Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4OpRayleigh.cc,v 1.17 2008/10/24 19:51:12 gum Exp $ >> 28 // GEANT4 tag $Name: geant4-09-03-patch-01 $ 27 // 29 // 28 // << 30 // 29 ////////////////////////////////////////////// 31 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Rayleigh Scattering Class Im 32 // Optical Photon Rayleigh Scattering Class Implementation 31 ////////////////////////////////////////////// 33 //////////////////////////////////////////////////////////////////////// 32 // 34 // 33 // File: G4OpRayleigh.cc << 35 // File: G4OpRayleigh.cc 34 // Description: Discrete Process -- Rayleigh s << 36 // Description: Discrete Process -- Rayleigh scattering of optical 35 // photons << 37 // photons 36 // Version: 1.0 38 // Version: 1.0 37 // Created: 1996-05-31 << 39 // Created: 1996-05-31 38 // Author: Juliet Armstrong 40 // Author: Juliet Armstrong 39 // Updated: 2014-10-10 - This version cal << 41 // Updated: 2005-07-28 - add G4ProcessType to constructor 40 // length for more materials than << 41 // default is kept). To do this t << 42 // ISOTHERMAL_COMPRESSIBILITY as << 43 // optionally an RS_SCALE_LENGTH << 44 // from Philip Graham (Queen Mary << 45 // 2010-06-11 - Fix Bug 207; Than << 46 // (Kellogg Radiation Lab of Calt << 47 // 2005-07-28 - add G4ProcessType << 48 // 2001-10-18 by Peter Gumplinger 42 // 2001-10-18 by Peter Gumplinger 49 // eliminate unused variable warn 43 // eliminate unused variable warning on Linux (gcc-2.95.2) 50 // 2001-09-18 by mma 44 // 2001-09-18 by mma 51 // >numOfMaterials=G4Material::Ge << 45 // >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy 52 // 2001-01-30 by Peter Gumplinger 46 // 2001-01-30 by Peter Gumplinger 53 // > allow for positiv and negati 47 // > allow for positiv and negative CosTheta and force the 54 // > new momentum direction to be 48 // > new momentum direction to be in the same plane as the 55 // > new and old polarization vec 49 // > new and old polarization vectors 56 // 2001-01-29 by Peter Gumplinger 50 // 2001-01-29 by Peter Gumplinger 57 // > fix calculation of SinTheta 51 // > fix calculation of SinTheta (from CosTheta) 58 // 1997-04-09 by Peter Gumplinger 52 // 1997-04-09 by Peter Gumplinger 59 // > new physics/tracking scheme 53 // > new physics/tracking scheme >> 54 // mail: gum@triumf.ca 60 // 55 // 61 ////////////////////////////////////////////// 56 //////////////////////////////////////////////////////////////////////// 62 57 63 #include "G4OpRayleigh.hh" << 64 #include "G4ios.hh" 58 #include "G4ios.hh" 65 #include "G4PhysicalConstants.hh" << 66 #include "G4SystemOfUnits.hh" << 67 #include "G4OpticalParameters.hh" << 68 #include "G4OpProcessSubType.hh" 59 #include "G4OpProcessSubType.hh" 69 60 70 //....oooOO0OOooo........oooOO0OOooo........oo << 61 #include "G4OpRayleigh.hh" >> 62 >> 63 ///////////////////////// >> 64 // Class Implementation >> 65 ///////////////////////// >> 66 >> 67 ////////////// >> 68 // Operators >> 69 ////////////// >> 70 >> 71 // G4OpRayleigh::operator=(const G4OpRayleigh &right) >> 72 // { >> 73 // } >> 74 >> 75 ///////////////// >> 76 // Constructors >> 77 ///////////////// >> 78 71 G4OpRayleigh::G4OpRayleigh(const G4String& pro 79 G4OpRayleigh::G4OpRayleigh(const G4String& processName, G4ProcessType type) 72 : G4VDiscreteProcess(processName, type) << 80 : G4VDiscreteProcess(processName, type) 73 { 81 { 74 Initialise(); << 82 SetProcessSubType(fOpRayleigh); 75 SetProcessSubType(fOpRayleigh); << 83 76 thePhysicsTable = nullptr; << 84 thePhysicsTable = 0; 77 << 85 78 if(verboseLevel > 0) << 86 DefaultWater = false; 79 { << 87 80 G4cout << GetProcessName() << " is created << 88 if (verboseLevel>0) { 81 } << 89 G4cout << GetProcessName() << " is created " << G4endl; >> 90 } >> 91 >> 92 BuildThePhysicsTable(); 82 } 93 } 83 94 84 //....oooOO0OOooo........oooOO0OOooo........oo << 95 // G4OpRayleigh::G4OpRayleigh(const G4OpRayleigh &right) >> 96 // { >> 97 // } >> 98 >> 99 //////////////// >> 100 // Destructors >> 101 //////////////// >> 102 85 G4OpRayleigh::~G4OpRayleigh() 103 G4OpRayleigh::~G4OpRayleigh() 86 { 104 { 87 // VI: inside this PhysicsTable all properti << 105 if (thePhysicsTable!