Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // 27 // 24 // 28 // original by H.P. Wellisch << 25 // original by H.P. Wellisch 29 // modified by J.L. Chuma, TRIUMF, 19-Nov-1996 << 26 // modified by J.L. Chuma, TRIUMF, 19-Nov-1996 30 // last modified: 27-Mar-1997 << 27 // last modified: 27-Mar-1997 31 // J.P.Wellisch: 23-Apr-97: minor simplificati << 28 // J.P.Wellisch: 23-Apr-97: minor simplifications 32 // modified by J.L.Chuma 24-Jul-97 to set the << 29 // modified by J.L.Chuma 24-Jul-97 to set the total momentum in Cinema and 33 // Evaporatio << 30 // EvaporationEffects 34 // modified by J.L.Chuma 21-Oct-97 put std::a << 31 // modified by J.L.Chuma 21-Oct-97 put std::abs() around the totalE^2-mass^2 35 // in calcula << 32 // in calculation of total momentum in 36 // Cinema and << 33 // Cinema and EvaporationEffects 37 // Chr. Volcker, 10-Nov-1997: new methods and << 34 // Chr. Volcker, 10-Nov-1997: new methods and class variables. 38 // HPW added utilities for low energy neutron << 35 // HPW added utilities for low energy neutron transport. (12.04.1998) 39 // M.G. Pia, 2 Oct 1998: modified GetFermiMome << 36 // M.G. Pia, 2 Oct 1998: modified GetFermiMomentum to avoid memory leaks 40 // G.Folger, spring 2010: add integer A/Z int << 41 // A. Ribon, summer 2015: migrated to G4Exp a << 42 // A. Ribon, autumn 2021: extended to hypernu << 43 37 44 #include "G4Nucleus.hh" 38 #include "G4Nucleus.hh" 45 #include "G4NucleiProperties.hh" << 46 #include "G4PhysicalConstants.hh" << 47 #include "G4SystemOfUnits.hh" << 48 #include "Randomize.hh" 39 #include "Randomize.hh" 49 #include "G4HadronicException.hh" 40 #include "G4HadronicException.hh" 50 #include "G4Exp.hh" << 41 51 #include "G4Log.hh" << 52 #include "G4HyperNucleiProperties.hh" << 53 #include "G4HadronicParameters.hh" << 54 << 55 << 56 G4Nucleus::G4Nucleus() 42 G4Nucleus::G4Nucleus() 57 : theA(0), theZ(0), theL(0), aEff(0.0), zEff << 58 { << 59 pnBlackTrackEnergy = 0.0; << 60 dtaBlackTrackEnergy = 0.0; << 61 pnBlackTrackEnergyfromAnnihilation = 0.0; << 62 dtaBlackTrackEnergyfromAnnihilation = 0.0; << 63 excitationEnergy = 0.0; << 64 momentum = G4ThreeVector(0.,0.,0.); << 65 fermiMomentum = 1.52*hbarc/fermi; << 66 theTemp = 293.16*kelvin; << 67 fIsotope = 0; << 68 } << 69 << 70 G4Nucleus::G4Nucleus( const G4double A, const << 71 { 43 { 72 SetParameters( A, Z, std::max(numberOfLambda << 44 pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0; 73 pnBlackTrackEnergy = 0.0; << 74 dtaBlackTrackEnergy = 0.0; << 75 pnBlackTrackEnergyfromAnnihilation = 0.0; << 76 dtaBlackTrackEnergyfromAnnihilation = 0.0; << 77 excitationEnergy = 0.0; 45 excitationEnergy = 0.0; 78 momentum = G4ThreeVector(0.,0.,0.); 46 momentum = G4ThreeVector(0.,0.,0.); 79 fermiMomentum = 1.52*hbarc/fermi; 47 fermiMomentum = 1.52*hbarc/fermi; 80 theTemp = 293.16*kelvin; 48 theTemp = 293.16*kelvin; 81 fIsotope = 0; << 