Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/optical/src/G4OpRayleigh.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/optical/src/G4OpRayleigh.cc (Version 11.3.0) and /processes/optical/src/G4OpRayleigh.cc (Version 11.1.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 //                                                 27 //
 28 //                                                 28 //
 29 //////////////////////////////////////////////     29 ////////////////////////////////////////////////////////////////////////
 30 // Optical Photon Rayleigh Scattering Class Im     30 // Optical Photon Rayleigh Scattering Class Implementation
 31 //////////////////////////////////////////////     31 ////////////////////////////////////////////////////////////////////////
 32 //                                                 32 //
 33 // File:        G4OpRayleigh.cc                    33 // File:        G4OpRayleigh.cc
 34 // Description: Discrete Process -- Rayleigh s     34 // Description: Discrete Process -- Rayleigh scattering of optical
 35 //    photons                                      35 //    photons
 36 // Version:     1.0                                36 // Version:     1.0
 37 // Created:     1996-05-31                         37 // Created:     1996-05-31
 38 // Author:      Juliet Armstrong                   38 // Author:      Juliet Armstrong
 39 // Updated:     2014-10-10 -  This version cal     39 // Updated:     2014-10-10 -  This version calculates the Rayleigh scattering
 40 //              length for more materials than     40 //              length for more materials than just Water (although the Water
 41 //              default is kept). To do this t     41 //              default is kept). To do this the user would need to specify the
 42 //              ISOTHERMAL_COMPRESSIBILITY as      42 //              ISOTHERMAL_COMPRESSIBILITY as a material property and
 43 //              optionally an RS_SCALE_LENGTH      43 //              optionally an RS_SCALE_LENGTH (useful for testing). Code comes
 44 //              from Philip Graham (Queen Mary     44 //              from Philip Graham (Queen Mary University of London).
 45 //              2010-06-11 - Fix Bug 207; Than     45 //              2010-06-11 - Fix Bug 207; Thanks to Xin Qian
 46 //              (Kellogg Radiation Lab of Calt     46 //              (Kellogg Radiation Lab of Caltech)
 47 //              2005-07-28 - add G4ProcessType     47 //              2005-07-28 - add G4ProcessType to constructor
 48 //              2001-10-18 by Peter Gumplinger     48 //              2001-10-18 by Peter Gumplinger
 49 //              eliminate unused variable warn     49 //              eliminate unused variable warning on Linux (gcc-2.95.2)
 50 //              2001-09-18 by mma                  50 //              2001-09-18 by mma
 51 //              >numOfMaterials=G4Material::Ge     51 //              >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy
 52 //              2001-01-30 by Peter Gumplinger     52 //              2001-01-30 by Peter Gumplinger
 53 //              > allow for positiv and negati     53 //              > allow for positiv and negative CosTheta and force the
 54 //              > new momentum direction to be     54 //              > new momentum direction to be in the same plane as the
 55 //              > new and old polarization vec     55 //              > new and old polarization vectors
 56 //              2001-01-29 by Peter Gumplinger     56 //              2001-01-29 by Peter Gumplinger
 57 //              > fix calculation of SinTheta      57 //              > fix calculation of SinTheta (from CosTheta)
 58 //              1997-04-09 by Peter Gumplinger     58 //              1997-04-09 by Peter Gumplinger
 59 //              > new physics/tracking scheme      59 //              > new physics/tracking scheme
 60 //                                                 60 //
 61 //////////////////////////////////////////////     61 ////////////////////////////////////////////////////////////////////////
 62                                                    62 
 63 #include "G4OpRayleigh.hh"                         63 #include "G4OpRayleigh.hh"
 64 #include "G4ios.hh"                                64 #include "G4ios.hh"
 65 #include "G4PhysicalConstants.hh"                  65 #include "G4PhysicalConstants.hh"
 66 #include "G4SystemOfUnits.hh"                      66 #include "G4SystemOfUnits.hh"
 67 #include "G4OpticalParameters.hh"                  67 #include "G4OpticalParameters.hh"
 68 #include "G4OpProcessSubType.hh"                   68 #include "G4OpProcessSubType.hh"
 69                                                    69 
 70 //....oooOO0OOooo........oooOO0OOooo........oo     70 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 71 G4OpRayleigh::G4OpRayleigh(const G4String& pro     71 G4OpRayleigh::G4OpRayleigh(const G4String& processName, G4ProcessType type)
 72   : G4VDiscreteProcess(processName, type)          72   : G4VDiscreteProcess(processName, type)
 73 {                                                  73 {
 74   Initialise();                                    74   Initialise();
 75   SetProcessSubType(fOpRayleigh);                  75   SetProcessSubType(fOpRayleigh);