= 0) { 88 // it is not possible to destroy << 106 thePhysicsTable->clearAndDestroy(); 89 delete thePhysicsTable; << 107 delete thePhysicsTable; >> 108 } 90 } 109 } 91 110 92 //....oooOO0OOooo........oooOO0OOooo........oo << 111 //////////// 93 void G4OpRayleigh::PreparePhysicsTable(const G << 112 // Methods 94 { << 113 //////////// 95 Initialise(); << 96 } << 97 114 98 //....oooOO0OOooo........oooOO0OOooo........oo << 115 // PostStepDoIt 99 void G4OpRayleigh::Initialise() << 116 // ------------- >> 117 // >> 118 G4VParticleChange* >> 119 G4OpRayleigh::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 100 { 120 { 101 SetVerboseLevel(G4OpticalParameters::Instanc << 121 aParticleChange.Initialize(aTrack); 102 } << 103 122 104 //....oooOO0OOooo........oooOO0OOooo........oo << 123 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 105 G4VParticleChange* G4OpRayleigh::PostStepDoIt( << 106 << 107 { << 108 aParticleChange.Initialize(aTrack); << 109 const G4DynamicParticle* aParticle = aTrack. << 110 124 111 if(verboseLevel > 1) << 125 if (verboseLevel>0) { 112 { << 126 G4cout << "Scattering Photon!" << G4endl; 113 G4cout << "OpRayleigh: Scattering Photon!" << 127 G4cout << "Old Momentum Direction: " 114 << "Old Momentum Direction: " << aP << 128 << aParticle->GetMomentumDirection() << G4endl; 115 << G4endl << "Old Polarization: " < << 129 G4cout << "Old Polarization: " 116 << G4endl; << 130 << aParticle->GetPolarization() << G4endl; 117 } << 131 } 118 << 119 G4double cosTheta; << 120 G4ThreeVector oldMomDir, newMomDir; << 121 G4ThreeVector oldPol, newPol; << 122 G4double rand; << 123 G4double cost, sint, sinphi, cosphi; << 124 << 125 do << 126 { << 127 // Try to simulate the scattered photon mo << 128 // w.r.t. the initial photon momentum dire << 129 cost = G4UniformRand(); << 130 sint = std::sqrt(1. - cost * cost); << 131 // consider for the angle 90-180 degrees << 132 if(G4UniformRand() < 0.5) << 133 cost = -cost; << 134 << 135 // simulate the phi angle << 136 rand = twopi * G4UniformRand(); << 137 sinphi = std::sin(rand); << 138 cosphi = std::cos(rand); << 139 << 140 // construct the new momentum direction << 141 newMomDir.set(sint * cosphi, sint * sinphi << 142 oldMomDir = aParticle->GetMomentumDirectio << 143 newMomDir.rotateUz(oldMomDir); << 144 << 145 // calculate the new polarization directio << 146 // The new polarization needs to be in the << 147 // momentum direction and the old polariza << 148 oldPol = aParticle->GetPolarization(); << 149 newPol = (oldPol - newMomDir.dot(oldPol) * << 150 << 151 // There is a corner case, where the new m << 152 // is the same as old polarization directi << 153 // random generate the azimuthal angle w.r << 154 if(newPol.mag() == 0.) << 155 { << 156 rand = G4UniformRand() * twopi; << 157 newPol.set(std::cos(rand), std::sin(rand << 158 newPol.rotateUz(newMomDir); << 159 } << 160 else << 161 { << 162 // There are two directions perpendicula << 163 if(G4UniformRand() < 0.5) << 164 newPol = -newPol; << 165 } << 166 << 167 // simulate according to the distribution << 168 cosTheta = newPol.dot(oldPol); << 169 // Loop checking, 