82 } 49 } 83 50 84 G4Nucleus::G4Nucleus( const G4int A, const G4i << 51 G4Nucleus::G4Nucleus( const G4double A, const G4double Z ) 85 { 52 { 86 SetParameters( A, Z, std::max(numberOfLambda << 53 SetParameters( A, Z ); 87 pnBlackTrackEnergy = 0.0; << 54 pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0; 88 dtaBlackTrackEnergy = 0.0; << 89 pnBlackTrackEnergyfromAnnihilation = 0.0; << 90 dtaBlackTrackEnergyfromAnnihilation = 0.0; << 91 excitationEnergy = 0.0; 55 excitationEnergy = 0.0; 92 momentum = G4ThreeVector(0.,0.,0.); 56 momentum = G4ThreeVector(0.,0.,0.); 93 fermiMomentum = 1.52*hbarc/fermi; 57 fermiMomentum = 1.52*hbarc/fermi; 94 theTemp = 293.16*kelvin; 58 theTemp = 293.16*kelvin; 95 fIsotope = 0; << 96 } 59 } 97 60 98 G4Nucleus::G4Nucleus( const G4Material *aMater 61 G4Nucleus::G4Nucleus( const G4Material *aMaterial ) 99 { 62 { 100 ChooseParameters( aMaterial ); 63 ChooseParameters( aMaterial ); 101 pnBlackTrackEnergy = 0.0; << 64 pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0; 102 dtaBlackTrackEnergy = 0.0; << 103 pnBlackTrackEnergyfromAnnihilation = 0.0; << 104 dtaBlackTrackEnergyfromAnnihilation = 0.0; << 105 excitationEnergy = 0.0; 65 excitationEnergy = 0.0; 106 momentum = G4ThreeVector(0.,0.,0.); 66 momentum = G4ThreeVector(0.,0.,0.); 107 fermiMomentum = 1.52*hbarc/fermi; 67 fermiMomentum = 1.52*hbarc/fermi; 108 theTemp = aMaterial->GetTemperature(); 68 theTemp = aMaterial->GetTemperature(); 109 fIsotope = 0; << 110 } 69 } 111 70 112 G4Nucleus::~G4Nucleus() {} 71 G4Nucleus::~G4Nucleus() {} 113 72 114 << 73 G4ReactionProduct G4Nucleus:: 115 //-------------------------------------------- << 74 GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp) const 116 // SVT (Sampling of the Velocity of the Target << 117 //-------------------------------------------- << 118 G4ReactionProduct << 119 G4Nucleus::GetBiasedThermalNucleus(G4double aM << 120 { 75 { 121 // If E_neutron <= E_threshold, Then apply t << 76 G4double velMag = aVelocity.mag(); 122 // Else consider the target nucleus being wi << 123 G4double E_threshold = G4HadronicParameters: << 124 if ( E_threshold == -1. ) { << 125 E_threshold = 400.0*8.617333262E-11*temp; << 126 } << 127 G4double E_neutron = 0.5*aVelocity.mag2()*G4 << 128 << 129 G4ReactionProduct result; 77 G4ReactionProduct result; 130 result.SetMass(aMass*G4Neutron::Neutron()->G << 78 G4double value = 0; 131 << 79 G4double random = 1; 132 if ( E_neutron <= E_threshold ) { << 80 G4double norm = 3.