Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4OpRayleigh.cc,v 1.12 2004/12/02 23:10:57 gum Exp $ >> 25 // GEANT4 tag $Name: geant4-07-01 $ 27 // 26 // 28 // << 27 // 29 ////////////////////////////////////////////// 28 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Rayleigh Scattering Class Im 29 // Optical Photon Rayleigh Scattering Class Implementation 31 ////////////////////////////////////////////// 30 //////////////////////////////////////////////////////////////////////// 32 // 31 // 33 // File: G4OpRayleigh.cc << 32 // File: G4OpRayleigh.cc 34 // Description: Discrete Process -- Rayleigh s << 33 // Description: Discrete Process -- Rayleigh scattering of optical 35 // photons << 34 // photons 36 // Version: 1.0 35 // Version: 1.0 37 // Created: 1996-05-31 << 36 // Created: 1996-05-31 38 // Author: Juliet Armstrong 37 // Author: Juliet Armstrong 39 // Updated: 2014-10-10 - This version cal << 38 // Updated: 2001-10-18 by Peter Gumplinger 40 // length for more materials than << 41 // default is kept). To do this t << 42 // ISOTHERMAL_COMPRESSIBILITY as << 43 // optionally an RS_SCALE_LENGTH << 44 // from Philip Graham (Queen Mary << 45 // 2010-06-11 - Fix Bug 207; Than << 46 // (Kellogg Radiation Lab of Calt << 47 // 2005-07-28 - add G4ProcessType << 48 // 2001-10-18 by Peter Gumplinger << 49 // eliminate unused variable warn 39 // eliminate unused variable warning on Linux (gcc-2.95.2) 50 // 2001-09-18 by mma << 40 // Updated: 2001-09-18 by mma 51 // >numOfMaterials=G4Material::Ge << 41 // >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy 52 // 2001-01-30 by Peter Gumplinger << 42 // Updated: 2001-01-30 by Peter Gumplinger 53 // > allow for positiv and negati 43 // > allow for positiv and negative CosTheta and force the 54 // > new momentum direction to be 44 // > new momentum direction to be in the same plane as the 55 // > new and old polarization vec 45 // > new and old polarization vectors 56 // 2001-01-29 by Peter Gumplinger 46 // 2001-01-29 by Peter Gumplinger 57 // > fix calculation of SinTheta 47 // > fix calculation of SinTheta (from CosTheta) 58 // 1997-04-09 by Peter Gumplinger 48 // 1997-04-09 by Peter Gumplinger 59 // > new physics/tracking scheme 49 // > new physics/tracking scheme >> 50 // mail: gum@triumf.ca 60 // 51 // 61 ////////////////////////////////////////////// 52 //////////////////////////////////////////////////////////////////////// 62 53 63 #include "G4OpRayleigh.hh" << 64 #include "G4ios.hh" 54 #include "G4ios.hh" 65 #include "G4PhysicalConstants.hh" << 55 #include "G4OpRayleigh.hh" 66 #include "G4SystemOfUnits.hh" << 56 67 #include "G4OpticalParameters.hh" << 57 ///////////////////////// 68 #include "G4OpProcessSubType.hh" << 58 // Class Implementation 69 << 59 ///////////////////////// 70 //....oooOO0OOooo........oooOO0OOooo........oo << 60 71 G4OpRayleigh::G4OpRayleigh(const G4String& pro << 61 ////////////// 72 : G4VDiscreteProcess(processName, type) << 62 // Operators >> 63 ////////////// >> 64 >> 65 // G4OpRayleigh::operator=(const G4OpRayleigh &right) >> 66 // { >> 67 // } >> 68 >> 69 ///////////////// >> 70 // Constructors >> 71 ///////////////// >> 72 >> 73 G4OpRayleigh::G4OpRayleigh(const G4String& processName) >> 74 : G4VDiscreteProcess(processName) 73 { 75 { 74 Initialise(); << 76 75 SetProcessSubType(fOpRayleigh); << 77 thePhysicsTable = 0; 76 thePhysicsTable = nullptr; << 78 77 << 79 DefaultWater = false; 78 if(verboseLevel > 0) << 80 79 { << 81 if (verboseLevel>0) { 80 G4cout << GetProcessName() << " is created << 82 G4cout << GetProcessName() << " is created " << G4endl; 81 } << 83 } >> 84 >> 85 BuildThePhysicsTable(); 82 } 86 } 83 87 84 //....oooOO0OOooo........oooOO0OOooo........oo << 88 // G4OpRayleigh::G4OpRayleigh(const G4OpRayleigh &right) >> 89 // { >> 90 // } >> 91 >> 92 //////////////// >> 93 // Destructors >> 94 //////////////// >> 95 85 G4OpRayleigh::~G4OpRayleigh() 96 G4OpRayleigh::~G4OpRayleigh() 86 { 97 { 87 // VI: inside this PhysicsTable all properti << 98 if (thePhysicsTable!