 76   thePhysicsTable = nullptr;                       76   thePhysicsTable = nullptr;
 77                                                    77 
 78   if(verboseLevel > 0)                             78   if(verboseLevel > 0)
 79   {                                                79   {
 80     G4cout << GetProcessName() << " is created     80     G4cout << GetProcessName() << " is created " << G4endl;
 81   }                                                81   }
 82 }                                                  82 }
 83                                                    83 
 84 //....oooOO0OOooo........oooOO0OOooo........oo     84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 85 G4OpRayleigh::~G4OpRayleigh()                      85 G4OpRayleigh::~G4OpRayleigh()
 86 {                                                  86 {
 87   // VI: inside this PhysicsTable all properti     87   // VI: inside this PhysicsTable all properties are unique
 88   //     it is not possible to destroy             88   //     it is not possible to destroy
 89   delete thePhysicsTable;                          89   delete thePhysicsTable;
 90 }                                                  90 }
 91                                                    91 
 92 //....oooOO0OOooo........oooOO0OOooo........oo     92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 93 void G4OpRayleigh::PreparePhysicsTable(const G     93 void G4OpRayleigh::PreparePhysicsTable(const G4ParticleDefinition&)
 94 {                                                  94 {
 95   Initialise();                                    95   Initialise();
 96 }                                                  96 }
 97                                                    97 
 98 //....oooOO0OOooo........oooOO0OOooo........oo     98 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 99 void G4OpRayleigh::Initialise()                    99 void G4OpRayleigh::Initialise()
100 {                                                 100 {
101   SetVerboseLevel(G4OpticalParameters::Instanc    101   SetVerboseLevel(G4OpticalParameters::Instance()->GetRayleighVerboseLevel());
102 }                                                 102 }
103                                                   103 
104 //....oooOO0OOooo........oooOO0OOooo........oo    104 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
105 G4VParticleChange* G4OpRayleigh::PostStepDoIt(    105 G4VParticleChange* G4OpRayleigh::PostStepDoIt(const G4Track& aTrack,
106                                                   106                                               const G4Step& aStep)
107 {                                                 107 {
108   aParticleChange.Initialize(aTrack);             108   aParticleChange.Initialize(aTrack);
109   const G4DynamicParticle* aParticle = aTrack.    109   const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
110                                                   110 
111   if(verboseLevel > 1)                            111   if(verboseLevel > 1)
112   {                                               112   {
113     G4cout << "OpRayleigh: Scattering Photon!"    113     G4cout << "OpRayleigh: Scattering Photon!" << G4endl
114            << "Old Momentum Direction: " << aP    114            << "Old Momentum Direction: " << aParticle->GetMomentumDirection()
115            << G4endl << "Old Polarization: " <    115            << G4endl << "Old Polarization: " << aParticle->GetPolarization()
116            << G4endl;                             116            << G4endl;
117   }                                               117   }
118                                                   118 
119   G4double cosTheta;                              119   G4double cosTheta;
120   G4ThreeVector oldMomDir, newMomDir;             120   G4ThreeVector oldMomDir, newMomDir;
121   G4ThreeVector oldPol, newPol;                   121   G4ThreeVector oldPol, newPol;
122   G4double rand;                                  122   G4double rand;
123   G4double cost, sint, sinphi, cosphi;            123   G4double cost, sint, sinphi, cosphi;
124                                                   124 
125   do                                              125   do
126   {                                               126   {
127     // Try to simulate the scattered photon mo    127     // Try to simulate the scattered photon momentum direction
128     // w.r.t. the initial photon momentum dire    128     // w.r.t. the initial photon momentum direction
129     cost = G4UniformRand();                       129     cost = G4UniformRand();
130     sint = std::sqrt(1. - cost * cost);           130     sint = std::sqrt(1. - cost * cost);
131     // consider for the angle 90-180 degrees      131     // consider for the angle 90-180 degrees
132     if(G4UniformRand() < 0.5)                     132     if(G4UniformRand() < 0.5)
133       cost = -cost;                               133       cost = -cost;
134                                                   134 
135     // simulate the phi angle                     135     // simulate the phi angle
136     rand   = twopi * G4UniformRand();             136     rand   = twopi * G4UniformRand();
137     sinphi = std::sin(rand);                      137     sinphi = std::sin(rand);
