Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4OpRayleigh.cc,v 1.19 2010-10-29 23:18:35 gum Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ 27 // 29 // 28 // << 30 // 29 ////////////////////////////////////////////// 31 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Rayleigh Scattering Class Im 32 // Optical Photon Rayleigh Scattering Class Implementation 31 ////////////////////////////////////////////// 33 //////////////////////////////////////////////////////////////////////// 32 // 34 // 33 // File: G4OpRayleigh.cc << 35 // File: G4OpRayleigh.cc 34 // Description: Discrete Process -- Rayleigh s << 36 // Description: Discrete Process -- Rayleigh scattering of optical 35 // photons << 37 // photons 36 // Version: 1.0 38 // Version: 1.0 37 // Created: 1996-05-31 << 39 // Created: 1996-05-31 38 // Author: Juliet Armstrong 40 // Author: Juliet Armstrong 39 // Updated: 2014-10-10 - This version cal << 41 // Updated: 2010-06-11 - Fix Bug 207; Thanks to Xin Qian 40 // length for more materials than << 41 // default is kept). To do this t << 42 // ISOTHERMAL_COMPRESSIBILITY as << 43 // optionally an RS_SCALE_LENGTH << 44 // from Philip Graham (Queen Mary << 45 // 2010-06-11 - Fix Bug 207; Than << 46 // (Kellogg Radiation Lab of Calt 42 // (Kellogg Radiation Lab of Caltech) 47 // 2005-07-28 - add G4ProcessType 43 // 2005-07-28 - add G4ProcessType to constructor 48 // 2001-10-18 by Peter Gumplinger 44 // 2001-10-18 by Peter Gumplinger 49 // eliminate unused variable warn 45 // eliminate unused variable warning on Linux (gcc-2.95.2) 50 // 2001-09-18 by mma 46 // 2001-09-18 by mma 51 // >numOfMaterials=G4Material::Ge << 47 // >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy 52 // 2001-01-30 by Peter Gumplinger 48 // 2001-01-30 by Peter Gumplinger 53 // > allow for positiv and negati 49 // > allow for positiv and negative CosTheta and force the 54 // > new momentum direction to be 50 // > new momentum direction to be in the same plane as the 55 // > new and old polarization vec 51 // > new and old polarization vectors 56 // 2001-01-29 by Peter Gumplinger 52 // 2001-01-29 by Peter Gumplinger 57 // > fix calculation of SinTheta 53 // > fix calculation of SinTheta (from CosTheta) 58 // 1997-04-09 by Peter Gumplinger 54 // 1997-04-09 by Peter Gumplinger 59 // > new physics/tracking scheme 55 // > new physics/tracking scheme >> 56 // mail: gum@triumf.ca 60 // 57 // 61 ////////////////////////////////////////////// 58 //////////////////////////////////////////////////////////////////////// 62 59 63 #include "G4OpRayleigh.hh" << 64 #include "G4ios.hh" 60 #include "G4ios.hh" 65 #include "G4PhysicalConstants.hh" << 66 #include "G4SystemOfUnits.hh" << 67 #include "G4OpticalParameters.hh" << 68 #include "G4OpProcessSubType.hh" 61 #include "G4OpProcessSubType.hh" 69 62 70 //....oooOO0OOooo........oooOO0OOooo........oo << 63 #include "G4OpRayleigh.hh" >> 64 >> 65 ///////////////////////// >> 66 // Class Implementation >> 67 ///////////////////////// >> 68 >> 69 ////////////// >> 70 // Operators >> 71 ////////////// >> 72 >> 73 // G4OpRayleigh::operator=(const G4OpRayleigh &right) >> 74 // { >> 75 // } >> 76 >> 77 ///////////////// >> 