Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/optical/src/G4OpRayleigh.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/optical/src/G4OpRayleigh.cc (Version 11.3.0) and /processes/optical/src/G4OpRayleigh.cc (Version 10.6.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 //                                                 27 //
 28 //                                             <<  28 // 
 29 //////////////////////////////////////////////     29 ////////////////////////////////////////////////////////////////////////
 30 // Optical Photon Rayleigh Scattering Class Im     30 // Optical Photon Rayleigh Scattering Class Implementation
 31 //////////////////////////////////////////////     31 ////////////////////////////////////////////////////////////////////////
 32 //                                                 32 //
 33 // File:        G4OpRayleigh.cc                    33 // File:        G4OpRayleigh.cc
 34 // Description: Discrete Process -- Rayleigh s     34 // Description: Discrete Process -- Rayleigh scattering of optical
 35 //    photons                                      35 //    photons
 36 // Version:     1.0                                36 // Version:     1.0
 37 // Created:     1996-05-31                         37 // Created:     1996-05-31
 38 // Author:      Juliet Armstrong                   38 // Author:      Juliet Armstrong
 39 // Updated:     2014-10-10 -  This version cal <<  39 // Updated:     2014-10-10 -  This version calculates the Rayleigh scattering   
 40 //              length for more materials than     40 //              length for more materials than just Water (although the Water
 41 //              default is kept). To do this t     41 //              default is kept). To do this the user would need to specify the
 42 //              ISOTHERMAL_COMPRESSIBILITY as      42 //              ISOTHERMAL_COMPRESSIBILITY as a material property and
 43 //              optionally an RS_SCALE_LENGTH      43 //              optionally an RS_SCALE_LENGTH (useful for testing). Code comes
 44 //              from Philip Graham (Queen Mary     44 //              from Philip Graham (Queen Mary University of London).
 45 //              2010-06-11 - Fix Bug 207; Than     45 //              2010-06-11 - Fix Bug 207; Thanks to Xin Qian
 46 //              (Kellogg Radiation Lab of Calt     46 //              (Kellogg Radiation Lab of Caltech)
 47 //              2005-07-28 - add G4ProcessType     47 //              2005-07-28 - add G4ProcessType to constructor
 48 //              2001-10-18 by Peter Gumplinger     48 //              2001-10-18 by Peter Gumplinger
 49 //              eliminate unused variable warn     49 //              eliminate unused variable warning on Linux (gcc-2.95.2)
 50 //              2001-09-18 by mma                  50 //              2001-09-18 by mma
 51 //              >numOfMaterials=G4Material::Ge <<  51 //    >numOfMaterials=G4Material::GetNumberOfMaterials() in BuildPhy
 52 //              2001-01-30 by Peter Gumplinger     52 //              2001-01-30 by Peter Gumplinger
 53 //              > allow for positiv and negati     53 //              > allow for positiv and negative CosTheta and force the
 54 //              > new momentum direction to be     54 //              > new momentum direction to be in the same plane as the
 55 //              > new and old polarization vec     55 //              > new and old polarization vectors
 56 //              2001-01-29 by Peter Gumplinger     56 //              2001-01-29 by Peter Gumplinger
 57 //              > fix calculation of SinTheta      57 //              > fix calculation of SinTheta (from CosTheta)
 58 //              1997-04-09 by Peter Gumplinger     58 //              1997-04-09 by Peter Gumplinger
 59 //              > new physics/tracking scheme      59 //              > new physics/tracking scheme
                                                   >>  60 // mail:        gum@triumf.ca
 60 //                                                 61 //
 61 //////////////////////////////////////////////     62 ////////////////////////////////////////////////////////////////////////
 62                                                    63 
 63 #include "G4OpRayleigh.hh"                         64 #include "G4OpRayleigh.hh"
                                                   >>  65 
 64 #include "G4ios.hh"                                66 #include "G4ios.hh"
 65 #include "G4PhysicalConstants.hh"                  67 #include "G4PhysicalConstants.hh"
 66 #include "G4SystemOfUnits.hh"                      68 #include "G4SystemOfUnits.hh"
 67 #include "G4OpticalParameters.hh"              << 
 68 #include "G4OpProcessSubType.hh"                   69 #include "G4OpProcessSubType.hh"
 69                                                    70 
 70 //....oooOO0OOooo........oooOO0OOooo........oo     71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >>  72 
 71 G4OpRayleigh::G4OpRayleigh(const G4String& pro     73 G4OpRayleigh::G4OpRayleigh(const G4String& processName, G4ProcessType type)
 72   : G4VDiscreteProcess(processName, type)      <<  74    : G4VDiscreteProcess(processName, type)
 73 {                                                  75 {