138     cosphi = std::cos(rand);                      138     cosphi = std::cos(rand);
139                                                   139 
140     // construct the new momentum direction       140     // construct the new momentum direction
141     newMomDir.set(sint * cosphi, sint * sinphi    141     newMomDir.set(sint * cosphi, sint * sinphi, cost);
142     oldMomDir = aParticle->GetMomentumDirectio    142     oldMomDir = aParticle->GetMomentumDirection();
143     newMomDir.rotateUz(oldMomDir);                143     newMomDir.rotateUz(oldMomDir);
144                                                   144 
145     // calculate the new polarization directio    145     // calculate the new polarization direction
146     // The new polarization needs to be in the    146     // The new polarization needs to be in the same plane as the new
147     // momentum direction and the old polariza    147     // momentum direction and the old polarization direction
148     oldPol = aParticle->GetPolarization();        148     oldPol = aParticle->GetPolarization();
149     newPol = (oldPol - newMomDir.dot(oldPol) *    149     newPol = (oldPol - newMomDir.dot(oldPol) * newMomDir).unit();
150                                                   150 
151     // There is a corner case, where the new m    151     // There is a corner case, where the new momentum direction
152     // is the same as old polarization directi    152     // is the same as old polarization direction:
153     // random generate the azimuthal angle w.r    153     // random generate the azimuthal angle w.r.t. new momentum direction
154     if(newPol.mag() == 0.)                        154     if(newPol.mag() == 0.)
155     {                                             155     {
156       rand = G4UniformRand() * twopi;             156       rand = G4UniformRand() * twopi;
157       newPol.set(std::cos(rand), std::sin(rand    157       newPol.set(std::cos(rand), std::sin(rand), 0.);
158       newPol.rotateUz(newMomDir);                 158       newPol.rotateUz(newMomDir);
159     }                                             159     }
160     else                                          160     else
161     {                                             161     {
162       // There are two directions perpendicula    162       // There are two directions perpendicular to the new momentum direction
163       if(G4UniformRand() < 0.5)                   163       if(G4UniformRand() < 0.5)
164         newPol = -newPol;                         164         newPol = -newPol;
165     }                                             165     }
166                                                   166 
167     // simulate according to the distribution     167     // simulate according to the distribution cos^2(theta)
168     cosTheta = newPol.dot(oldPol);                168     cosTheta = newPol.dot(oldPol);
169     // Loop checking, 13-Aug-2015, Peter Gumpl    169     // Loop checking, 13-Aug-2015, Peter Gumplinger
170   } while(std::pow(cosTheta, 2) < G4UniformRan    170   } while(std::pow(cosTheta, 2) < G4UniformRand());
171                                                   171 
172   aParticleChange.ProposePolarization(newPol);    172   aParticleChange.ProposePolarization(newPol);
173   aParticleChange.ProposeMomentumDirection(new    173   aParticleChange.ProposeMomentumDirection(newMomDir);
174                                                   174 
175   if(verboseLevel > 1)                            175   if(verboseLevel > 1)
176   {                                               176   {
177     G4cout << "New Polarization: " << newPol <    177     G4cout << "New Polarization: " << newPol << G4endl
178            << "Polarization Change: " << *(aPa    178            << "Polarization Change: " << *(aParticleChange.GetPolarization())
179            << G4endl << "New Momentum Directio    179            << G4endl << "New Momentum Direction: " << newMomDir << G4endl
180            << "Momentum Change: " << *(aPartic    180            << "Momentum Change: " << *(aParticleChange.GetMomentumDirection())
181            << G4endl;                             181            << G4endl;
182   }                                               182   }
183                                                   183 
184   return G4VDiscreteProcess::PostStepDoIt(aTra    184   return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
185 }                                                 185 }
186                                                   186 
187 //....oooOO0OOooo........oooOO0OOooo........oo    187 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
188 void G4OpRayleigh::BuildPhysicsTable(const G4P    188 void G4OpRayleigh::BuildPhysicsTable(const G4ParticleDefinition&)
189 {                                                 189 {
190   if(thePhysicsTable)                             190   if(thePhysicsTable)
191   {                                               191   {
192     // thePhysicsTable->clearAndDestroy();        192     // thePhysicsTable->clearAndDestroy();
193     delete thePhysicsTable;                       193     delete thePhysicsTable;
194     thePhysicsTable = nullptr;                    194     thePhysicsTable = nullptr;