78 // Constructors >> 79 ///////////////// >> 80 71 G4OpRayleigh::G4OpRayleigh(const G4String& pro 81 G4OpRayleigh::G4OpRayleigh(const G4String& processName, G4ProcessType type) 72 : G4VDiscreteProcess(processName, type) << 82 : G4VDiscreteProcess(processName, type) 73 { 83 { 74 Initialise(); << 84 SetProcessSubType(fOpRayleigh); 75 SetProcessSubType(fOpRayleigh); << 85 76 thePhysicsTable = nullptr; << 86 thePhysicsTable = 0; 77 << 87 78 if(verboseLevel > 0) << 88 DefaultWater = false; 79 { << 89 80 G4cout << GetProcessName() << " is created << 90 if (verboseLevel>0) { 81 } << 91 G4cout << GetProcessName() << " is created " << G4endl; >> 92 } >> 93 >> 94 BuildThePhysicsTable(); 82 } 95 } 83 96 84 //....oooOO0OOooo........oooOO0OOooo........oo << 97 // G4OpRayleigh::G4OpRayleigh(const G4OpRayleigh &right) >> 98 // { >> 99 // } >> 100 >> 101 //////////////// >> 102 // Destructors >> 103 //////////////// >> 104 85 G4OpRayleigh::~G4OpRayleigh() 105 G4OpRayleigh::~G4OpRayleigh() 86 { 106 { 87 // VI: inside this PhysicsTable all properti << 107 if (thePhysicsTable!= 0) { 88 // it is not possible to destroy << 108 thePhysicsTable->clearAndDestroy(); 89 delete thePhysicsTable; << 109 delete thePhysicsTable; >> 110 } 90 } 111 } 91 112 92 //....oooOO0OOooo........oooOO0OOooo........oo << 113 //////////// 93 void G4OpRayleigh::PreparePhysicsTable(const G << 114 // Methods 94 { << 115 //////////// 95 Initialise(); << 96 } << 97 116 98 //....oooOO0OOooo........oooOO0OOooo........oo << 117 // PostStepDoIt 99 void G4OpRayleigh::Initialise() << 118 // ------------- >> 119 // >> 120 G4VParticleChange* >> 121 G4OpRayleigh::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 100 { 122 { 101 SetVerboseLevel(G4OpticalParameters::Instanc << 123 aParticleChange.Initialize(aTrack); 102 } << 103 124 104 //....oooOO0OOooo........oooOO0OOooo........oo << 125 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 105 G4VParticleChange* G4OpRayleigh::PostStepDoIt( << 106 << 107 { << 108 aParticleChange.Initialize(aTrack); << 109 const G4DynamicParticle* aParticle = aTrack. << 110 126 111 if(verboseLevel > 1) << 127 if (verboseLevel>0) { 112 { << 128 G4cout << "Scattering Photon!" << G4endl; 113 G4cout << "OpRayleigh: Scattering Photon!" << 129 G4cout << "Old Momentum Direction: " 114 << "Old Momentum Direction: " << aP << 130 << aParticle->GetMomentumDirection() << G4endl; 115 << G4endl << "Old Polarization: " < << 131 G4cout << "Old Polarization: " 116 << G4endl; << 132 << aParticle->GetPolarization() << G4endl; 117 } << 133 } 118 << 134 119 G4double cosTheta; << 135 G4double cosTheta; 120 G4ThreeVector oldMomDir, newMomDir; << 136 G4ThreeVector OldMomentumDirection, NewMomentumDirection; 121 G4ThreeVector oldPol, newPol; << 137 G4ThreeVector OldPolarization, NewPolarization; 122 G4double rand; << 138 123 G4double cost, sint, sinphi, cosphi; << 139 do { 124 << 140 // Try to simulate the scattered photon momentum direction 125 do << 141 // w.r.t. the initial photon momentum direction 126 { << 142 127 // Try to simulate the scattered photon mo << 143 G4double CosTheta = G4UniformRand(); 128 // w.r.t. the initial photon momentum dire << 144 G4double SinTheta = std::sqrt(1.