13-Aug-2015, Peter Gumpl << 170 } while(std::pow(cosTheta, 2) < G4UniformRan << 171 << 172 aParticleChange.ProposePolarization(newPol); << 173 aParticleChange.ProposeMomentumDirection(new << 174 << 175 if(verboseLevel > 1) << 176 { << 177 G4cout << "New Polarization: " << newPol < << 178 << "Polarization Change: " << *(aPa << 179 << G4endl << "New Momentum Directio << 180 << "Momentum Change: " << *(aPartic << 181 << G4endl; << 182 } << 183 132 184 return G4VDiscreteProcess::PostStepDoIt(aTra << 133 // find polar angle w.r.t. old polarization vector 185 } << 186 134 187 //....oooOO0OOooo........oooOO0OOooo........oo << 135 G4double rand = G4UniformRand(); 188 void G4OpRayleigh::BuildPhysicsTable(const G4P << 136 189 { << 137 G4double CosTheta = std::pow(rand, 1./3.); 190 if(thePhysicsTable) << 138 G4double SinTheta = std::sqrt(1.-CosTheta*CosTheta); 191 { << 139 192 // thePhysicsTable->clearAndDestroy(); << 140 if(G4UniformRand() < 0.5)CosTheta = -CosTheta; 193 delete thePhysicsTable; << 141 194 thePhysicsTable = nullptr; << 142 // find azimuthal angle w.r.t old polarization vector 195 } << 143 196 << 144 rand = G4UniformRand(); 197 const G4MaterialTable* theMaterialTable = G4 << 145 198 const size_t numOfMaterials = G4 << 146 G4double Phi = twopi*rand; 199 thePhysicsTable = ne << 147 G4double SinPhi = std::sin(Phi); 200 << 148 G4double CosPhi = std::cos(Phi); 201 for(size_t i = 0; i < numOfMaterials; ++i) << 149 202 { << 150 G4double unit_x = SinTheta * CosPhi; 203 G4Material* material = (*the << 151 G4double unit_y = SinTheta * SinPhi; 204 G4MaterialPropertiesTable* matProp = mater << 152 G4double unit_z = CosTheta; 205 G4PhysicsFreeVector* rayleigh = nullptr; << 153 206 if(matProp) << 154 G4ThreeVector NewPolarization (unit_x,unit_y,unit_z); 207 { << 155 208 rayleigh = matProp->GetProperty(kRAYLEIG << 156 // Rotate new polarization direction into global reference system 209 if(rayleigh == nullptr) << 157 210 rayleigh = CalculateRayleighMeanFreePa << 158 G4ThreeVector OldPolarization = aParticle->GetPolarization(); 211 } << 159 OldPolarization = OldPolarization.unit(); 212 thePhysicsTable->insertAt(i, rayleigh); << 160 213 } << 161 NewPolarization.rotateUz(OldPolarization); >> 162 NewPolarization = NewPolarization.unit(); >> 163 >> 164 // -- new momentum direction is normal to the new >> 165 // polarization vector and in the same plane as the >> 166 // old and new polarization vectors -- >> 167 >> 168 G4ThreeVector NewMomentumDirection = >> 169 OldPolarization - NewPolarization * CosTheta; >> 170 >> 171 if(G4UniformRand() < 0.5)NewMomentumDirection = -NewMomentumDirection; >> 172 NewMomentumDirection = NewMomentumDirection.unit(); >> 173 >> 174 aParticleChange.ProposePolarization(NewPolarization); >> 175 >> 176 aParticleChange.ProposeMomentumDirection(NewMomentumDirection); >> 177 >> 178 if (verboseLevel>0) { >> 179 G4cout << "New Polarization: " >> 180 << NewPolarization << G4endl; >> 181 G4cout << "Polarization Change: " >> 182 << *(aParticleChange.GetPolarization()) << G4endl; >> 183 G4cout << "New Momentum Direction: " >> 184 << NewMomentumDirection << G4endl; >> 185 G4cout << "Momentum Change: " >> 186 << *(aParticleChange.GetMomentumDirection()) << G4endl; >> 187 } >> 188 >> 189 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 214 } 190 } 215 191 216 //....oooOO0OOooo........oooOO0OOooo........oo << 192 // BuildThePhysicsTable for the Rayleigh Scattering process 217 G4double G4OpRayleigh::GetMeanFreePath(const G << 193 // -------------------------------------------------------- 218 G4Force << 194 // >> 195 void G4OpRayleigh::BuildThePhysicsTable() 219 { 196 { 220 auto