 74   Initialise();                                << 
 75   SetProcessSubType(fOpRayleigh);                  76   SetProcessSubType(fOpRayleigh);
                                                   >>  77 
 76   thePhysicsTable = nullptr;                       78   thePhysicsTable = nullptr;
 77                                                    79 
 78   if(verboseLevel > 0)                         <<  80   if (verboseLevel > 0) {
 79   {                                            << 
 80     G4cout << GetProcessName() << " is created     81     G4cout << GetProcessName() << " is created " << G4endl;
 81   }                                                82   }
 82 }                                                  83 }
 83                                                    84 
 84 //....oooOO0OOooo........oooOO0OOooo........oo     85 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 85 G4OpRayleigh::~G4OpRayleigh()                  << 
 86 {                                              << 
 87   // VI: inside this PhysicsTable all properti << 
 88   //     it is not possible to destroy         << 
 89   delete thePhysicsTable;                      << 
 90 }                                              << 
 91                                                    86 
 92 //....oooOO0OOooo........oooOO0OOooo........oo <<  87 G4OpRayleigh::~G4OpRayleigh()
 93 void G4OpRayleigh::PreparePhysicsTable(const G << 
 94 {                                                  88 {
 95   Initialise();                                <<  89   if (thePhysicsTable) {
                                                   >>  90     thePhysicsTable->clearAndDestroy();
                                                   >>  91     delete thePhysicsTable;
                                                   >>  92   }
 96 }                                                  93 }
 97                                                    94 
 98 //....oooOO0OOooo........oooOO0OOooo........oo     95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 99 void G4OpRayleigh::Initialise()                << 
100 {                                              << 
101   SetVerboseLevel(G4OpticalParameters::Instanc << 
102 }                                              << 
103                                                    96 
104 //....oooOO0OOooo........oooOO0OOooo........oo <<  97 G4VParticleChange*
105 G4VParticleChange* G4OpRayleigh::PostStepDoIt( <<  98 G4OpRayleigh::PostStepDoIt(const G4Track& aTrack, const G4Step& aStep)
106                                                << 
107 {                                                  99 {
108   aParticleChange.Initialize(aTrack);             100   aParticleChange.Initialize(aTrack);
                                                   >> 101 
109   const G4DynamicParticle* aParticle = aTrack.    102   const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
110                                                   103 
111   if(verboseLevel > 1)                         << 104   if (verboseLevel >0 ) {
112   {                                            << 105     G4cout << "Scattering Photon!" << G4endl;
113     G4cout << "OpRayleigh: Scattering Photon!" << 106     G4cout << "Old Momentum Direction: "
114            << "Old Momentum Direction: " << aP << 107            << aParticle->GetMomentumDirection() << G4endl;
115            << G4endl << "Old Polarization: " < << 108     G4cout << "Old Polarization: "
116            << G4endl;                          << 109            << aParticle->GetPolarization() << G4endl;
117   }                                               110   }
118                                                   111 
119   G4double cosTheta;                              112   G4double cosTheta;
120   G4ThreeVector oldMomDir, newMomDir;          << 113   G4ThreeVector OldMomentumDirection, NewMomentumDirection;
121   G4ThreeVector oldPol, newPol;                << 114   G4ThreeVector OldPolarization, NewPolarization;
122   G4double rand;                               << 
123   G4double cost, sint, sinphi, cosphi;         << 
124                                                << 
125   do                                           << 
126   {                                            << 
127     // Try to simulate the scattered photon mo << 
128     // w.r.t. the initial photon momentum dire << 
129     cost = G4UniformRand();                    << 
130     sint = std::sqrt(1. - cost * cost);        << 
131     // consider for the angle 90-180 degrees   << 
132     if(G4UniformRand() < 0.5)                  << 
133       cost = -cost;                            << 
134                                                << 
135     // simulate the phi angle                  << 
136     rand   = twopi * G4UniformRand();          << 
137     sinphi = std::sin(rand);                   << 
138     cosphi = std::cos(rand);                   << 
139                                                << 
140     // construct the new momentum direction    << 
141     newMomDir.set(sint * cosphi, sint * sinphi << 
142     oldMomDir = aParticle->GetMomentumDirectio << 
143     newMomDir.rotateUz(oldMomDir);             << 
144                                                << 