-CosTheta*CosTheta); 129 cost = G4UniformRand(); << 145 // consider for the angle 90-180 degrees 130 sint = std::sqrt(1. - cost * cost); << 146 if (G4UniformRand() < 0.5) CosTheta = -CosTheta; 131 // consider for the angle 90-180 degrees << 147 132 if(G4UniformRand() < 0.5) << 148 // simulate the phi angle 133 cost = -cost; << 149 G4double rand = twopi*G4UniformRand(); 134 << 150 G4double SinPhi = std::sin(rand); 135 // simulate the phi angle << 151 G4double CosPhi = std::cos(rand); 136 rand = twopi * G4UniformRand(); << 152 137 sinphi = std::sin(rand); << 153 // start constructing the new momentum direction 138 cosphi = std::cos(rand); << 154 G4double unit_x = SinTheta * CosPhi; 139 << 155 G4double unit_y = SinTheta * SinPhi; 140 // construct the new momentum direction << 156 G4double unit_z = CosTheta; 141 newMomDir.set(sint * cosphi, sint * sinphi << 157 NewMomentumDirection.set (unit_x,unit_y,unit_z); 142 oldMomDir = aParticle->GetMomentumDirectio << 158 143 newMomDir.rotateUz(oldMomDir); << 159 // Rotate the new momentum direction into global reference system 144 << 160 OldMomentumDirection = aParticle->GetMomentumDirection(); 145 // calculate the new polarization directio << 161 OldMomentumDirection = OldMomentumDirection.unit(); 146 // The new polarization needs to be in the << 162 NewMomentumDirection.rotateUz(OldMomentumDirection); 147 // momentum direction and the old polariza << 163 NewMomentumDirection = NewMomentumDirection.unit(); 148 oldPol = aParticle->GetPolarization(); << 164 149 newPol = (oldPol - newMomDir.dot(oldPol) * << 165 // calculate the new polarization direction 150 << 166 // The new polarization needs to be in the same plane as the new 151 // There is a corner case, where the new m << 167 // momentum direction and the old polarization direction 152 // is the same as old polarization directi << 168 OldPolarization = aParticle->GetPolarization(); 153 // random generate the azimuthal angle w.r << 169 G4double constant = -1./NewMomentumDirection.dot(OldPolarization); 154 if(newPol.mag() == 0.) << 170 155 { << 171 NewPolarization = NewMomentumDirection + constant*OldPolarization; 156 rand = G4UniformRand() * twopi; << 172 NewPolarization = NewPolarization.unit(); 157 newPol.set(std::cos(rand), std::sin(rand << 173 158 newPol.rotateUz(newMomDir); << 174 // There is a corner case, where the Newmomentum direction 159 } << 175 // is the same as oldpolariztion direction: 160 else << 176 // random generate the azimuthal angle w.r.t. Newmomentum direction 161 { << 177 if (NewPolarization.mag() == 0.) { 162 // There are two directions perpendicula << 178 rand = G4UniformRand()*twopi; 163 if(G4UniformRand() < 0.5) << 179 NewPolarization.set(std::cos(rand),std::sin(rand),0.); 164 newPol = -newPol; << 180 NewPolarization.rotateUz(NewMomentumDirection); 165 } << 181 } else { 166 << 182 // There are two directions which are perpendicular 167 // simulate according to the distribution << 183 // to the new momentum direction 168 cosTheta = newPol.dot(oldPol); << 184 if (G4UniformRand() < 0.5) NewPolarization = -NewPolarization; 169 // Loop checking, 13-Aug-2015, Peter Gumpl << 185 } 170 } while(std::pow(cosTheta, 