Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4OpRayleigh.cc,v 1.8 2001/10/18 17:13:54 gum Exp $ >> 25 // GEANT4 tag $Name: geant4-05-00 $ 27 // 26 // 28 // << 27 // 29 ////////////////////////////////////////////// 28 //////////////////////////////////////////////////////////////////////// 30 // Optical Photon Rayleigh Scattering Class Im 29 // Optical Photon Rayleigh Scattering Class Implementation 31 ////////////////////////////////////////////// 30 //////////////////////////////////////////////////////////////////////// 32 // 31 // 33 // File: G4OpRayleigh.cc << 32 // File: G4OpRayleigh.cc 34 // Description: Discrete Process -- Rayleigh s << 33 // Description: Discrete Process -- Rayleigh scattering of optical 35 // photons << 34 // photons 36 // Version: 1.0 35 // Version: 1.0 37 // Created: 1996-05-31 << 36 // Created: 1996-05-31 38 // Author: Juliet Armstrong 37 // Author: Juliet Armstrong 39 // Updated: 2014-10-10 - This version cal << 38 // Updated: 2001-10-18 by Peter Gumplinger 40 // length for more materials than << 41 // default is kept). To do this t << 42 // ISOTHERMAL_COMPRESSIBILITY as << 43 // optionally an RS_SCALE_LENGTH << 44 // from Philip Graham (Queen Mary << 45 // 2010-06-11 - Fix Bug 207; Than << 46 // (Kellogg Radiation Lab of Calt << 47 // 2005-07-28 - add G4ProcessType << 48 // 2001-10-18 by Peter Gumplinger << 49 // eliminate unused variable warn 39 // eliminate unused variable warning on Linux (gcc-2.95.2) 50 // 2001-09-18 by mma << 40 // Updated: 2001-09-18 by mma 51 // >numOfMaterials=G4Material::Ge << 41 // >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy 52 // 2001-01-30 by Peter Gumplinger << 42 // Updated: 2001-01-30 by Peter Gumplinger 53 // > allow for positiv and negati 43 // > allow for positiv and negative CosTheta and force the 54 // > new momentum direction to be 44 // > new momentum direction to be in the same plane as the 55 // > new and old polarization vec 45 // > new and old polarization vectors 56 // 2001-01-29 by Peter Gumplinger 46 // 2001-01-29 by Peter Gumplinger 57 // > fix calculation of SinTheta 47 // > fix calculation of SinTheta (from CosTheta) 58 // 1997-04-09 by Peter Gumplinger 48 // 1997-04-09 by Peter Gumplinger 59 // > new physics/tracking scheme 49 // > new physics/tracking scheme >> 50 // mail: gum@triumf.ca 60 // 51 // 61 ////////////////////////////////////////////// 52 //////////////////////////////////////////////////////////////////////// 62 53 63 #include "G4OpRayleigh.hh" << 64 #include "G4ios.hh" 54 #include "G4ios.hh" 65 #include "G4PhysicalConstants.hh" << 55 #include "G4OpRayleigh.hh" 66 #include "G4SystemOfUnits.hh" << 56 67 #include "G4OpticalParameters.hh" << 57 ///////////////////////// 68 #include "G4OpProcessSubType.hh" << 58 // Class Implementation 69 << 59 ///////////////////////// 70 //....oooOO0OOooo........oooOO0OOooo........oo << 60 71 G4OpRayleigh::G4OpRayleigh(const G4String& pro << 61 ////////////// 72 : G4VDiscreteProcess(processName, type) << 62 // Operators >> 63 ////////////// >> 64 >> 65 // G4OpRayleigh::operator=(const G4OpRayleigh &right) >> 66 // { >> 67 // } >> 68 >> 69 ///////////////// >> 70 // Constructors >> 71 ///////////////// >> 72 >> 73 G4OpRayleigh::G4OpRayleigh(const G4String& processName) >> 74 : G4VDiscreteProcess(processName) 73 { 75 { 74 Initialise(); << 76 75 SetProcessSubType(fOpRayleigh); << 77 thePhysicsTable = NULL; 76 thePhysicsTable = nullptr; << 78 77 << 79 if (verboseLevel>0) { 78 if(verboseLevel > 0) << 80 G4cout << GetProcessName() << " is created " << G4endl; 79 { << 81 } 80 G4cout << GetProcessName() << " is created << 82 81 } << 83 BuildThePhysicsTable(); 82 } 84 } 83 85 84 //....oooOO0OOooo........oooOO0OOooo........oo << 86 // G4OpRayleigh::G4OpRayleigh(const G4OpRayleigh &right) >> 87 // { >> 88 // } >> 89 >> 90 //////////////// >> 91 // Destructors >> 92 //////////////// >> 93 85 G4OpRayleigh::~G4OpRayleigh() 94 G4OpRayleigh::~G4OpRayleigh() 86 { 95 { 87 // VI: inside this PhysicsTable all properti << 96 if (thePhysicsTable!