*std::sqrt(k_Boltzmann*temp*aMass*G4Neutron::Neutron()->GetPDGMass()); 133 << 81 norm /= G4Neutron::Neutron()->GetPDGMass(); 134 // Beta = sqrt(m/2kT) << 82 norm *= 5.; 135 G4double beta = std::sqrt(result.GetMass() << 83 norm += velMag; 136 << 84 norm /= velMag; 137 // Neutron speed vn << 85 while(value/norm<random) 138 G4double vN_norm = aVelocity.mag(); << 86 { 139 G4double vN_norm2 = vN_norm*vN_norm; << 87 result = GetThermalNucleus(aMass, temp); 140 G4double y = beta*vN_norm; << 88 G4ThreeVector targetVelocity = 1./result.GetMass()*result.GetMomentum(); 141 << 89 value = (targetVelocity+aVelocity).mag()/velMag; 142 // Normalize neutron velocity << 90 random = G4UniformRand(); 143 aVelocity = (1./vN_norm)*aVelocity; << 144 << 145 // Sample target speed << 146 G4double x2; << 147 G4double randThreshold; << 148 G4double vT_norm, vT_norm2, mu; //theta, v << 149 G4double acceptThreshold; << 150 G4double vRelativeSpeed; << 151 G4double cdf0 = 2./(2.+std::sqrt(CLHEP::pi << 152 << 153 do { << 154 // Sample the target velocity vT in the << 155 if ( G4UniformRand() < cdf0 ) { << 156 // Sample in C45 from https://laws.lan << 157 x2 = -std::log(G4UniformRand()*G4Unifo << 158 } else { << 159 // Sample in C61 from https://laws.lan << 160 G4double ampl = std::cos(CLHEP::pi/2.0 << 161 x2 = -std::log(G4UniformRand()) - std: << 162 } << 163 << 164 vT_norm = std::sqrt(x2)/beta; << 165 vT_norm2 = vT_norm*vT_norm; << 166 << 167 // Sample cosine between the incident ne << 168 mu = 2*G4UniformRand() - 1; << 169 << 170 // Define acceptance threshold << 171 vRelativeSpeed = std::sqrt(vN_norm2 + vT << 172 acceptThreshold = vRelativeSpeed/(vN_nor << 173 randThreshold = G4UniformRand(); << 174 } while ( randThreshold >= acceptThreshold << 175 << 176 DoKinematicsOfThermalNucleus(mu, vT_norm, << 177 << 178 } else { // target nucleus considered as bei << 179 << 180 result.SetMomentum(0., 0., 0.); << 181 result.SetKineticEnergy(0.); << 182 << 183 } 91 } 184 << 185 return result; 92 return result; 186 } 93 } 187 94 188 << 95 G4ReactionProduct G4Nucleus::GetThermalNucleus(G4double targetMass, G4double temp) const 189 void << 96 { 190 G4Nucleus::DoKinematicsOfThermalNucleus(const << 97 G4double currentTemp = temp; 191 G4Reac << 98 if(currentTemp < 0) currentTemp = theTemp; 192 << 99 G4ReactionProduct theTarget; 193 // Get target nucleus direction from the neu << 100 theTarget.SetMass(targetMass*G4Neutron::Neutron()->GetPDGMass()); 194 G4double cosTh = mu; << 101 G4double px, py, pz; 195 G4ThreeVector uNorm = aVelocity; << 102 px = GetThermalPz(theTarget.GetMass(), currentTemp); 196 << 103 py = GetThermalPz(theTarget.GetMass(), currentTemp); 197 G4double sinTh = std::sqrt(1. - cosTh*cosTh) << 104 pz = GetThermalPz(theTarget.GetMass(), currentTemp); 198 << 105 theTarget.SetMomentum(px, py, pz); 199 // Sample randomly the phi angle between the << 106 G4double tMom = std::sqrt(px*px+py*py+pz*pz); 200 G4double phi = CLHEP::twopi*G4UniformRand(); << 107 G4double tEtot = std::sqrt((tMom+theTarget.GetMass())* 201 G4double sinPhi = std::sin(phi); << 108 (tMom+theTarget.GetMass())- 202 G4double cosPhi = std::cos(phi); << 109 2.