpProcessSubType.hh" 64 #include "G4OpProcessSubType.hh" 69 65 70 //....oooOO0OOooo........oooOO0OOooo........oo << 66 ///////////////////////// >> 67 // Class Implementation >> 68 ///////////////////////// >> 69 >> 70 ////////////// >> 71 // Operators >> 72 ////////////// >> 73 >> 74 // G4OpRayleigh::operator=(const G4OpRayleigh &right) >> 75 // { >> 76 // } >> 77 >> 78 ///////////////// >> 79 // Constructors >> 80 ///////////////// >> 81 71 G4OpRayleigh::G4OpRayleigh(const G4String& pro 82 G4OpRayleigh::G4OpRayleigh(const G4String& processName, G4ProcessType type) 72 : G4VDiscreteProcess(processName, type) << 83 : G4VDiscreteProcess(processName, type) 73 { 84 { 74 Initialise(); << 85 SetProcessSubType(fOpRayleigh); 75 SetProcessSubType(fOpRayleigh); << 86 76 thePhysicsTable = nullptr; << 87 thePhysicsTable = 0; 77 << 88 78 if(verboseLevel > 0) << 89 DefaultWater = false; 79 { << 90 80 G4cout << GetProcessName() << " is created << 91 if (verboseLevel>0) { 81 } << 92 G4cout << GetProcessName() << " is created " << G4endl; >> 93 } >> 94 >> 95 BuildThePhysicsTable(); 82 } 96 } 83 97 84 //....oooOO0OOooo........oooOO0OOooo........oo << 98 // G4OpRayleigh::G4OpRayleigh(const G4OpRayleigh &right) >> 99 // { >> 100 // } >> 101 >> 102 //////////////// >> 103 // Destructors >> 104 //////////////// >> 105 85 G4OpRayleigh::~G4OpRayleigh() 106 G4OpRayleigh::~G4OpRayleigh() 86 { 107 { 87 // VI: inside this PhysicsTable all properti << 108 if (thePhysicsTable!= 0) { 88 // it is not possible to destroy << 109 thePhysicsTable->clearAndDestroy(); 89 delete thePhysicsTable; << 110 delete thePhysicsTable; >> 111 } 90 } 112 } 91 113 92 //....oooOO0OOooo........oooOO0OOooo........oo << 114 //////////// 93 void G4OpRayleigh::PreparePhysicsTable(const G << 115 // Methods 94 { << 116 //////////// 95 Initialise(); << 96 } << 97 117 98 //....oooOO0OOooo........oooOO0OOooo........oo << 118 // PostStepDoIt 99 void G4OpRayleigh::Initialise() << 119 // ------------- >> 120 // >> 121 G4VParticleChange* >> 122 G4OpRayleigh::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 100 { 123 { 101 SetVerboseLevel(G4OpticalParameters::Instanc << 124 aParticleChange.Initialize(aTrack); 102 } << 103 125 104 //....oooOO0OOooo........oooOO0OOooo........oo << 126 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 105 G4VParticleChange* G4OpRayleigh::PostStepDoIt( << 106 << 107 { << 108 aParticleChange.Initialize(aTrack); << 109 const G4DynamicParticle* aParticle = aTrack. << 110 127 111 if(verboseLevel > 1) << 128 if (verboseLevel>0) { 112 { << 129 G4cout << "Scattering Photon!" << G4endl; 113 G4cout << "OpRayleigh: Scattering Photon!" << 130 G4cout << "Old Momentum Direction: " 114 << "Old Momentum Direction: " << aP << 131 << aParticle->GetMomentumDirection() << G4endl; 115 << G4endl << "Old Polarization: " < << 132 G4cout << "Old Polarization: " 116 << G4endl; << 133 << aParticle->GetPolarization() << G4endl; 117 } << 134 } 118 << 135 119 G4double cosTheta; << 136 G4double cosTheta; 120 G4ThreeVector oldMomDir, newMomDir; << 137 G4ThreeVector OldMomentumDirection, NewMomentumDirection; 121 G4ThreeVector oldPol, newPol; << 138 G4ThreeVector OldPolarization, NewPolarization; 122 G4double rand; << 139 123 G4double cost, sint, sinphi, cosphi; << 140 do { 124 << 141 // Try to simulate the scattered photon momentum direction 125 do << 142 // w.r.t. the initial photon momentum direction 126 { << 143 127 // Try to simulate the scattered photon mo << 144 G4double CosTheta = G4UniformRand(); 128 // w.r.t. the initial photon momentum dire << 145 G4double SinTheta = std::sqrt(1.