145     // calculate the new polarization directio << 
146     // The new polarization needs to be in the << 
147     // momentum direction and the old polariza << 
148     oldPol = aParticle->GetPolarization();     << 
149     newPol = (oldPol - newMomDir.dot(oldPol) * << 
150                                                << 
151     // There is a corner case, where the new m << 
152     // is the same as old polarization directi << 
153     // random generate the azimuthal angle w.r << 
154     if(newPol.mag() == 0.)                     << 
155     {                                          << 
156       rand = G4UniformRand() * twopi;          << 
157       newPol.set(std::cos(rand), std::sin(rand << 
158       newPol.rotateUz(newMomDir);              << 
159     }                                          << 
160     else                                       << 
161     {                                          << 
162       // There are two directions perpendicula << 
163       if(G4UniformRand() < 0.5)                << 
164         newPol = -newPol;                      << 
165     }                                          << 
166                                                   115 
167     // simulate according to the distribution  << 116   G4double rand, constant;
168     cosTheta = newPol.dot(oldPol);             << 117   G4double CosTheta, SinTheta, SinPhi, CosPhi, unit_x, unit_y, unit_z;
169     // Loop checking, 13-Aug-2015, Peter Gumpl << 
170   } while(std::pow(cosTheta, 2) < G4UniformRan << 
171                                                   118 
172   aParticleChange.ProposePolarization(newPol); << 119   do {
173   aParticleChange.ProposeMomentumDirection(new << 120      // Try to simulate the scattered photon momentum direction
                                                   >> 121      // w.r.t. the initial photon momentum direction
                                                   >> 122 
                                                   >> 123      CosTheta = G4UniformRand();
                                                   >> 124      SinTheta = std::sqrt(1.-CosTheta*CosTheta);
                                                   >> 125      // consider for the angle 90-180 degrees
                                                   >> 126      if (G4UniformRand() < 0.5) CosTheta = -CosTheta;
                                                   >> 127 
                                                   >> 128      // simulate the phi angle
                                                   >> 129      rand = twopi*G4UniformRand();
                                                   >> 130      SinPhi = std::sin(rand);
                                                   >> 131      CosPhi = std::cos(rand);
                                                   >> 132 
                                                   >> 133      // start constructing the new momentum direction
                                                   >> 134      unit_x = SinTheta * CosPhi;
                                                   >> 135      unit_y = SinTheta * SinPhi;
                                                   >> 136      unit_z = CosTheta;
                                                   >> 137      NewMomentumDirection.set (unit_x,unit_y,unit_z);
                                                   >> 138 
                                                   >> 139      // Rotate the new momentum direction into global reference system
                                                   >> 140      OldMomentumDirection = aParticle->GetMomentumDirection();
                                                   >> 141      OldMomentumDirection = OldMomentumDirection.unit();
                                                   >> 142      NewMomentumDirection.rotateUz(OldMomentumDirection);
                                                   >> 143      NewMomentumDirection = NewMomentumDirection.unit();
                                                   >> 144 
                                                   >> 145      // calculate the new polarization direction
                                                   >> 146      // The new polarization needs to be in the same plane as the new
                                                   >> 147      // momentum direction and the old polarization direction
                                                   >> 148      OldPolarization = aParticle->GetPolarization();
                                                   >> 149      constant = -NewMomentumDirection.dot(OldPolarization);
                                                   >> 150 
                                                   >> 151      NewPolarization = OldPolarization + constant*NewMomentumDirection;
                                                   >> 152      NewPolarization = NewPolarization.unit();
                                                   >> 153 
                                                   >> 154      // There is a corner case, where the Newmomentum direction
                                                   >> 155      // is the same as oldpolariztion direction:
                                                   >> 156      // random generate the azimuthal angle w.r.t. Newmomentum direction