= 0) { 88 // it is not possible to destroy << 99 thePhysicsTable->clearAndDestroy(); 89 delete thePhysicsTable; << 100 delete thePhysicsTable; >> 101 } 90 } 102 } 91 103 92 //....oooOO0OOooo........oooOO0OOooo........oo << 104 //////////// 93 void G4OpRayleigh::PreparePhysicsTable(const G << 105 // Methods 94 { << 106 //////////// 95 Initialise(); << 96 } << 97 107 98 //....oooOO0OOooo........oooOO0OOooo........oo << 108 // PostStepDoIt 99 void G4OpRayleigh::Initialise() << 109 // ------------- >> 110 // >> 111 G4VParticleChange* >> 112 G4OpRayleigh::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 100 { 113 { 101 SetVerboseLevel(G4OpticalParameters::Instanc << 114 aParticleChange.Initialize(aTrack); 102 } << 103 115 104 //....oooOO0OOooo........oooOO0OOooo........oo << 116 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 105 G4VParticleChange* G4OpRayleigh::PostStepDoIt( << 106 << 107 { << 108 aParticleChange.Initialize(aTrack); << 109 const G4DynamicParticle* aParticle = aTrack. << 110 117 111 if(verboseLevel > 1) << 118 if (verboseLevel>0) { 112 { << 119 G4cout << "Scattering Photon!" << G4endl; 113 G4cout << "OpRayleigh: Scattering Photon!" << 120 G4cout << "Old Momentum Direction: " 114 << "Old Momentum Direction: " << aP << 121 << aParticle->GetMomentumDirection() << G4endl; 115 << G4endl << "Old Polarization: " < << 122 G4cout << "Old Polarization: " 116 << G4endl; << 123 << aParticle->GetPolarization() << G4endl; 117 } << 124 } 118 << 119 G4double cosTheta; << 120 G4ThreeVector oldMomDir, newMomDir; << 121 G4ThreeVector oldPol, newPol; << 122 G4double rand; << 123 G4double cost, sint, sinphi, cosphi; << 124 << 125 do << 126 { << 127 // Try to simulate the scattered photon mo << 128 // w.r.t. the initial photon momentum dire << 129 cost = G4UniformRand(); << 130 sint = std::sqrt(1. - cost * cost); << 131 // consider for the angle 90-180 degrees << 132 if(G4UniformRand() < 0.5) << 133 cost = -cost; << 134 << 135 // simulate the phi angle << 136 rand = twopi * G4UniformRand(); << 137 sinphi = std::sin(rand); << 138 cosphi = std::cos(rand); << 139 << 140 // construct the new momentum direction << 141 newMomDir.set(sint * cosphi, sint * sinphi << 142 oldMomDir = aParticle->GetMomentumDirectio << 143 newMomDir.rotateUz(oldMomDir); << 144 << 145 // calculate the new polarization directio << 146 // The new polarization needs to be in the << 147 // momentum direction and the old polariza << 148 oldPol = aParticle->GetPolarization(); << 149 newPol = (oldPol - newMomDir.dot(oldPol) * << 150 << 151 // There is a corner case, where the new m << 152 // is the same as old polarization directi << 153 // random generate the azimuthal angle w.r << 154 if(newPol.mag() == 0.) << 155 { << 156 rand = G4UniformRand() * twopi; << 157 newPol.set(std::cos(rand), std::sin(rand << 158 newPol.rotateUz(newMomDir); << 159 } << 160 else << 161 { << 162 // There are two directions perpendicula << 163 if(G4UniformRand() < 0.5) << 164 newPol = -newPol; << 165 } << 166 << 167 // simulate according to the distribution << 168 cosTheta = newPol.dot(oldPol); << 169 // Loop checking, 13-Aug-2015, Peter Gumpl << 170 } while(std::pow(cosTheta, 2) < G4UniformRan << 171 << 172 