= NULL) { 88 // it is not possible to destroy << 97 thePhysicsTable->clearAndDestroy(); 89 delete thePhysicsTable; << 98 delete thePhysicsTable; >> 99 } 90 } 100 } 91 101 92 //....oooOO0OOooo........oooOO0OOooo........oo << 102 //////////// 93 void G4OpRayleigh::PreparePhysicsTable(const G << 103 // Methods 94 { << 104 //////////// 95 Initialise(); << 96 } << 97 105 98 //....oooOO0OOooo........oooOO0OOooo........oo << 106 // PostStepDoIt 99 void G4OpRayleigh::Initialise() << 107 // ------------- >> 108 // >> 109 G4VParticleChange* >> 110 G4OpRayleigh::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep) 100 { 111 { 101 SetVerboseLevel(G4OpticalParameters::Instanc << 112 aParticleChange.Initialize(aTrack); 102 } << 103 113 104 //....oooOO0OOooo........oooOO0OOooo........oo << 114 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); 105 G4VParticleChange* G4OpRayleigh::PostStepDoIt( << 106 << 107 { << 108 aParticleChange.Initialize(aTrack); << 109 const G4DynamicParticle* aParticle = aTrack. << 110 115 111 if(verboseLevel > 1) << 116 if (verboseLevel>0) { 112 { << 117 G4cout << "Scattering Photon!" << G4endl; 113 G4cout << "OpRayleigh: Scattering Photon!" << 118 G4cout << "Old Momentum Direction: " 114 << "Old Momentum Direction: " << aP << 119 << aParticle->GetMomentumDirection() << G4endl; 115 << G4endl << "Old Polarization: " < << 120 G4cout << "Old Polarization: " 116 << G4endl; << 121 << aParticle->GetPolarization() << G4endl; 117 } << 122 } 118 << 119 G4double cosTheta; << 120 G4ThreeVector oldMomDir, newMomDir; << 121 G4ThreeVector oldPol, newPol; << 122 G4double rand; << 123 G4double cost, sint, sinphi, cosphi; << 124 << 125 do << 126 { << 127 // Try to simulate the scattered photon mo << 128 // w.r.t. the initial photon momentum dire << 129 cost = G4UniformRand(); << 130 sint = std::sqrt(1. - cost * cost); << 131 // consider for the angle 90-180 degrees << 132 if(G4UniformRand() < 0.5) << 133 cost = -cost; << 134 << 135 // simulate the phi angle << 136 rand = twopi * G4UniformRand(); << 137 sinphi = std::sin(rand); << 138 cosphi = std::cos(rand); << 139 << 140 // construct the new momentum direction << 141 newMomDir.set(sint * cosphi, sint * sinphi << 142 oldMomDir = aParticle->GetMomentumDirectio << 143 newMomDir.rotateUz(oldMomDir); << 144 << 145 // calculate the new polarization directio << 146 // The new polarization needs to be in the << 147 // momentum direction and the old polariza << 148 oldPol = aParticle->GetPolarization(); << 149 newPol = (oldPol - newMomDir.dot(oldPol) * << 150 << 151 // There is a corner case, where the new m << 152 // is the same as old polarization directi << 153 // random generate the azimuthal angle w.r << 154 if(newPol.mag() == 0.) << 155 { << 156 rand = G4UniformRand() * twopi; << 157 newPol.set(std::cos(rand), std::sin(rand << 158 newPol.rotateUz(newMomDir); << 159 } << 160 else << 161 { << 162 // There are two directions perpendicula << 163 if(G4UniformRand() < 0.5) << 164 newPol = -newPol; << 165 } << 166 << 167 // simulate according to the distribution << 168 cosTheta = newPol.dot(oldPol); << 169 // Loop checking, 13-Aug-2015, Peter Gumpl << 170 } while(std::pow(cosTheta, 2) < G4UniformRan << 171 << 172 aParticleChange.ProposePolarization(newPol); << 173 aParticleChange.ProposeMomentumDirection(new << 174 << 175 if(verboseLevel > 1) << 176 { << 177 G4cout << "New Polarization: " << newPol < << 178 << "Polarization Change: " << *(aPa << 179 << G4endl << "New Momentum Directio << 180 << "Momentum Change: " << *(aPartic << 181 << G4endl; << 182 } << 183 123 184 return G4VDiscreteProcess::PostStepDoIt(aTra << 124 // find polar angle w.r.t. old polarization vector 185 } << 186 125 187 //....oooOO0OOooo........oooOO0OOooo........oo << 126 G4double rand = G4UniformRand(); 188 void G4OpRayleigh::BuildPhysicsTable(const G4P << 127 189 { << 128 G4double CosTheta = pow(rand, 1./3.); 190 if(thePhysicsTable) << 129 G4double SinTheta = sqrt(1.-CosTheta*CosTheta); 191 { << 130 192 // thePhysicsTable->clearAndDestroy(); << 131 if(G4UniformRand() < 0.5)CosTheta = -CosTheta; 193 delete thePhysicsTable; << 132 194 thePhysicsTable = nullptr; << 133 // find azimuthal angle w.r.t old polarization vector 195 } << 134 196 << 135 rand = G4UniformRand(); 197 const G4MaterialTable* theMaterialTable = G4 << 136 198 const size_t numOfMaterials = G4 << 137 G4double Phi = twopi*rand; 199 thePhysicsTable = ne << 138 G4double SinPhi = sin(Phi); 200 << 139 G4double CosPhi = cos(Phi); 201 for(size_t i = 0; i < numOfMaterials; ++i) << 140 202 { << 141 G4double unit_x = SinTheta * CosPhi; 203 G4Material* material = (*the << 142 G4double unit_y = SinTheta * SinPhi; 204 G4MaterialPropertiesTable* matProp = mater << 143 G4double unit_z = CosTheta; 205 G4PhysicsFreeVector* rayleigh = nullptr; << 144 206 if(matProp) << 145 G4ThreeVector NewPolarization (unit_x,unit_y,unit_z); 207 { << 146 208 rayleigh = matProp->GetProperty(kRAYLEIG << 147 // Rotate new polarization direction into global reference system 209 if(rayleigh == nullptr) << 148 210 rayleigh = CalculateRayleighMeanFreePa << 149 G4ThreeVector OldPolarization = aParticle->GetPolarization(); 211 } << 150 OldPolarization = OldPolarization.unit(); 212 thePhysicsTable->insertAt(i, rayleigh); << 151 213 } << 152 NewPolarization.rotateUz(OldPolarization); >> 153 NewPolarization = NewPolarization.unit(); >> 154 >> 155 // -- new momentum direction is normal to the new >> 156 // polarization vector and in the same plane as the >> 157 // old and new polarization vectors -- >> 158 >> 159 G4ThreeVector NewMomentumDirection = >> 160 OldPolarization - NewPolarization * CosTheta; >> 161 >> 162 if(G4UniformRand() < 0.5)NewMomentumDirection = -NewMomentumDirection; >> 163 NewMomentumDirection = NewMomentumDirection.unit(); >> 164 >> 165 aParticleChange.SetPolarizationChange(NewPolarization); >> 166 >> 167 aParticleChange.SetMomentumChange(NewMomentumDirection); >> 168 >> 169 if (verboseLevel>0) { >> 170 G4cout << "New Polarization: " >> 171 << NewPolarization << G4endl; >> 172 G4cout << "Polarization Change: " >> 173 << *(aParticleChange.GetPolarizationChange()) << G4endl; >> 174 G4cout << "New Momentum Direction: " >> 175 << NewMomentumDirection << G4endl; >> 176 G4cout << "Momentum Change: " >> 177 << *(aParticleChange.GetMomentumChange()) << G4endl; >> 178 } >> 179 >> 180 return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep); 214 } 181 } 215 182 216 //....oooOO0OOooo........oooOO0OOooo........oo << 183 // BuildThePhysicsTable for the Rayleigh Scattering process 217 G4double G4OpRayleigh::GetMeanFreePath(const G << 184 // -------------------------------------------------------- 218 G4Force << 185 // >> 186 void G4OpRayleigh::BuildThePhysicsTable() 219 { 187 { 220 auto rayleigh = static_cast<G4PhysicsFreeVec << 188 // Builds a table of scattering lengths for each material 221 (*thePhysicsTable)(aTrack.GetMaterial()- << 189 >> 190 if (thePhysicsTable) return; >> 191 >> 192 const G4MaterialTable* theMaterialTable= >> 193 G4Material::GetMaterialTable(); >> 194 G4int numOfMaterials = G4Material::GetNumberOfMaterials(); >> 195 >> 196 // create a new physics table >> 197 >> 198 thePhysicsTable = new G4PhysicsTable(numOfMaterials); >> 199 >> 200 // loop for materials 222 201 223 G4double rsLength = DBL_MAX; << 202 for (G4int i=0 ; i < numOfMaterials; i++) 224 if(rayleigh) << 203 { 225 { << 204 G4PhysicsOrderedFreeVector* ScatteringLengths = 226 rsLength = rayleigh->Value(aTrack.GetDynam << 205 new G4PhysicsOrderedFreeVector(); 227 idx_rslength); << 206 228 } << 207 if ((*theMaterialTable)[i]->GetName() == "Water") 229 return rsLength; << 208 { >> 209 G4MaterialPropertiesTable *MaterialPT = >> 210 (*theMaterialTable)[i]->GetMaterialPropertiesTable(); >> 211 // Call utility routine to Generate >> 212 // Rayleigh Scattering Lengths >> 213 ScatteringLengths = >> 214 RayleighAttenuationLengthGenerator(MaterialPT); >> 215 } >> 216 >> 217 thePhysicsTable->insertAt(i,ScatteringLengths); >> 218 } 230 } 219 } 231 220 232 //....oooOO0OOooo........oooOO0OOooo........oo << 221 // GetMeanFreePath() 233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRa << 222 // ----------------- 234 const G4Material* material) const << 223 // >> 224 G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack, >> 225 G4double , >> 226 G4ForceCondition* ) 235 { 227 { 236 G4MaterialPropertiesTable* MPT = material->G << 228 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle(); >> 229 const G4Material* aMaterial = aTrack.GetMaterial(); >> 230 >> 231 G4double thePhotonMomentum = aParticle->GetTotalMomentum(); 237 232 238 // Retrieve the beta_T or isothermal compres << 233 G4double AttenuationLength = DBL_MAX; 239 // compatibility use a constant if the mater << 240 // doesn't have an ISOTHERMAL_COMPRESSIBILIT << 241 G4double betat; << 242 if(material->GetName() == "Water") << 243 { << 244 betat = 7.658e-23 * m3 / MeV; << 245 } << 246 else if(MPT->ConstPropertyExists(kISOTHERMAL << 247 { << 248 betat = MPT->GetConstProperty(kISOTHERMAL_ << 249 } << 250 else << 251 { << 252 return nullptr; << 253 } << 254 << 255 // If the material doesn't have a RINDEX pro << 256 G4MaterialPropertyVector* rIndex = MPT->GetP << 257 if(rIndex == nullptr) << 258 return nullptr; << 259 << 260 // Retrieve the optional scale factor (scale << 261 G4double scaleFactor = 1.0; << 262 if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR << 263 { << 264 scaleFactor = MPT->GetConstProperty(kRS_SC << 265 } << 266 << 267 // Retrieve the material temperature. For ba << 268 // constant if the material is "Water" << 269 G4double temperature; << 270 if(material->GetName() == "Water") << 271 { << 272 temperature = << 273 283.15 * kelvin; // Temperature of wate << 274 } << 275 else << 276 { << 277 temperature = material->GetTemperature(); << 278 } << 279 << 280 auto rayleighMFPs = new G4PhysicsFreeVector( << 281 // This calculates the meanFreePath via the << 282 const G4double c1 = << 283 scaleFactor * betat * temperature * k_Bolt << 284 << 285 for(size_t uRIndex = 0; uRIndex < rIndex->Ge << 286 { << 287 const G4double energy = rIndex->Ene << 288 const G4double rIndexSquared = (*rIndex)[u << 289 const G4double xlambda = h_Planck * << 290 const G4double c2 = std::pow(tw << 291 const G4double c3 = << 292 std::pow(((rIndexSquared - 1.0) * (rInde << 293 << 294 const G4double meanFreePath = 1.0 / (c1 * << 295 << 296 if(verboseLevel > 0) << 297 { << 298 G4cout << energy << "MeV\t" << meanFreeP << 299 } << 300 234 301 rayleighMFPs->InsertValues(energy, meanFre << 235 if (aMaterial->GetName() == "Water") { 302 } << 303 236 304 return rayleighMFPs; << 237 G4bool isOutRange; >> 238 >> 239 AttenuationLength = >> 240 (*thePhysicsTable)(aMaterial->GetIndex())-> >> 241 GetValue(thePhotonMomentum, isOutRange); >> 242 } >> 243 else { >> 244 >> 245 G4MaterialPropertiesTable* aMaterialPropertyTable = >> 246 aMaterial->GetMaterialPropertiesTable(); >> 247 >> 248 if(aMaterialPropertyTable){ >> 249 G4MaterialPropertyVector* AttenuationLengthVector = >> 250 aMaterialPropertyTable->GetProperty("RAYLEIGH"); >> 251 if(AttenuationLengthVector){ >> 252 AttenuationLength = AttenuationLengthVector -> >> 253 GetProperty(thePhotonMomentum); >> 254 } >> 255 else{ >> 256 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 257 } >> 258 } >> 259 else{ >> 260 // G4cout << "No Rayleigh scattering length specified" << G4endl; >> 261 } >> 262 } >> 263 >> 264 return AttenuationLength; 305 } 265 } 306 266 307 //....oooOO0OOooo........oooOO0OOooo........oo << 267 // RayleighAttenuationLengthGenerator() 308 void G4OpRayleigh::SetVerboseLevel(G4int verbo << 268 // ------------------------------------ >> 269 // Private method to compute Rayleigh Scattering Lengths (for water) >> 270 // >> 271 G4PhysicsOrderedFreeVector* >> 272 G4OpRayleigh::RayleighAttenuationLengthGenerator(G4MaterialPropertiesTable *aMPT) 309 { 273 { 310 verboseLevel = verbose; << 274 // Physical Constants 311 G4OpticalParameters::Instance()->SetRayleigh << 275 >> 276 // isothermal compressibility of water >> 277 G4double betat = 7.658e-23*m3/MeV; >> 278 >> 279 // K Boltzman >> 280 G4double kboltz = 8.61739e-11*MeV/kelvin; >> 281 >> 282 // Temperature of water is 10 degrees celsius >> 283 // conversion to kelvin: >> 284 // TCelsius = TKelvin - 273.15 => 273.15 + 10 = 283.15 >> 285 G4double temp = 283.15*kelvin; >> 286 >> 287 // Retrieve vectors for refraction index >> 288 // and photon momentum from the material properties table >> 289 >> 290 G4MaterialPropertyVector* Rindex = aMPT->GetProperty("RINDEX"); >> 291 >> 292 G4double refsq; >> 293 G4double e; >> 294 G4double xlambda; >> 295 G4double c1, c2, c3, c4; >> 296 G4double Dist; >> 297 G4double refraction_index; >> 298 >> 299 G4PhysicsOrderedFreeVector *RayleighScatteringLengths = >> 300 new G4PhysicsOrderedFreeVector(); >> 301 Rindex->ResetIterator(); >> 302 >> 303 while (++(*Rindex)) { >> 304 >> 305 e = (Rindex->GetPhotonMomentum()); >> 306 >> 307 refraction_index = Rindex->GetProperty(); >> 308 refsq = refraction_index*refraction_index; >> 309 xlambda = h_Planck*c_light/e; >> 310 >> 311 if (verboseLevel>0) { >> 312 G4cout << Rindex->GetPhotonMomentum() << " MeV\t"; >> 313 G4cout << xlambda << " mm\t"; >> 314 } >> 315 >> 316 c1 = 1 / (6.0 * pi); >> 317 c2 = pow((2.0 * pi / xlambda), 4); >> 318 c3 = pow( ( (refsq - 1.0) * (refsq + 2.0) / 3.0 ), 2); >> 319 c4 = betat * temp * kboltz; >> 320 >> 321 Dist = 1.0 / (c1*c2*c3*c4); >> 322 >> 323 if (verboseLevel>0) { >> 324 G4cout << Dist << " mm" << G4endl; >> 325 } >> 326 RayleighScatteringLengths-> >> 327 InsertValues(Rindex->GetPhotonMomentum(), Dist); >> 328 } >> 329 >> 330 return RayleighScatteringLengths; 312 } 331 } 313 332