                                                   >> 157      if (NewPolarization.mag() == 0.) {
                                                   >> 158        rand = G4UniformRand()*twopi;
                                                   >> 159        NewPolarization.set(std::cos(rand),std::sin(rand),0.);
                                                   >> 160        NewPolarization.rotateUz(NewMomentumDirection);
                                                   >> 161      } else {
                                                   >> 162        // There are two directions which are perpendicular
                                                   >> 163        // to the new momentum direction
                                                   >> 164        if (G4UniformRand() < 0.5) NewPolarization = -NewPolarization;
                                                   >> 165      }
                                                   >> 166 
                                                   >> 167      // simulate according to the distribution cos^2(theta)
                                                   >> 168      cosTheta = NewPolarization.dot(OldPolarization);
                                                   >> 169      // Loop checking, 13-Aug-2015, Peter Gumplinger
                                                   >> 170    } while (std::pow(cosTheta,2) < G4UniformRand());
                                                   >> 171 
                                                   >> 172    aParticleChange.ProposePolarization(NewPolarization);
                                                   >> 173    aParticleChange.ProposeMomentumDirection(NewMomentumDirection);
                                                   >> 174 
                                                   >> 175    if (verboseLevel > 0) {
                                                   >> 176      G4cout << "New Polarization: "
                                                   >> 177           << NewPolarization << G4endl;
                                                   >> 178      G4cout << "Polarization Change: "
                                                   >> 179           << *(aParticleChange.GetPolarization()) << G4endl;
                                                   >> 180      G4cout << "New Momentum Direction: "
                                                   >> 181           << NewMomentumDirection << G4endl;
                                                   >> 182      G4cout << "Momentum Change: "
                                                   >> 183           << *(aParticleChange.GetMomentumDirection()) << G4endl;
                                                   >> 184    }
174                                                   185 
175   if(verboseLevel > 1)                         << 186    return G4VDiscreteProcess::PostStepDoIt(aTrack, aStep);
176   {                                            << 
177     G4cout << "New Polarization: " << newPol < << 
178            << "Polarization Change: " << *(aPa << 
179            << G4endl << "New Momentum Directio << 
180            << "Momentum Change: " << *(aPartic << 
181            << G4endl;                          << 
182   }                                            << 
183                                                << 
184   return G4VDiscreteProcess::PostStepDoIt(aTra << 
185 }                                                 187 }
186                                                   188 
187 //....oooOO0OOooo........oooOO0OOooo........oo    189 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
                                                   >> 190 
188 void G4OpRayleigh::BuildPhysicsTable(const G4P    191 void G4OpRayleigh::BuildPhysicsTable(const G4ParticleDefinition&)
189 {                                                 192 {
190   if(thePhysicsTable)                          << 193   if (thePhysicsTable) {
191   {                                            << 194     thePhysicsTable->clearAndDestroy();
192     // thePhysicsTable->clearAndDestroy();     << 
193     delete thePhysicsTable;                       195     delete thePhysicsTable;
194     thePhysicsTable = nullptr;                    196     thePhysicsTable = nullptr;
195   }                                               197   }
196                                                   198 
197   const G4MaterialTable* theMaterialTable = G4    199   const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
198   const size_t numOfMaterials             = G4 << 200   const G4int numOfMaterials = G4Material::GetNumberOfMaterials();
199   thePhysicsTable                         = ne << 
200                                                   201 
201   for(size_t i = 0; i < numOfMaterials; ++i)   << 202   thePhysicsTable = new G4PhysicsTable(numOfMaterials);
                                                   >> 203 
                                                   >> 204   for (G4int iMaterial = 0; iMaterial < numOfMaterials; ++iMaterial)
202   {                                               205   {
203     G4Material* material               = (*the << 206     G4Material* material = (*theMaterialTable)[iMaterial];