195   }                                               195   }
196                                                   196 
197   const G4MaterialTable* theMaterialTable = G4    197   const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
198   const size_t numOfMaterials             = G4    198   const size_t numOfMaterials             = G4Material::GetNumberOfMaterials();
199   thePhysicsTable                         = ne    199   thePhysicsTable                         = new G4PhysicsTable(numOfMaterials);
200                                                   200 
201   for(size_t i = 0; i < numOfMaterials; ++i)      201   for(size_t i = 0; i < numOfMaterials; ++i)
202   {                                               202   {
203     G4Material* material               = (*the    203     G4Material* material               = (*theMaterialTable)[i];
204     G4MaterialPropertiesTable* matProp = mater    204     G4MaterialPropertiesTable* matProp = material->GetMaterialPropertiesTable();
205     G4PhysicsFreeVector* rayleigh = nullptr;      205     G4PhysicsFreeVector* rayleigh = nullptr;
206     if(matProp)                                   206     if(matProp)
207     {                                             207     {
208       rayleigh = matProp->GetProperty(kRAYLEIG    208       rayleigh = matProp->GetProperty(kRAYLEIGH);
209       if(rayleigh == nullptr)                     209       if(rayleigh == nullptr)
210         rayleigh = CalculateRayleighMeanFreePa    210         rayleigh = CalculateRayleighMeanFreePaths(material);
211     }                                             211     }
212     thePhysicsTable->insertAt(i, rayleigh);       212     thePhysicsTable->insertAt(i, rayleigh);
213   }                                               213   }
214 }                                                 214 }
215                                                   215 
216 //....oooOO0OOooo........oooOO0OOooo........oo    216 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
217 G4double G4OpRayleigh::GetMeanFreePath(const G    217 G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack, G4double,
218                                        G4Force    218                                        G4ForceCondition*)
219 {                                                 219 {
220   auto rayleigh = static_cast<G4PhysicsFreeVec    220   auto rayleigh = static_cast<G4PhysicsFreeVector*>(
221       (*thePhysicsTable)(aTrack.GetMaterial()-    221       (*thePhysicsTable)(aTrack.GetMaterial()->GetIndex()));
222                                                   222 
223   G4double rsLength = DBL_MAX;                    223   G4double rsLength = DBL_MAX;
224   if(rayleigh)                                    224   if(rayleigh)
225   {                                               225   {
226     rsLength = rayleigh->Value(aTrack.GetDynam    226     rsLength = rayleigh->Value(aTrack.GetDynamicParticle()->GetTotalMomentum(),
227                                idx_rslength);     227                                idx_rslength);
228   }                                               228   }
229   return rsLength;                                229   return rsLength;
230 }                                                 230 }
231                                                   231 
232 //....oooOO0OOooo........oooOO0OOooo........oo    232 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRa    233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRayleighMeanFreePaths(
234   const G4Material* material) const               234   const G4Material* material) const
235 {                                                 235 {
236   G4MaterialPropertiesTable* MPT = material->G    236   G4MaterialPropertiesTable* MPT = material->GetMaterialPropertiesTable();
237                                                   237 
238   // Retrieve the beta_T or isothermal compres    238   // Retrieve the beta_T or isothermal compressibility value. For backwards
239   // compatibility use a constant if the mater    239   // compatibility use a constant if the material is "Water". If the material
240   // doesn't have an ISOTHERMAL_COMPRESSIBILIT    240   // doesn't have an ISOTHERMAL_COMPRESSIBILITY constant then return
241   G4double betat;                                 241   G4double betat;
242   if(material->GetName() == "Water")              242   if(material->GetName() == "Water")
243   {                                               243   {
244     betat = 7.658e-23 * m3 / MeV;                 244     betat = 7.658e-23 * m3 / MeV;
245   }                                               245   }
246   else if(MPT->ConstPropertyExists(kISOTHERMAL    246   else if(MPT->ConstPropertyExists(kISOTHERMAL_COMPRESSIBILITY))
247   {                                               247   {
248     betat = MPT->GetConstProperty(kISOTHERMAL_    248     betat = MPT->GetConstProperty(kISOTHERMAL_COMPRESSIBILITY);
249   }                                               249   }
250   else                                            250   else
251   {                                               251   {
252     return nullptr;                               252     return nullptr;
253   }                                               253   }
254                                                   254 