aParticleChange.ProposePolarization(newPol); << 173 aParticleChange.ProposeMomentumDirection(new << 174 << 175 if(verboseLevel > 1) << 176 { << 177 G4cout << "New Polarization: " << newPol < << 178 << "Polarization Change: " << *(aPa << 179 << G4endl << "New Momentum Directio << 180 << "Momentum Change: " << *(aPartic << 181 << G4endl; << 182 } << 183 125 184 return G4VDiscreteProcess::PostStepDoIt(aTra << 126 // find polar angle w.r.t. old polarization vector 185 } << 186 127 187 //....oooOO0OOooo........oooOO0OOooo........oo << 128 G4double rand = G4UniformRand(); 188 void G4OpRayleigh::BuildPhysicsTable(const G4P << 129 189 { << 130 G4double CosTheta = std::pow(rand, 1./3.); 190 if(thePhysicsTable) << 131 G4double SinTheta = std::sqrt(1.-CosTheta*CosTheta); 191 { << 132 192 // thePhysicsTable->clearAndDestroy(); << 133 if(G4UniformRand() < 0.5)CosTheta = -CosTheta; 193 delete thePhysicsTable; << 134 194 thePhysicsTable = nullptr; << 135 // find azimuthal angle w.r.t old polarization vector 195 } << 136 196 << 137 rand = G4UniformRand(); 197 const G4MaterialTable* theMaterialTable = G4 << 138 198 const size_t numOfMaterials = G4 << 139 G4double Phi = twopi*rand; 199 thePhysicsTable = ne << 140 G4double SinPhi = std::sin(Phi); 200 << 141 G4double CosPhi = std::cos(Phi); 201 for(size_t i = 0; i < numOfMaterials; ++i) << 142 202 { << 143 G4double unit_x = SinTheta * CosPhi; 203 G4Material* material = (*the << 144 G4double unit_y = SinTheta * SinPhi; 204 G4MaterialPropertiesTable* matProp = mater << 145 G4double unit_z = CosTheta; 205 G4PhysicsFreeVector* rayleigh = nullptr; << 146 206 if(matProp) << 147 G4ThreeVector NewPolarization (unit_x,unit_y,unit_z); 207 { << 148 208 rayleigh = matProp->GetProperty(kRAYLEIG << 149 // Rotate new polarization direction into global reference system 209 if(rayleigh == nullptr) << 150 210 rayleigh = CalculateRayleighMeanFreePa << 151 G4ThreeVector OldPolarization = aParticle->GetPolarization(); 211 } << 152 OldPolarization = OldPolarization.unit(); 212 thePhysicsTable->insertAt(i, rayleigh); << 153 213 } << 154 NewPolarization.rotateUz(OldPolarization); >> 155 NewPolarization = NewPolarization.unit(); >> 156 >> 157 // -- new momentum direction is normal to the new >> 158 // polarization vector and in the same plane as the >> 159 // old and new polarization vectors -- >> 160 >> 161 G4ThreeVector NewMomentumDirection = >> 162 OldPolarization - NewPolarization * CosTheta; >> 163 >> 164 if(G4UniformRand() < 0.5)NewMomentumDirection = -NewMomentumDirection; >> 165 NewMomentumDirection = NewMomentumDirection.unit(); >> 166 >> 167 aParticleChange.ProposePolarization(NewPolarization); >> 168 >> 169 aParticleChange.ProposeMomentumDirection(NewMomentumDirection); >> 170 >> 171 if (verboseLevel>0) { >> 172 G4cout << "New Polarization: " >> 173 << NewPolarization << G4endl; >> 174 G4cout << "Polarization Change: " >> 175 << *(aParticleChange.GetPolarization()) << G4endl; >> 176 G4cout << "New Momentum Direction: " >> 177 << NewMomentumDirection << G4endl; >> 178 G4cout << "Momentum Change: " >> 179 << *(aParticleChange.GetMomentumDirection()) << G4endl; >> 180 } >> 181 >> 182 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 214 } 183 } 215 184 216 //....oooOO0OOooo........oooOO0OOooo........oo << 185 // BuildThePhysicsTable for the Rayleigh Scattering process 217 G4double G4OpRayleigh::GetMeanFreePath(const G << 186 // -------------------------------------------------------- 218 G4Force << 187 // >> 188 void G4OpRayleigh::BuildThePhysicsTable() 219 { 189 { 220 auto rayleigh = static_cast<G4PhysicsFreeVec << 190 // Builds a table of