2) < G4UniformRan << 186 171 << 187 // simulate according to the distribution cos^2(theta) 172 aParticleChange.ProposePolarization(newPol); << 188 cosTheta = NewPolarization.dot(OldPolarization); 173 aParticleChange.ProposeMomentumDirection(new << 189 } while (std::pow(cosTheta,2) < G4UniformRand()); 174 << 190 175 if(verboseLevel > 1) << 191 aParticleChange.ProposePolarization(NewPolarization); 176 { << 192 aParticleChange.ProposeMomentumDirection(NewMomentumDirection); 177 G4cout << "New Polarization: " << newPol < << 193 178 << "Polarization Change: " << *(aPa << 194 if (verboseLevel>0) { 179 << G4endl << "New Momentum Directio << 195 G4cout << "New Polarization: " 180 << "Momentum Change: " << *(aPartic << 196 << NewPolarization << G4endl; 181 << G4endl; << 197 G4cout << "Polarization Change: " 182 } << 198 << *(aParticleChange.GetPolarization()) << G4endl; >> 199 G4cout << "New Momentum Direction: " >> 200 << NewMomentumDirection << G4endl; >> 201 G4cout << "Momentum Change: " >> 202 << *(aParticleChange.GetMomentumDirection()) << G4endl; >> 203 } 183 204 184 return G4VDiscreteProcess::PostStepDoIt(aTra << 205 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 185 } 206 } 186 207 187 //....oooOO0OOooo........oooOO0OOooo........oo << 208 // BuildThePhysicsTable for the Rayleigh Scattering process 188 void G4OpRayleigh::BuildPhysicsTable(const G4P << 209 // -------------------------------------------------------- >> 210 // >> 211 void G4OpRayleigh::BuildThePhysicsTable() 189 { 212 { 190 if(thePhysicsTable) << 213 // Builds a table of scattering lengths for each material 191 { << 192 // thePhysicsTable->clearAndDestroy(); << 193 delete thePhysicsTable; << 194 thePhysicsTable = nullptr; << 195 } << 196 << 197 const G4MaterialTable* theMaterialTable = G4 << 198 const size_t numOfMaterials = G4 << 199 thePhysicsTable = ne << 200 << 201 for(size_t i = 0; i < numOfMaterials; ++i) << 202 { << 203 G4Material* material = (*the << 204 G4MaterialPropertiesTable* matProp = mater << 205 G4PhysicsFreeVector* rayleigh = nullptr; << 206 if(matProp) << 207 { << 208 rayleigh = matProp->GetProperty(kRAYLEIG << 209 if(rayleigh == nullptr) << 210 rayleigh = CalculateRayleighMeanFreePa << 211 } << 212 thePhysicsTable->insertAt(i, rayleigh); << 213 } << 214 } << 215 214 216 //....oooOO0OOooo........oooOO0OOooo........oo << 215 if (thePhysicsTable) return; 217 G4double G4OpRayleigh::GetMeanFreePath(const G << 216 218 G4Force << 217 const G4MaterialTable* theMaterialTable= 219 { << 218 G4Material::GetMaterialTable(); 220 auto rayleigh = static_cast<G4PhysicsFreeVec << 219 G4int numOfMaterials = G4Material::GetNumberOfMaterials(); 221 (*thePhysicsTable)(aTrack.GetMaterial()- << 220 >> 221 // create a new physics table >> 222 >> 223 thePhysicsTable = new G4PhysicsTable(numOfMaterials); >> 224 >> 225 // loop for materials >> 226 >> 227 for (G4int i=0 ; i < numOfMaterials; i++) >> 228 { >> 229 G4PhysicsOrderedFreeVector* ScatteringLengths = NULL; >> 230 >> 231 G4MaterialPropertiesTable *aMaterialPropertiesTable = >> 232 (*theMaterialTable)[i]->GetMaterialPropertiesTable(); >> 233 >> 234 if(aMaterialPropertiesTable){ >> 235 >> 236 G4MaterialPropertyVector* AttenuationLengthVector = >> 237 aMaterialPropertiesTable->GetProperty("RAYLEIGH"); >> 238 >> 239 if(!AttenuationLengthVector){ 222 240 223 G4double rsLength = DBL_MAX; << 241 if ((*theMaterialTable)[i]->GetName() == "Water") 224 if(rayleigh) << 242 { 225 { << 243 // Call utility routine to Generate 226 rsLength = rayleigh->Value(aTrack.GetDynam << 244 // Rayleigh Scattering Lengths 227 idx_rslength); << 245 228 } << 246 DefaultWater = true; 229 return rsLength; << 247 >> 248 ScatteringLengths = >> 249 RayleighAttenuationLengthGenerator(aMaterialPropertiesTable); >> 250 } >> 251 } >> 252 } >> 253 >> 254 thePhysicsTable->insertAt(i,ScatteringLengths); >> 255 } 230 } 256 } 231 257 232 //....oooOO0OOooo........oooOO0OOooo........oo << 258 // GetMeanFreePath() 233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRa << 259 // ----------------- 234 const G4Material* material) const << 260 // >> 261 G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack, >> 262 G4double , >> 263 G4ForceCondition* ) 235 { 264 { 236 G4MaterialPropertiesTable* MPT = material->G << 265 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); >> 266 const G4Material* aMaterial = aTrack.GetMaterial(); 237 267 238 // Retrieve the beta_T or isothermal compres << 268 G4double thePhotonEnergy = aParticle->GetTotalEnergy(); 239 // compatibility use a constant if the mater << 240 // doesn't have an ISOTHERMAL_COMPRESSIBILIT << 241 G4double betat; << 242 if(material->GetName() == "Water") << 243 { << 244 betat = 7.658e-23 * m3 / MeV; << 245 } << 246 else if(MPT->ConstPropertyExists(kISOTHERMAL << 247 { << 248 betat = MPT->GetConstProperty(kISOTHERMAL_ << 249 } << 250 else << 251 { << 252 return nullptr; << 253 } << 254 << 255 // If the material doesn't have a RINDEX pro << 256 G4MaterialPropertyVector* rIndex = MPT->GetP << 257 if(rIndex == nullptr) << 258 return nullptr; << 259 << 260 // Retrieve the optional scale factor (scale << 261 G4double scaleFactor = 1.0; << 262 if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR << 263 { << 264 scaleFactor = MPT->GetConstProperty(kRS_SC << 265 } << 266 << 267 // Retrieve the material temperature. For ba << 268 // constant if the material is "Water" << 269 G4double temperature; << 270 if(material->GetName() == "Water") << 271 { << 272 temperature = << 273 283.15 * kelvin; // Temperature of wate << 274 } << 275 else << 276 { << 277 temperature = material->GetTemperature(); << 278 } << 279 << 280 auto rayleighMFPs = new G4PhysicsFreeVector( << 281 // This calculates the meanFreePath via the << 282 const G4double c1 = << 283 scaleFactor * betat * temperature * k_Bolt << 284 << 285 for(size_t uRIndex = 0; uRIndex < rIndex->Ge << 286 { << 287 const G4double energy = rIndex->Ene << 288 const G4double rIndexSquared = (*rIndex)[u << 289 const G4double xlambda = h_Planck * << 290 const G4double c2 = std::pow(tw << 291 const G4double c3 = << 292 std::pow(((rIndexSquared - 1.0) * (rInde << 293 << 294 const G4double meanFreePath = 1.0 / (c1 * << 295 << 296 if(verboseLevel > 0) << 297 { << 298 G4cout << energy << "MeV\t" << meanFreeP << 299 } << 300 269 301 rayleighMFPs->InsertValues(energy, meanFre << 270 G4double AttenuationLength = DBL_MAX; 302 } << 303 271 304 return rayleighMFPs; << 272 if (aMaterial->GetName() == "Water" && DefaultWater){ >> 273 >> 274 G4bool isOutRange; >> 275 >> 276 AttenuationLength = >> 277 (*thePhysicsTable)(aMaterial->GetIndex())-> >> 278 GetValue(thePhotonEnergy, isOutRange); >> 279 } >> 280 else { >> 281 >> 282 G4MaterialPropertiesTable* aMaterialPropertyTable = >> 283 aMaterial->GetMaterialPropertiesTable(); >> 284 >> 285 if(aMaterialPropertyTable){ >> 286 G4MaterialPropertyVector* AttenuationLengthVector = >> 287 aMaterialPropertyTable->GetProperty("RAYLEIGH"); >> 288 if(AttenuationLengthVector){ >> 289 AttenuationLength = AttenuationLengthVector -> >> 290 Value(thePhotonEnergy); >> 291 } >> 292 else{ >> 293 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 294 } >> 295 } >> 296 else{ >> 297 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 298 } >> 299 } >> 300 >> 301 return AttenuationLength; 305 } 302 } 306 303 307 //....oooOO0OOooo........oooOO0OOooo........oo << 304 // RayleighAttenuationLengthGenerator() 308 void G4OpRayleigh::SetVerboseLevel(G4int verbo << 305 // ------------------------------------ >> 306 // Private method to compute Rayleigh Scattering Lengths (for water) >> 307 // >> 308 G4PhysicsOrderedFreeVector* >> 309 G4OpRayleigh::RayleighAttenuationLengthGenerator(G4MaterialPropertiesTable *aMPT) 309 { 310 { 310 verboseLevel = verbose; << 311 // Physical Constants 311 G4OpticalParameters::Instance()->SetRayleigh << 312 >> 313 // isothermal compressibility of water >> 314 G4double betat = 7.658e-23*m3/MeV; >> 315 >> 316 // K Boltzman >> 317 G4double kboltz = 8.61739e-11*MeV/kelvin; >> 318 >> 319 // Temperature of water is 10 degrees celsius >> 320 // conversion to kelvin: >> 321 // TCelsius = TKelvin - 273.15 => 273.15 + 10 = 283.15 >> 322 G4double temp = 283.15*kelvin; >> 323 >> 324 // Retrieve vectors for refraction index >> 325 // and photon energy from the material properties table >> 326 >> 327 G4MaterialPropertyVector* Rindex = aMPT->GetProperty("RINDEX"); >> 328 >> 329 G4double refsq; >> 330 G4double e; >> 331 G4double xlambda; >> 332 G4double c1, c2, c3, c4; >> 333 G4double Dist; >> 334 G4double refraction_index; >> 335 >> 336 G4PhysicsOrderedFreeVector *RayleighScatteringLengths = >> 337 new G4PhysicsOrderedFreeVector(); >> 338 >> 339 if (Rindex ) { >> 340 >> 341 for (size_t i = 0; i < Rindex->GetVectorLength(); i++) { >> 342 >> 343 e = Rindex->Energy(i); >> 344 >> 345 refraction_index = (*Rindex)[i]; >> 346 >> 347 refsq = refraction_index*refraction_index; >> 348 xlambda = h_Planck*c_light/e; >> 349 >> 350 if (verboseLevel>0) { >> 351 G4cout << Rindex->Energy(i) << " MeV\t"; >> 352 G4cout << xlambda << " mm\t"; >> 353 } >> 354 >> 355 c1 = 1 / (6.0 * pi); >> 356 c2 = std::pow((2.0 * pi / xlambda), 4); >> 357 c3 = std::pow( ( (refsq - 1.0) * (refsq + 2.0) / 3.0 ), 2); >> 358 c4 = betat * temp * kboltz; >> 359 >> 360 Dist = 1.0 / (c1*c2*c3*c4); >> 361 >> 362 if (verboseLevel>0) { >> 363 G4cout << Dist << " mm" << G4endl; >> 364 } >> 365 RayleighScatteringLengths-> >> 366 InsertValues(Rindex->Energy(i), Dist); >> 367 } >> 368 >> 369 } >> 370 >> 371 return RayleighScatteringLengths; 312 } 372 } 313 373