-CosTheta*CosTheta); 129 cost = G4UniformRand(); << 146 // consider for the angle 90-180 degrees 130 sint = std::sqrt(1. - cost * cost); << 147 if (G4UniformRand() < 0.5) CosTheta = -CosTheta; 131 // consider for the angle 90-180 degrees << 148 132 if(G4UniformRand() < 0.5) << 149 // simulate the phi angle 133 cost = -cost; << 150 G4double rand = twopi*G4UniformRand(); 134 << 151 G4double SinPhi = std::sin(rand); 135 // simulate the phi angle << 152 G4double CosPhi = std::cos(rand); 136 rand = twopi * G4UniformRand(); << 153 137 sinphi = std::sin(rand); << 154 // start constructing the new momentum direction 138 cosphi = std::cos(rand); << 155 G4double unit_x = SinTheta * CosPhi; 139 << 156 G4double unit_y = SinTheta * SinPhi; 140 // construct the new momentum direction << 157 G4double unit_z = CosTheta; 141 newMomDir.set(sint * cosphi, sint * sinphi << 158 NewMomentumDirection.set (unit_x,unit_y,unit_z); 142 oldMomDir = aParticle->GetMomentumDirectio << 159 143 newMomDir.rotateUz(oldMomDir); << 160 // Rotate the new momentum direction into global reference system 144 << 161 OldMomentumDirection = aParticle->GetMomentumDirection(); 145 // calculate the new polarization directio << 162 OldMomentumDirection = OldMomentumDirection.unit(); 146 // The new polarization needs to be in the << 163 NewMomentumDirection.rotateUz(OldMomentumDirection); 147 // momentum direction and the old polariza << 164 NewMomentumDirection = NewMomentumDirection.unit(); 148 oldPol = aParticle->GetPolarization(); << 165 149 newPol = (oldPol - newMomDir.dot(oldPol) * << 166 // calculate the new polarization direction 150 << 167 // The new polarization needs to be in the same plane as the new 151 // There is a corner case, where the new m << 168 // momentum direction and the old polarization direction 152 // is the same as old polarization directi << 169 OldPolarization = aParticle->GetPolarization(); 153 // random generate the azimuthal angle w.r << 170 G4double constant = -1./NewMomentumDirection.dot(OldPolarization); 154 if(newPol.mag() == 0.) << 171 155 { << 172 NewPolarization = NewMomentumDirection + constant*OldPolarization; 156 rand = G4UniformRand() * twopi; << 173 NewPolarization = NewPolarization.unit(); 157 newPol.set(std::cos(rand), std::sin(rand << 174 158 newPol.rotateUz(newMomDir); << 175 // There is a corner case, where the Newmomentum direction 159 } << 176 // is the same as oldpolariztion direction: 160 else << 177 // random generate the azimuthal angle w.r.t. Newmomentum direction 161 { << 178 if (NewPolarization.mag() == 0.) { 162 // There are two directions perpendicula << 179 rand = G4UniformRand()*twopi; 163 if(G4UniformRand() < 0.5) << 180 NewPolarization.set(std::cos(rand),std::sin(rand),0.); 164 newPol = -newPol; << 181 NewPolarization.rotateUz(NewMomentumDirection); 165 } << 182 } else { 166 << 183 // There are two directions which are perpendicular 167 // simulate according to the distribution << 184 // to the new momentum direction 168 cosTheta = newPol.dot(oldPol); << 185 if (G4UniformRand() < 0.5) NewPolarization = -NewPolarization; 169 // Loop checking, 13-Aug-2015, Peter Gumpl << 186 } 170 } while(std::pow(cosTheta, 2) < G4UniformRan << 187 171 << 188 // simulate according to the distribution cos^2(theta) 172 aParticleChange.ProposePolarization(newPol); << 189 cosTheta = NewPolarization.dot(OldPolarization); 173 aParticleChange.ProposeMomentumDirection(new << 190 } while (std::pow(cosTheta,2) < G4UniformRand()); 174 << 191 175 if(verboseLevel > 1) << 192 aParticleChange.ProposePolarization(NewPolarization); 176 { << 193 aParticleChange.ProposeMomentumDirection(NewMomentumDirection); 177 G4cout << "New Polarization: " << newPol < << 194 178 << "Polarization Change: " << *(aPa << 195 if (verboseLevel>0) { 179 << G4endl << "New Momentum Directio << 196 G4cout << "New Polarization: " 180 << "Momentum Change: " << *(aPartic << 197 << NewPolarization << G4endl; 181 << G4endl; << 198 G4cout << "Polarization Change: " 182 } << 199 << *(aParticleChange.GetPolarization()) << G4endl; >> 200 G4cout << "New Momentum Direction: " >> 201 << NewMomentumDirection << G4endl; >> 202 G4cout << "Momentum Change: " >> 203 << *(aParticleChange.GetMomentumDirection()) << G4endl; >> 204 } 183 205 184 return G4VDiscreteProcess::PostStepDoIt(aTra << 206 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 185 } 207 } 186 208 187 //....oooOO0OOooo........oooOO0OOooo........oo << 209 // BuildThePhysicsTable for the Rayleigh Scattering process 188 void G4OpRayleigh::BuildPhysicsTable(const G4P << 210 // -------------------------------------------------------- >> 211 // >> 212 void G4OpRayleigh::BuildThePhysicsTable() 189 { 213 { 190 if(thePhysicsTable) << 214 // Builds a table of scattering lengths for each material 191 { << 192 // thePhysicsTable->clearAndDestroy(); << 193 delete thePhysicsTable; << 194 thePhysicsTable = nullptr; << 195 } << 196 << 197 const G4MaterialTable* theMaterialTable = G4 << 198 const size_t numOfMaterials = G4 << 199 thePhysicsTable = ne << 200 << 201 for(size_t i = 0; i < numOfMaterials; ++i) << 202 { << 203 G4Material* material = (*the << 204 G4MaterialPropertiesTable* matProp = mater << 205 G4PhysicsFreeVector* rayleigh = nullptr; << 206 if(matProp) << 207 { << 208 rayleigh = matProp->GetProperty(kRAYLEIG << 209 if(rayleigh == nullptr) << 210 rayleigh = CalculateRayleighMeanFreePa << 211 } << 212 thePhysicsTable->insertAt(i, rayleigh); << 213 } << 214 } << 215 215 216 //....oooOO0OOooo........oooOO0OOooo........oo << 216 if (thePhysicsTable) return; 217 G4double G4OpRayleigh::GetMeanFreePath(const G << 217 218 G4Force << 218 const G4MaterialTable* theMaterialTable= 219 { << 219 G4Material::GetMaterialTable(); 220 auto rayleigh = static_cast<G4PhysicsFreeVec << 220 G4int numOfMaterials = G4Material::GetNumberOfMaterials(); 221 (*thePhysicsTable)(aTrack.GetMaterial()- << 221 >> 222 // create a new physics table >> 223 >> 224 thePhysicsTable = new G4PhysicsTable(numOfMaterials); >> 225 >> 226 // loop for materials >> 227 >> 228 for (G4int i=0 ; i < numOfMaterials; i++) >> 229 { >> 230 G4PhysicsOrderedFreeVector* ScatteringLengths = NULL; >> 231 >> 232 G4MaterialPropertiesTable *aMaterialPropertiesTable = >> 233 (*theMaterialTable)[i]->GetMaterialPropertiesTable(); >> 234 >> 235 if(aMaterialPropertiesTable){ >> 236 >> 237 G4MaterialPropertyVector* AttenuationLengthVector = >> 238 aMaterialPropertiesTable->GetProperty("RAYLEIGH"); >> 239 >> 240 if(!AttenuationLengthVector){ >> 241 >> 242 if ((*theMaterialTable)[i]->GetName() == "Water") >> 243 { >> 244 // Call utility routine to Generate >> 245 // Rayleigh Scattering Lengths 222 246 223 G4double rsLength = DBL_MAX; << 247 DefaultWater = true; 224 if(rayleigh) << 248 225 { << 249 ScatteringLengths = 226 rsLength = rayleigh->Value(aTrack.GetDynam << 250 RayleighAttenuationLengthGenerator(aMaterialPropertiesTable); 227 idx_rslength); << 251 } 228 } << 252 } 229 return rsLength; << 253 } >> 254 >> 255 thePhysicsTable->insertAt(i,ScatteringLengths); >> 256 } 230 } 257 } 231 258 232 //....oooOO0OOooo........oooOO0OOooo........oo << 259 // GetMeanFreePath() 233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRa << 260 // ----------------- 234 const G4Material* material) const << 261 // >> 262 G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack, >> 263 G4double , >> 264 G4ForceCondition* ) 235 { 265 { 236 G4MaterialPropertiesTable* MPT = material->G << 266 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); >> 267 const G4Material* aMaterial = aTrack.GetMaterial(); 237 268 238 // Retrieve the beta_T or isothermal compres << 269 G4double thePhotonEnergy = aParticle->GetTotalEnergy(); 239 // compatibility use a constant if the mater << 240 // doesn't have an ISOTHERMAL_COMPRESSIBILIT << 241 G4double betat; << 242 if(material->GetName() == "Water") << 243 { << 244 betat = 7.658e-23 * m3 / MeV; << 245 } << 246 else if(MPT->ConstPropertyExists(kISOTHERMAL << 247 { << 248 betat = MPT->GetConstProperty(kISOTHERMAL_ << 249 } << 250 else << 251 { << 252 return nullptr; << 253 } << 254 << 255 // If the material doesn't have a RINDEX pro << 256 G4MaterialPropertyVector* rIndex = MPT->GetP << 257 if(rIndex == nullptr) << 258 return nullptr; << 259 << 260 // Retrieve the optional scale factor (scale << 261 G4double scaleFactor = 1.0; << 262 if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR << 263 { << 264 scaleFactor = MPT->GetConstProperty(kRS_SC << 265 } << 266 << 267 // Retrieve the material temperature. For ba << 268 // constant if the material is "Water" << 269 G4double temperature; << 270 if(material->GetName() == "Water") << 271 { << 272 temperature = << 273 283.15 * kelvin; // Temperature of wate << 274 } << 275 else << 276 { << 277 temperature = material->GetTemperature(); << 278 } << 279 << 280 auto rayleighMFPs = new G4PhysicsFreeVector( << 281 // This calculates the meanFreePath via the << 282 const G4double c1 = << 283 scaleFactor * betat * temperature * k_Bolt << 284 << 285 for(size_t uRIndex = 0; uRIndex < rIndex->Ge << 286 { << 287 const G4double energy = rIndex->Ene << 288 const G4double rIndexSquared = (*rIndex)[u << 289 const G4double xlambda = h_Planck * << 290 const G4double c2 = std::pow(tw << 291 const G4double c3 = << 292 std::pow(((rIndexSquared - 1.0) * (rInde << 293 << 294 const G4double meanFreePath = 1.0 / (c1 * << 295 << 296 if(verboseLevel > 0) << 297 { << 298 G4cout << energy << "MeV\t" << meanFreeP << 299 } << 300 270 