scattering lengths for each material 221 (*thePhysicsTable)(aTrack.GetMaterial()- << 191 >> 192 if (thePhysicsTable) return; 222 193 223 G4double rsLength = DBL_MAX; << 194 const G4MaterialTable* theMaterialTable= 224 if(rayleigh) << 195 G4Material::GetMaterialTable(); 225 { << 196 G4int numOfMaterials = G4Material::GetNumberOfMaterials(); 226 rsLength = rayleigh->Value(aTrack.GetDynam << 197 227 idx_rslength); << 198 // create a new physics table 228 } << 199 229 return rsLength; << 200 thePhysicsTable = new G4PhysicsTable(numOfMaterials); >> 201 >> 202 // loop for materials >> 203 >> 204 for (G4int i=0 ; i < numOfMaterials; i++) >> 205 { >> 206 G4PhysicsOrderedFreeVector* ScatteringLengths = >> 207 new G4PhysicsOrderedFreeVector(); >> 208 >> 209 G4MaterialPropertiesTable *aMaterialPropertiesTable = >> 210 (*theMaterialTable)[i]->GetMaterialPropertiesTable(); >> 211 >> 212 if(aMaterialPropertiesTable){ >> 213 >> 214 G4MaterialPropertyVector* AttenuationLengthVector = >> 215 aMaterialPropertiesTable->GetProperty("RAYLEIGH"); >> 216 >> 217 if(!AttenuationLengthVector){ >> 218 >> 219 if ((*theMaterialTable)[i]->GetName() == "Water") >> 220 { >> 221 // Call utility routine to Generate >> 222 // Rayleigh Scattering Lengths >> 223 >> 224 DefaultWater = true; >> 225 >> 226 ScatteringLengths = >> 227 RayleighAttenuationLengthGenerator(aMaterialPropertiesTable); >> 228 } >> 229 } >> 230 } >> 231 >> 232 thePhysicsTable->insertAt(i,ScatteringLengths); >> 233 } 230 } 234 } 231 235 232 //....oooOO0OOooo........oooOO0OOooo........oo << 236 // GetMeanFreePath() 233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRa << 237 // ----------------- 234 const G4Material* material) const << 238 // >> 239 G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack, >> 240 G4double , >> 241 G4ForceCondition* ) 235 { 242 { 236 G4MaterialPropertiesTable* MPT = material->G << 243 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); >> 244 const G4Material* aMaterial = aTrack.GetMaterial(); >> 245 >> 246 G4double thePhotonMomentum = aParticle->GetTotalMomentum(); 237 247 238 // Retrieve the beta_T or isothermal compres << 248 G4double AttenuationLength = DBL_MAX; 239 // compatibility use a constant if the mater << 240 // doesn't have an ISOTHERMAL_COMPRESSIBILIT << 241 G4double betat; << 242 if(material->GetName() == "Water") << 243 { << 244 betat = 7.658e-23 * m3 / MeV; << 245 } << 246 else if(MPT->ConstPropertyExists(kISOTHERMAL << 247 { << 248 betat = MPT->GetConstProperty(kISOTHERMAL_ << 249 } << 250 else << 251 { << 252 return nullptr; << 253 } << 254 << 255 // If the material doesn't have a RINDEX pro << 256 G4MaterialPropertyVector* rIndex = MPT->GetP << 257 if(rIndex == nullptr) << 258 return nullptr; << 259 << 260 // Retrieve the optional scale factor (scale << 261 G4double scaleFactor = 1.0; << 262 if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR << 263 { << 264 scaleFactor = MPT->GetConstProperty(kRS_SC << 265 } << 266 << 267 // Retrieve the material temperature. For ba << 268 // constant if the material is "Water" << 269 G4double temperature; << 270 if(material->GetName() == "Water") << 271 { << 272 temperature = << 273 283.15 * kelvin; // Temperature of wate << 274 } << 275 else << 276 { << 277 temperature = material->GetTemperature(); << 278 } << 279 << 280 auto rayleighMFPs = new G4PhysicsFreeVector( << 281 // This calculates the meanFreePath via the << 282 const G4double c1 = << 283 scaleFactor * betat * temperature * k_Bolt << 284 << 285 for(size_t uRIndex = 0; uRIndex < rIndex->Ge << 286 { << 287 const G4double energy = rIndex->Ene << 288 const G4double