204     G4MaterialPropertiesTable* matProp = mater << 207     G4MaterialPropertiesTable* materialProperties =
205     G4PhysicsFreeVector* rayleigh = nullptr;   << 208                                      material->GetMaterialPropertiesTable();
206     if(matProp)                                << 209     G4PhysicsOrderedFreeVector* rayleigh = nullptr;
207     {                                          << 210     if (materialProperties) {
208       rayleigh = matProp->GetProperty(kRAYLEIG << 211       rayleigh = materialProperties->GetProperty(kRAYLEIGH);
209       if(rayleigh == nullptr)                  << 212       if (rayleigh == nullptr) rayleigh = CalculateRayleighMeanFreePaths(material);
210         rayleigh = CalculateRayleighMeanFreePa << 
211     }                                             213     }
212     thePhysicsTable->insertAt(i, rayleigh);    << 214     thePhysicsTable->insertAt(iMaterial, rayleigh);
213   }                                               215   }
214 }                                                 216 }
215                                                   217 
216 //....oooOO0OOooo........oooOO0OOooo........oo    218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
217 G4double G4OpRayleigh::GetMeanFreePath(const G << 219 
                                                   >> 220 G4double G4OpRayleigh::GetMeanFreePath(const G4Track& aTrack,
                                                   >> 221                                        G4double ,
218                                        G4Force    222                                        G4ForceCondition*)
219 {                                                 223 {
220   auto rayleigh = static_cast<G4PhysicsFreeVec << 224   const G4DynamicParticle* particle = aTrack.GetDynamicParticle();
221       (*thePhysicsTable)(aTrack.GetMaterial()- << 225   const G4double photonMomentum = particle->GetTotalMomentum();
                                                   >> 226   const G4Material* material = aTrack.GetMaterial();
                                                   >> 227 
                                                   >> 228   G4PhysicsOrderedFreeVector* rayleigh =
                                                   >> 229                               static_cast<G4PhysicsOrderedFreeVector*>
                                                   >> 230                               ((*thePhysicsTable)(material->GetIndex()));
222                                                   231 
223   G4double rsLength = DBL_MAX;                    232   G4double rsLength = DBL_MAX;
224   if(rayleigh)                                 << 233   if (rayleigh) rsLength = rayleigh->Value(photonMomentum);
225   {                                            << 
226     rsLength = rayleigh->Value(aTrack.GetDynam << 
227                                idx_rslength);  << 
228   }                                            << 
229   return rsLength;                                234   return rsLength;
230 }                                                 235 }
231                                                   236 
232 //....oooOO0OOooo........oooOO0OOooo........oo    237 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
233 G4PhysicsFreeVector* G4OpRayleigh::CalculateRa << 238 G4PhysicsOrderedFreeVector*
234   const G4Material* material) const            << 239 G4OpRayleigh::CalculateRayleighMeanFreePaths(const G4Material* material) const
235 {                                                 240 {
236   G4MaterialPropertiesTable* MPT = material->G << 241   G4MaterialPropertiesTable* materialProperties =
                                                   >> 242                                        material->GetMaterialPropertiesTable();
237                                                   243 
238   // Retrieve the beta_T or isothermal compres    244   // Retrieve the beta_T or isothermal compressibility value. For backwards
239   // compatibility use a constant if the mater    245   // compatibility use a constant if the material is "Water". If the material
240   // doesn't have an ISOTHERMAL_COMPRESSIBILIT    246   // doesn't have an ISOTHERMAL_COMPRESSIBILITY constant then return
241   G4double betat;                                 247   G4double betat;
242   if(material->GetName() == "Water")           << 248   if (material->GetName() == "Water") {
243   {                                            << 249     betat = 7.658e-23*m3/MeV;
244     betat = 7.658e-23 * m3 / MeV;              << 
245   }                                               250   }
246   else if(MPT->ConstPropertyExists(kISOTHERMAL << 251   else if (materialProperties->ConstPropertyExists("ISOTHERMAL_COMPRESSIBILITY")) {
247   {                                            << 252     betat = materialProperties->GetConstProperty(kISOTHERMAL_COMPRESSIBILITY);
248     betat = MPT->GetConstProperty(kISOTHERMAL_ << 
249   }                                               253   }
250   else                                         << 254   else {
251   {                                            << 
252     return nullptr;                               255     return nullptr;
253   }                                               256   }