301 rayleighMFPs->InsertValues(energy, meanFre << 271 G4double AttenuationLength = DBL_MAX; 302 } << 303 272 304 return rayleighMFPs; << 273 if (aMaterial->GetName() == "Water" && DefaultWater){ >> 274 >> 275 G4bool isOutRange; >> 276 >> 277 AttenuationLength = >> 278 (*thePhysicsTable)(aMaterial->GetIndex())-> >> 279 GetValue(thePhotonEnergy, isOutRange); >> 280 } >> 281 else { >> 282 >> 283 G4MaterialPropertiesTable* aMaterialPropertyTable = >> 284 aMaterial->GetMaterialPropertiesTable(); >> 285 >> 286 if(aMaterialPropertyTable){ >> 287 G4MaterialPropertyVector* AttenuationLengthVector = >> 288 aMaterialPropertyTable->GetProperty("RAYLEIGH"); >> 289 if(AttenuationLengthVector){ >> 290 AttenuationLength = AttenuationLengthVector -> >> 291 Value(thePhotonEnergy); >> 292 } >> 293 else{ >> 294 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 295 } >> 296 } >> 297 else{ >> 298 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 299 } >> 300 } >> 301 >> 302 return AttenuationLength; 305 } 303 } 306 304 307 //....oooOO0OOooo........oooOO0OOooo........oo << 305 // RayleighAttenuationLengthGenerator() 308 void G4OpRayleigh::SetVerboseLevel(G4int verbo << 306 // ------------------------------------ >> 307 // Private method to compute Rayleigh Scattering Lengths (for water) >> 308 // >> 309 G4PhysicsOrderedFreeVector* >> 310 G4OpRayleigh::RayleighAttenuationLengthGenerator(G4MaterialPropertiesTable *aMPT) 309 { 311 { 310 verboseLevel = verbose; << 312 // Physical Constants 311 G4OpticalParameters::Instance()->SetRayleigh << 313 >> 314 // isothermal compressibility of water >> 315 G4double betat = 7.658e-23*m3/MeV; >> 316 >> 317 // K Boltzman >> 318 G4double kboltz = 8.61739e-11*MeV/kelvin; >> 319 >> 320 // Temperature of water is 10 degrees celsius >> 321 // conversion to kelvin: >> 322 // TCelsius = TKelvin - 273.15 => 273.15 + 10 = 283.15 >> 323 G4double temp = 283.15*kelvin; >> 324 >> 325 // Retrieve vectors for refraction index >> 326 // and photon energy from the material properties table >> 327 >> 328 G4MaterialPropertyVector* Rindex = aMPT->GetProperty("RINDEX"); >> 329 >> 330 G4double refsq; >> 331 G4double e; >> 332 G4double xlambda; >> 333 G4double c1, c2, c3, c4; >> 334 G4double Dist; >> 335 G4double refraction_index; >> 336 >> 337 G4PhysicsOrderedFreeVector *RayleighScatteringLengths = >> 338 new G4PhysicsOrderedFreeVector(); >> 339 >> 340 if (Rindex ) { >> 341 >> 342 for (size_t i = 0; i < Rindex->GetVectorLength(); i++) { >> 343 >> 344 e = Rindex->Energy(i); >> 345 >> 346 refraction_index = (*Rindex)[i]; >> 347 >> 348 refsq = refraction_index*refraction_index; >> 349 xlambda = h_Planck*c_light/e; >> 350 >> 351 if (verboseLevel>0) { >> 352 G4cout << Rindex->Energy(i) << " MeV\t"; >> 353 G4cout << xlambda << " mm\t"; >> 354 } >> 355 >> 356 c1 = 1 / (6.0 * pi); >> 357 c2 = std::pow((2.0 * pi / xlambda), 4); >> 358 c3 = std::pow( ( (refsq - 1.0) * (refsq + 2.0) / 3.0 ), 2); >> 359 c4 = betat * temp * kboltz; >> 360 >> 361 Dist = 1.0 / (c1*c2*c3*c4); >> 362 >> 363 if (verboseLevel>0) { >> 364 G4cout << Dist << " mm" << G4endl; >> 365 } >> 366 RayleighScatteringLengths-> >> 367 InsertValues(Rindex->Energy(i), Dist); >> 368 } >> 369 >> 370 } >> 371 >> 372 return RayleighScatteringLengths; 312 } 373 } 313 374