255   // If the material doesn't have a RINDEX pro    255   // If the material doesn't have a RINDEX property vector then return
256   G4MaterialPropertyVector* rIndex = MPT->GetP    256   G4MaterialPropertyVector* rIndex = MPT->GetProperty(kRINDEX);
257   if(rIndex == nullptr)                           257   if(rIndex == nullptr)
258     return nullptr;                               258     return nullptr;
259                                                   259 
260   // Retrieve the optional scale factor (scale    260   // Retrieve the optional scale factor (scales the scattering length)
261   G4double scaleFactor = 1.0;                     261   G4double scaleFactor = 1.0;
262   if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR    262   if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR))
263   {                                               263   {
264     scaleFactor = MPT->GetConstProperty(kRS_SC    264     scaleFactor = MPT->GetConstProperty(kRS_SCALE_FACTOR);
265   }                                               265   }
266                                                   266 
267   // Retrieve the material temperature. For ba    267   // Retrieve the material temperature. For backwards compatibility use a
268   // constant if the material is "Water"          268   // constant if the material is "Water"
269   G4double temperature;                           269   G4double temperature;
270   if(material->GetName() == "Water")              270   if(material->GetName() == "Water")
271   {                                               271   {
272     temperature =                                 272     temperature =
273       283.15 * kelvin;  // Temperature of wate    273       283.15 * kelvin;  // Temperature of water is 10 degrees celsius
274   }                                               274   }
275   else                                            275   else
276   {                                               276   {
277     temperature = material->GetTemperature();     277     temperature = material->GetTemperature();
278   }                                               278   }
279                                                   279 
280   auto rayleighMFPs = new G4PhysicsFreeVector(    280   auto rayleighMFPs = new G4PhysicsFreeVector();
281   // This calculates the meanFreePath via the     281   // This calculates the meanFreePath via the Einstein-Smoluchowski formula
282   const G4double c1 =                             282   const G4double c1 =
283     scaleFactor * betat * temperature * k_Bolt    283     scaleFactor * betat * temperature * k_Boltzmann / (6.0 * pi);
284                                                   284 
285   for(size_t uRIndex = 0; uRIndex < rIndex->Ge    285   for(size_t uRIndex = 0; uRIndex < rIndex->GetVectorLength(); ++uRIndex)
286   {                                               286   {
287     const G4double energy        = rIndex->Ene    287     const G4double energy        = rIndex->Energy(uRIndex);
288     const G4double rIndexSquared = (*rIndex)[u    288     const G4double rIndexSquared = (*rIndex)[uRIndex] * (*rIndex)[uRIndex];
289     const G4double xlambda       = h_Planck *     289     const G4double xlambda       = h_Planck * c_light / energy;
290     const G4double c2            = std::pow(tw    290     const G4double c2            = std::pow(twopi / xlambda, 4);
291     const G4double c3 =                           291     const G4double c3 =
292       std::pow(((rIndexSquared - 1.0) * (rInde    292       std::pow(((rIndexSquared - 1.0) * (rIndexSquared + 2.0) / 3.0), 2);
293                                                   293 
294     const G4double meanFreePath = 1.0 / (c1 *     294     const G4double meanFreePath = 1.0 / (c1 * c2 * c3);
295                                                   295 
296     if(verboseLevel > 0)                          296     if(verboseLevel > 0)
297     {                                             297     {
298       G4cout << energy << "MeV\t" << meanFreeP    298       G4cout << energy << "MeV\t" << meanFreePath << "mm" << G4endl;
299     }                                             299     }
300                                                   300 
301     rayleighMFPs->InsertValues(energy, meanFre    301     rayleighMFPs->InsertValues(energy, meanFreePath);
302   }                                               302   }
303                                                   303 
304   return rayleighMFPs;                            304   return rayleighMFPs;
305 }                                                 305 }
306                                                   306 
307 //....oooOO0OOooo........oooOO0OOooo........oo    307 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
308 void G4OpRayleigh::SetVerboseLevel(G4int verbo    308 void G4OpRayleigh::SetVerboseLevel(G4int verbose)
309 {                                                 309 {
310   verboseLevel = verbose;                         310   verboseLevel = verbose;
311   G4OpticalParameters::Instance()->SetRayleigh    311   G4OpticalParameters::Instance()->SetRayleighVerboseLevel(verboseLevel);
312 }                                                 312 }
313                                                   313