254                                                   257 
255   // If the material doesn't have a RINDEX pro    258   // If the material doesn't have a RINDEX property vector then return
256   G4MaterialPropertyVector* rIndex = MPT->GetP << 259   G4MaterialPropertyVector* rIndex = materialProperties->GetProperty(kRINDEX);
257   if(rIndex == nullptr)                        << 260   if (rIndex == nullptr) return nullptr;
258     return nullptr;                            << 
259                                                   261 
260   // Retrieve the optional scale factor (scale << 262   // Retrieve the optional scale factor, (this just scales the scattering length
261   G4double scaleFactor = 1.0;                     263   G4double scaleFactor = 1.0;
262   if(MPT->ConstPropertyExists(kRS_SCALE_FACTOR << 264   if (materialProperties->ConstPropertyExists("RS_SCALE_FACTOR")) {
263   {                                            << 265     scaleFactor = materialProperties->GetConstProperty(kRS_SCALE_FACTOR);
264     scaleFactor = MPT->GetConstProperty(kRS_SC << 
265   }                                               266   }
266                                                   267 
267   // Retrieve the material temperature. For ba    268   // Retrieve the material temperature. For backwards compatibility use a
268   // constant if the material is "Water"          269   // constant if the material is "Water"
269   G4double temperature;                           270   G4double temperature;
270   if(material->GetName() == "Water")           << 271   if (material->GetName() == "Water") {
271   {                                            << 272     temperature = 283.15*kelvin; // Temperature of water is 10 degrees celsius
272     temperature =                              << 
273       283.15 * kelvin;  // Temperature of wate << 
274   }                                               273   }
275   else                                         << 274   else {
276   {                                            << 
277     temperature = material->GetTemperature();     275     temperature = material->GetTemperature();
278   }                                               276   }
279                                                   277 
280   auto rayleighMFPs = new G4PhysicsFreeVector( << 278   G4PhysicsOrderedFreeVector* rayleighMeanFreePaths =
                                                   >> 279                                              new G4PhysicsOrderedFreeVector();
281   // This calculates the meanFreePath via the     280   // This calculates the meanFreePath via the Einstein-Smoluchowski formula
282   const G4double c1 =                          << 281   const G4double c1 = scaleFactor * betat * temperature * k_Boltzmann /
283     scaleFactor * betat * temperature * k_Bolt << 282                       ( 6.0 * pi );
284                                                   283 
285   for(size_t uRIndex = 0; uRIndex < rIndex->Ge << 284   for (size_t uRIndex = 0; uRIndex < rIndex->GetVectorLength(); ++uRIndex)
286   {                                               285   {
287     const G4double energy        = rIndex->Ene << 286     const G4double energy = rIndex->Energy(uRIndex);
288     const G4double rIndexSquared = (*rIndex)[u    287     const G4double rIndexSquared = (*rIndex)[uRIndex] * (*rIndex)[uRIndex];
289     const G4double xlambda       = h_Planck *  << 288     const G4double xlambda = h_Planck * c_light / energy;
290     const G4double c2            = std::pow(tw << 289     const G4double c2 = std::pow(twopi/xlambda,4);
291     const G4double c3 =                           290     const G4double c3 =
292       std::pow(((rIndexSquared - 1.0) * (rInde << 291                    std::pow(((rIndexSquared-1.0)*(rIndexSquared+2.0 )/3.0),2);
293                                                   292 
294     const G4double meanFreePath = 1.0 / (c1 *  << 293     const G4double meanFreePath = 1.0 / ( c1 * c2 * c3 );
295                                                   294 
296     if(verboseLevel > 0)                       << 295     if( verboseLevel > 0) {
297     {                                          << 
298       G4cout << energy << "MeV\t" << meanFreeP    296       G4cout << energy << "MeV\t" << meanFreePath << "mm" << G4endl;
299     }                                             297     }
300                                                   298 
301     rayleighMFPs->InsertValues(energy, meanFre << 299     rayleighMeanFreePaths->InsertValues(energy, meanFreePath);
302   }                                               300   }
303                                                   301 
304   return rayleighMFPs;                         << 302   return rayleighMeanFreePaths;
305 }                                              << 
306                                                << 
307 //....oooOO0OOooo........oooOO0OOooo........oo << 
308 void G4OpRayleigh::SetVerboseLevel(G4int verbo << 
309 {                                              << 
310   verboseLevel = verbose;                      << 
311   G4OpticalParameters::Instance()->SetRayleigh << 
312 }                                                 303 }
313                                                   304