rayleigh = static_cast<G4PhysicsFreeVec << 197 // Builds a table of scattering lengths for each material 221 (*thePhysicsTable)(aTrack.GetMaterial()- << 198 >> 199 if (thePhysicsTable) return; 222 200 223 G4double rsLength = DBL_MAX; << 201 const G4MaterialTable* theMaterialTable= 224 if(rayleigh) << 202 G4Material::GetMaterialTable(); 225 { << 203 G4int numOfMaterials = G4Material::GetNumberOfMaterials(); 226 rsLength = rayleigh->Value(aTrack.GetDynam << 204 227 idx_rslength); << 205 // create a new physics table 228 } << 206 229 return rsLength; << 207 thePhysicsTable = new G4PhysicsTable(numOfMaterials); >> 208 >> 209 // loop for materials >> 210 >> 211 for (G4int i=0 ; i < numOfMaterials; i++) >> 212 { >> 213 G4PhysicsOrderedFreeVector* ScatteringLengths = >> 214 new G4PhysicsOrderedFreeVector(); >> 215 >> 216 G4MaterialPropertiesTable *aMaterialPropertiesTable = >> 217 (*theMaterialTable)[i]->GetMaterialPropertiesTable(); >> 218 >> 219 if(aMaterialPropertiesTable){ >> 220 >> 221 G4MaterialPropertyVector* AttenuationLengthVector = >> 222 aMaterialPropertiesTable->GetProperty("RAYLEIGH"); >> 223 >> 224 if(!AttenuationLengthVector){ >> 225 >> 226 if ((*theMaterialTable)[i]->GetName() == "Water") >> 227 { >> 228 // Call utility routine to Generate >> 229 // Rayleigh Scattering Lengths >> 230 >> 231 DefaultWater = true; >> 232 >> 233 ScatteringLengths = >> 234 RayleighAttenuationLengthGenerator(aMaterialPropertiesTable); >> 235 } >> 236 } >> 237 } >> 238 >> 239 thePhysicsTable->insertAt(i,ScatteringLengths); >> 240 } 230 } 241 } 231 242 232 //....oooOO0OOooo........oooOO0OOooo........oo << 243 // GetMeanFreePath() 233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRa << 244 // ----------------- 234 const G4Material* material) const << 245 // >> 246 G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack, >> 247 G4double , >> 248 G4ForceCondition* ) 235 { 249 { 236 G4MaterialPropertiesTable* MPT = material->G << 250 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); >> 251 const G4Material* aMaterial = aTrack.GetMaterial(); >> 252 >> 253 G4double thePhotonEnergy = aParticle->GetTotalEnergy(); 237 254 238 // Retrieve the beta_T or isothermal compres << 255 G4double AttenuationLength = DBL_MAX; 239 // compatibility use a constant if the mater << 240 // doesn't have an ISOTHERMAL_COMPRESSIBILIT << 241 G4double betat; << 242 if(material->GetName() == "Water") << 243 { << 244 betat = 7.658e-23 * m3 / MeV; << 245 } << 246 else if(MPT->ConstPropertyExists(kISOTHERMAL << 247 { << 248 betat = MPT->GetConstProperty(kISOTHERMAL_ << 249 } << 250 else << 251 { << 252 return nullptr; << 253 } << 254 << 255 // If the material doesn't have a RINDEX pro << 256 G4MaterialPropertyVector* rIndex = MPT->GetP << 257 if(rIndex == nullptr) << 258 return nullptr; << 259 << 260 // Retrieve the optional scale factor (scale << 261 G4double scaleFactor = 1.0; << 262 if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR << 263 { << 264 scaleFactor = MPT->GetConstProperty(kRS_SC << 265 } << 266 << 267 // Retrieve the material temperature. For ba << 268 // constant if the material is "Water" << 269 G4double temperature; << 270 if(material->GetName() == "Water") << 271 { << 272 temperature = << 273 283.15 * kelvin; // Temperature of wate << 274 } << 275 else << 276 { << 277 temperature = material->GetTemperature(); << 278 } << 279 << 280 auto rayleighMFPs = new G4PhysicsFreeVector( << 281 // This calculates the meanFreePath via the << 282 const G4double c1 = << 283 scaleFactor * betat * temperature * k_Bolt << 284 << 285 for(size_t uRIndex = 0; uRIndex < rIndex->Ge << 286 { << 287 const G4double energy = rIndex->Ene << 288 const G4double rIndexSquared = (*rIndex)[u << 289 const G4double xlambda = h_Planck * << 290 const G4double c2 = std::pow(tw << 291 const G4double c3 = << 292 std::pow(((rIndexSquared - 1.0) * (rInde << 293 << 294 const G4double meanFreePath = 1.0 / (c1 * << 295 << 296 if(verboseLevel > 0) << 297 { << 298 G4cout << energy << "MeV\t" << meanFreeP << 299 } << 300 256 301 rayleighMFPs->InsertValues(energy, meanFre << 257 if (aMaterial->GetName() == "Water" && DefaultWater){ 302 } << 303 258 304 return rayleighMFPs; << 259 G4bool isOutRange; >> 260 >> 261 AttenuationLength = >> 262 (*thePhysicsTable)(aMaterial->GetIndex())-> >> 263 GetValue(thePhotonEnergy, isOutRange); >> 264 } >> 265 else { >> 266 >> 267 G4MaterialPropertiesTable* aMaterialPropertyTable = >> 268 aMaterial->GetMaterialPropertiesTable(); >> 269 >> 270 if(aMaterialPropertyTable){ >> 271 G4MaterialPropertyVector* AttenuationLengthVector = >> 272 aMaterialPropertyTable->GetProperty("RAYLEIGH"); >> 273 if(AttenuationLengthVector){ >> 274 AttenuationLength = AttenuationLengthVector -> >> 275 GetProperty(thePhotonEnergy); >> 276 } >> 277 else{ >> 278 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 279 } >> 280 } >> 281 else{ >> 282 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 283 } >> 284 } >> 285 >> 286 return AttenuationLength; 305 } 287 } 306 288 307 //....oooOO0OOooo........oooOO0OOooo........oo << 289 // RayleighAttenuationLengthGenerator() 308 void G4OpRayleigh::SetVerboseLevel(G4int verbo << 290 // ------------------------------------ >> 291 // Private method to compute Rayleigh Scattering Lengths (for water) >> 292 // >> 293 G4PhysicsOrderedFreeVector* >> 294 G4OpRayleigh::RayleighAttenuationLengthGenerator(G4MaterialPropertiesTable *aMPT) 309 { 295 { 310 verboseLevel = verbose; << 296 // Physical Constants 311 G4OpticalParameters::Instance()->SetRayleigh << 297 >> 298 // isothermal compressibility of water >> 299 G4double betat = 7.658e-23*m3/MeV; >> 300 >> 301 // K Boltzman >> 302 G4double kboltz = 8.61739e-11*MeV/kelvin; >> 303 >> 304 // Temperature of water is 10 degrees celsius >> 305 // conversion to kelvin: >> 306 // TCelsius = TKelvin - 273.15 => 273.15 + 10 = 283.15 >> 307 G4double temp = 283.15*kelvin; >> 308 >> 309 // Retrieve vectors for refraction index >> 310 // and photon energy from the material properties table >> 311 >> 312 G4MaterialPropertyVector* Rindex = aMPT->GetProperty("RINDEX"); >> 313 >> 314 G4double refsq; >> 315 G4double e; >> 316 G4double xlambda; >> 317 G4double c1, c2, c3, c4; >> 318 G4double Dist; >> 319 G4double refraction_index; >> 320 >> 321 G4PhysicsOrderedFreeVector *RayleighScatteringLengths = >> 322 new G4PhysicsOrderedFreeVector(); >> 323 >> 324 if (Rindex ) { >> 325 >> 326 Rindex->ResetIterator(); >> 327 >> 328 while (++(*Rindex)) { >> 329 >> 330 e = (Rindex->GetPhotonEnergy()); >> 331 >> 332 refraction_index = Rindex->GetProperty(); >> 333 refsq = refraction_index*refraction_index; >> 334 xlambda = h_Planck*c_light/e; >> 335 >> 336 if (verboseLevel>0) { >> 337 G4cout << Rindex->GetPhotonEnergy() << " MeV\t"; >> 338 G4cout << xlambda << " mm\t"; >> 339 } >> 340 >> 341 c1 = 1 / (6.0 * pi); >> 342 c2 = std::pow((2.0 * pi / xlambda), 4); >> 343 c3 = std::pow( ( (refsq - 1.0) * (refsq + 2.0) / 3.0 ), 2); >> 344 c4 = betat * temp * kboltz; >> 345 >> 346 Dist = 1.0 / (c1*c2*c3*c4); >> 347 >> 348 if (verboseLevel>0) { >> 349 G4cout << Dist << " mm" << G4endl; >> 350 } >> 351 RayleighScatteringLengths-> >> 352 InsertValues(Rindex->GetPhotonEnergy(), Dist); >> 353 } >> 354 >> 355 } >> 356 >> 357 return RayleighScatteringLengths; 312 } 358 } 313 359