*tMom*theTarget.GetMass()); 203 << 110 if(1-tEtot/theTarget.GetMass()>0.001) 204 // Find orthogonal vector to aVelocity - sol << 111 { 205 G4ThreeVector ortho(1., 1., 1.); << 112 theTarget.SetTotalEnergy(tEtot); 206 if ( uNorm[0] ) ortho[0] = -(uNorm[1]+ << 113 } 207 else if ( uNorm[1] ) ortho[1] = -(uNorm[0]+ << 114 else 208 else if ( uNorm[2] ) ortho[2] = -(uNorm[0]+ << 115 { 209 << 116 theTarget.SetKineticEnergy(tMom*tMom/(2.*theTarget.GetMass())); 210 // Normalize the vector << 117 } 211 ortho = (1/ortho.mag())*ortho; << 118 return theTarget; 212 << 213 // Find vector to draw a plan perpendicular << 214 G4ThreeVector orthoComp( uNorm[1]*ortho[2] - << 215 uNorm[2]*ortho[0] - << 216 uNorm[0]*ortho[1] - << 217 << 218 // Find the direction of the target velocity << 219 G4ThreeVector directionTarget( cosTh*uNorm[0 << 220 cosTh*uNorm[1 << 221 cosTh*uNorm[2 << 222 << 223 // Normalize directionTarget << 224 directionTarget = ( 1./directionTarget.mag() << 225 << 226 // Set momentum << 227 G4double px = result.GetMass()*vT_norm*direc << 228 G4double py = result.GetMass()*vT_norm*direc << 229 G4double pz = result.GetMass()*vT_norm*direc << 230 result.SetMomentum(px, py, pz); << 231 << 232 G4double tMom = std::sqrt(px*px+py*py+pz*pz) << 233 G4double tEtot = std::sqrt( (tMom+result.Get << 234 - 2.*tMom*result.GetMass() << 235 << 236 if ( tEtot/result.GetMass() - 1. > 0.001 ) { << 237 // use relativistic energy for higher ener << 238 result.SetTotalEnergy(tEtot); << 239 } else { << 240 // use p**2/2M for lower energies (to pres << 241 result.SetKineticEnergy(tMom*tMom/(2.*resu << 242 } 119 } 243 << 244 } << 245 << 246 << 247 G4ReactionProduct << 248 G4Nucleus::GetThermalNucleus(G4double targetMa << 249 { << 250 G4double currentTemp = temp; << 251 if (currentTemp < 0) currentTemp = theTemp; << 252 G4ReactionProduct theTarget; << 253 theTarget.SetMass(targetMass*G4Neutron::Neut << 254 G4double px, py, pz; << 255 px = GetThermalPz(theTarget.GetMass(), curre << 256 py = GetThermalPz(theTarget.GetMass(), curre << 257 pz = GetThermalPz(theTarget.GetMass(), curre << 258 theTarget.SetMomentum(px, py, pz); << 259 G4double tMom = std::sqrt(px*px+py*py+pz*pz) << 260 G4double tEtot = std::sqrt((tMom+theTarget.G << 261 (tMom+theTarget.G << 262 2.*tMom*theTarge << 263 // if(1-tEtot/theTarget.GetMass()>0.001) t << 264 if (tEtot/theTarget.GetMass() - 1. > 0.001) << 265 // use relativistic energy for higher ener << 266 theTarget.SetTotalEnergy(tEtot); << 267 << 268 } else { << 269 // use p**2/2M for lower energies (to pres << 270 theTarget.SetKineticEnergy(tMom*tMom/(2.*t << 271 } << 272 return theTarget; << 273 } << 274 << 275 120 276 void << 121 void 277 G4Nucleus::ChooseParameters(const G4Material* << 122 G4Nucleus::ChooseParameters( const G4Material *aMaterial ) 278 { << 123 { 279 G4double random = G4UniformRand(); << 124 G4double random = G4UniformRand(); 280 G4double sum = aMaterial->GetTotNbOfAtomsPer << 125 G4double sum = 0; 281 const G4ElementVector* theElementVector = aM << 126 const G4ElementVector *theElementVector = aMaterial->GetElementVector(); 282 G4double running(0); << 127 unsigned int i; 283 // G4Element* element(0); << 128 for(i=0; i<aMaterial->GetNumberOfElements(); ++i ) 284 const G4Element* element = (*theElementVecto << 129 { 285 << 130 sum += aMaterial->GetAtomicNumDensityVector()[i]; 286 for (unsigned int i = 0; i < aMaterial->GetN << 131 } 287 running += aMaterial->GetVecNbOfAtomsPerVo << 132 G4double running = 0; 288 if (running > random*sum) { << 133 for(i=0; i<aMaterial->GetNumberOfElements(); ++i ) 289 element = (*theElementVector)[i]; << 134 { 290 break; << 135 running += aMaterial->GetAtomicNumDensityVector()[i]; >> 136 if( running/sum > random ) { >> 137 aEff = (*theElementVector)[i]->GetA()*mole/g; >> 138 zEff = (*theElementVector)[i]->GetZ(); >> 139 break; >> 140 } 291 } 141 } 292 } 142 } 293 << 143 294 if (element->GetNumberOfIsotopes() > 0) { << 144 void 295 G4double randomAbundance = G4UniformRand() << 145 G4Nucleus::SetParameters( const G4double A, const G4double Z ) 296 G4double sumAbundance = element->GetRelati << 146 { 297 unsigned int iso=0; << 147 G4int myZ = G4int(Z + 0.5); 298 while (iso < element->GetNumberOfIsotopes( << 148 G4int myA = G4int(A + 0.5); 299 sumAbundance < randomAbundance) { << 149 if( myA<1 || myZ<0 || myZ>myA ) 300 ++iso; << 301 sumAbundance += element->GetRelativeAbun << 302 } << 303 theA=element->GetIsotope(iso)->GetN(); << 304 theZ=element->GetIsotope(iso)->GetZ(); << 305 theL=0; << 306 aEff=theA; << 307 zEff=theZ; << 308 } else { << 309 aEff = element->GetN(); << 310 zEff = element->GetZ(); << 311 theZ = G4int(zEff + 0.5); << 312 theA = G4int(aEff + 0.5); << 313 theL=0; << 314 } << 315 } << 316 << 317 << 318 void << 319 G4Nucleus::SetParameters( const G4double A, co << 320 { << 321 theZ = G4lrint(Z); << 322 theA = G4lrint(A); << 323 theL = std::max(numberOfLambdas, 0); << 324 if (theA<1 || theZ<0 || theZ>theA) { << 325 throw G4HadronicException(__FILE__, __LINE << 326 "G4Nucleus::SetParameters called w << 327 } << 328 aEff = A; // atomic weight << 329 zEff = Z; // atomic number << 330 fIsotope = 0; << 331 } << 332 << 333 << 334 void << 335 G4Nucleus::SetParameters( const G4int A, const << 336 { << 337 theZ = Z; << 338 theA = A; << 339 theL = std::max(numberOfLambdas, 0); << 340 if( theA<1 || theZ<0 || theZ>theA ) << 341 { 150 { 342 throw G4HadronicException(__FILE__, __LI 151 throw G4HadronicException(__FILE__, __LINE__, 343 "G4Nucleus::SetParameters called with << 152 "G4Nucleus::SetParameters called with non-physical parameters"); 344 } 153 } 345 aEff = A; // atomic weight << 154 aEff = A; // atomic weight 346 zEff = Z; // atomic number << 155 zEff = Z; // atomic number 347 fIsotope = 0; << 348 } << 349 << 350 << 351 G4DynamicParticle * << 352 G4Nucleus::ReturnTargetParticle() const << 353 { << 354 // choose a proton or a neutron (or a lamba << 355 G4DynamicParticle *targetParticle = new G4Dy << 356 const G4double rnd = G4UniformRand(); << 357 if ( rnd < zEff/aEff ) { << 358 targetParticle->SetDefinition( G4Proton::P << 359 } else if ( rnd < (zEff + theL*1.0)/aEff ) { << 360 targetParticle->SetDefinition( G4Lambda::L << 361 } else { << 362 targetParticle->SetDefinition( G4Neutron:: << 363 } 156 } 364 return targetParticle; << 365 } << 366 157 367 << 158 G4DynamicParticle * 368 G4double << 159 G4Nucleus::ReturnTargetParticle() const 369 G4Nucleus::AtomicMass( const G4double A, const << 160 { 370 { << 161 // choose a proton or a neutron as the target particle 371 // Now returns (atomic mass - electron masse << 162 372 if ( numberOfLambdas > 0 ) { << 163 G4DynamicParticle *targetParticle = new G4DynamicParticle; 373 return G4HyperNucleiProperties::GetNuclear << 164 if( G4UniformRand() < zEff/aEff ) 374 } else { << 165 targetParticle->SetDefinition( G4Proton::Proton() ); 375 return G4NucleiProperties::GetNuclearMass( << 166 else >> 167 targetParticle->SetDefinition( G4Neutron::Neutron() ); >> 168 return targetParticle; 376 } 169 } 377 } << 378 << 379 170 380 G4double << 171 G4double 381 G4Nucleus::AtomicMass( const G4int A, const G4 << 172 G4Nucleus::AtomicMass( const G4double A, const G4double Z ) const 382 { << 173 { 383 // Now returns (atomic mass - electron masse << 174 // derived from original FORTRAN code ATOMAS by H. Fesefeldt (2-Dec-1986) 384 if ( numberOfLambdas > 0 ) { << 175 // 385 return G4HyperNucleiProperties::GetNuclear << 176 // Computes atomic mass in MeV 386 } else { << 177 // units for A example: A = material->GetA()/(g/mole); 387 return G4NucleiProperties::GetNuclearMass( << 178 // >> 179 // Note: can't just use aEff and zEff since the Nuclear Reaction >> 180 // function needs to calculate atomic mass for various values of A and Z >> 181 >> 182 const G4double electron_mass = G4Electron::Electron()->GetPDGMass()/MeV; >> 183 const G4double proton_mass = G4Proton::Proton()->GetPDGMass()/MeV; >> 184 const G4double neutron_mass = G4Neutron::Neutron()->GetPDGMass()/MeV; >> 185 const G4double deuteron_mass = G4Deuteron::Deuteron()->GetPDGMass()/MeV; >> 186 const G4double alpha_mass = G4Alpha::Alpha()->GetPDGMass()/MeV; >> 187 >> 188 G4int myZ = G4int(Z + 0.5); >> 189 G4int myA = G4int(A + 0.5); >> 190 if( myA <= 0 )return DBL_MAX; >> 191 if( myZ > myA)return DBL_MAX; >> 192 if( myA == 1 ) >> 193 { >> 194 if( myZ == 0 )return neutron_mass*MeV; >> 195 if( myZ == 1 )return proton_mass*MeV + electron_mass*MeV; // hydrogen >> 196 } >> 197 else if( myA == 2 && myZ == 1 ) >> 198 { >> 199 return deuteron_mass*MeV; >> 200 } >> 201 else if( myA == 4 && myZ == 2 ) >> 202 { >> 203 return alpha_mass*MeV; >> 204 } >> 205 // >> 206 // Weitzsaecker's Mass formula >> 207 // >> 208 G4double mass = >> 209 (A-Z)*neutron_mass + Z*proton_mass + Z*electron_mass >> 210 - 15.67*A // nuclear volume >> 211 + 17.23*std::pow(A,2./3.) // surface energy >> 212 + 93.15*std::pow(A/2.