rIndexSquared = (*rIndex)[u << 289 const G4double xlambda = h_Planck * << 290 const G4double c2 = std::pow(tw << 291 const G4double c3 = << 292 std::pow(((rIndexSquared - 1.0) * (rInde << 293 << 294 const G4double meanFreePath = 1.0 / (c1 * << 295 << 296 if(verboseLevel > 0) << 297 { << 298 G4cout << energy << "MeV\t" << meanFreeP << 299 } << 300 249 301 rayleighMFPs->InsertValues(energy, meanFre << 250 if (aMaterial->GetName() == "Water" && DefaultWater){ 302 } << 303 251 304 return rayleighMFPs; << 252 G4bool isOutRange; >> 253 >> 254 AttenuationLength = >> 255 (*thePhysicsTable)(aMaterial->GetIndex())-> >> 256 GetValue(thePhotonMomentum, isOutRange); >> 257 } >> 258 else { >> 259 >> 260 G4MaterialPropertiesTable* aMaterialPropertyTable = >> 261 aMaterial->GetMaterialPropertiesTable(); >> 262 >> 263 if(aMaterialPropertyTable){ >> 264 G4MaterialPropertyVector* AttenuationLengthVector = >> 265 aMaterialPropertyTable->GetProperty("RAYLEIGH"); >> 266 if(AttenuationLengthVector){ >> 267 AttenuationLength = AttenuationLengthVector -> >> 268 GetProperty(thePhotonMomentum); >> 269 } >> 270 else{ >> 271 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 272 } >> 273 } >> 274 else{ >> 275 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 276 } >> 277 } >> 278 >> 279 return AttenuationLength; 305 } 280 } 306 281 307 //....oooOO0OOooo........oooOO0OOooo........oo << 282 // RayleighAttenuationLengthGenerator() 308 void G4OpRayleigh::SetVerboseLevel(G4int verbo << 283 // ------------------------------------ >> 284 // Private method to compute Rayleigh Scattering Lengths (for water) >> 285 // >> 286 G4PhysicsOrderedFreeVector* >> 287 G4OpRayleigh::RayleighAttenuationLengthGenerator(G4MaterialPropertiesTable *aMPT) 309 { 288 { 310 verboseLevel = verbose; << 289 // Physical Constants 311 G4OpticalParameters::Instance()->SetRayleigh << 290 >> 291 // isothermal compressibility of water >> 292 G4double betat = 7.658e-23*m3/MeV; >> 293 >> 294 // K Boltzman >> 295 G4double kboltz = 8.61739e-11*MeV/kelvin; >> 296 >> 297 // Temperature of water is 10 degrees celsius >> 298 // conversion to kelvin: >> 299 // TCelsius = TKelvin - 273.15 => 273.15 + 10 = 283.15 >> 300 G4double temp = 283.15*kelvin; >> 301 >> 302 // Retrieve vectors for refraction index >> 303 // and photon momentum from the material properties table >> 304 >> 305 G4MaterialPropertyVector* Rindex = aMPT->GetProperty("RINDEX"); >> 306 >> 307 G4double refsq; >> 308 G4double e; >> 309 G4double xlambda; >> 310 G4double c1, c2, c3, c4; >> 311 G4double Dist; >> 312 G4double refraction_index; >> 313 >> 314 G4PhysicsOrderedFreeVector *RayleighScatteringLengths = >> 315 new G4PhysicsOrderedFreeVector(); >> 316 >> 317 if (Rindex ) { >> 318 >> 319 Rindex->ResetIterator(); >> 320 >> 321 while (++(*Rindex)) { >> 322 >> 323 e = (Rindex->GetPhotonMomentum()); >> 324 >> 325 refraction_index = Rindex->GetProperty(); >> 326 refsq = refraction_index*refraction_index; >> 327 xlambda = h_Planck*c_light/e; >> 328 >> 329 if (verboseLevel>0) { >> 330 G4cout << Rindex->GetPhotonMomentum() << " MeV\t"; >> 331 G4cout << xlambda << " mm\t"; >> 332 } >> 333 >> 334 c1 = 1 / (6.0 * pi); >> 335 c2 = std::pow((2.0 * pi / xlambda), 4); >> 336 c3 = std::pow( ( (refsq - 1.0) * (refsq + 2.0) / 3.0 ), 2); >> 337 c4 = betat * temp * kboltz; >> 338 >> 339 Dist = 1.0 / (c1*c2*c3*c4); >> 340 >> 341 if (verboseLevel>0) { >> 342 G4cout << Dist << " mm" << G4endl; >> 343 } >> 344 RayleighScatteringLengths-> >> 345 InsertValues(Rindex->GetPhotonMomentum(), Dist); >> 346 } >> 347 >> 348 } >> 349 >> 350 return RayleighScatteringLengths; 312 } 351 } 313 352