-Z,2.)/A // asymmetry >> 213 + 0.6984523*std::pow(Z,2.)*std::pow(A,-1./3.); // coulomb >> 214 G4int ipp = (myA - myZ)%2; // pairing >> 215 G4int izz = myZ%2; >> 216 if( ipp == izz )mass += (ipp+izz-1) * 12.0 * std::pow(A,-0.5); >> 217 return mass*MeV; 388 } 218 } 389 } << 390 << 391 << 392 G4double << 393 G4Nucleus::GetThermalPz( const G4double mass, << 394 { << 395 G4double result = G4RandGauss::shoot(); << 396 result *= std::sqrt(k_Boltzmann*temp*mass); << 397 // ni << 398 // Ma << 399 return result; << 400 } << 401 219 402 << 220 G4double 403 G4double << 221 G4Nucleus::GetThermalPz( const G4double mass, const G4double temp ) const 404 G4Nucleus::EvaporationEffects( G4double kineti << 222 { 405 { << 223 G4double result = G4RandGauss::shoot(); 406 // derived from original FORTRAN code EXNU b << 224 result *= std::sqrt(k_Boltzmann*temp*mass); // Das ist impuls (Pz), 407 // << 225 // nichtrelativistische rechnung 408 // Nuclear evaporation as function of atomic << 226 // Maxwell verteilung angenommen 409 // and kinetic energy (MeV) of primary parti << 227 return result; 410 // << 411 // returns kinetic energy (MeV) << 412 // << 413 if( aEff < 1.5 ) << 414 { << 415 pnBlackTrackEnergy = dtaBlackTrackEnergy = << 416 return 0.0; << 417 } << 418 G4double ek = kineticEnergy/GeV; << 419 G4float ekin = std::min( 4.0, std::max( 0.1, << 420 const G4float atno = std::min( 120., aEff ); << 421 const G4float gfa = 2.0*((aEff-1.0)/70.)*G4E << 422 // << 423 // 0.35 value at 1 GeV << 424 // 0.05 value at 0.1 GeV << 425 // << 426 G4float cfa = std::max( 0.15, 0.35 + ((0.35- << 427 G4float exnu = 7.716 * cfa * G4Exp(-cfa) << 428 * ((atno-1.0)/120.)*G4Exp(-(atno-1.0)/120. << 429 G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin << 430 // << 431 // pnBlackTrackEnergy is the kinetic energy << 432 // proton/neutron black << 433 // dtaBlackTrackEnergy is the kinetic energy << 434 // deuteron/triton/alpha << 435 // << 436 pnBlackTrackEnergy = exnu*fpdiv; << 437 dtaBlackTrackEnergy = exnu*(1.0-fpdiv); << 438 << 439 if( G4int(zEff+0.1) != 82 ) << 440 { << 441 G4double ran1 = -6.0; << 442 G4double ran2 = -6.0; << 443 for( G4int i=0; i<12; ++i ) << 444 { << 445 ran1 += G4UniformRand(); << 446 ran2 += G4UniformRand(); << 447 } << 448 pnBlackTrackEnergy *= 1.0 + ran1*gfa; << 449 dtaBlackTrackEnergy *= 1.0 + ran2*gfa; << 450 } << 451 pnBlackTrackEnergy = std::max( 0.0, pnBlackT << 452 dtaBlackTrackEnergy = std::max( 0.0, dtaBlac << 453 while( pnBlackTrackEnergy+dtaBlackTrackEnerg << 454 { << 455 pnBlackTrackEnergy *= 1.0 - 0.5*G4UniformR << 456 dtaBlackTrackEnergy *= 1.0 - 0.5*G4Uniform << 457 } << 458 //G4cout << "EvaporationEffects "<<kineticEn << 459 // <<pnBlackTrackEnergy+dtaBlackTrackE << 460 return (pnBlackTrackEnergy+dtaBlackTrackEner << 461 } << 462 << 463 << 464 G4double << 465 G4Nucleus::AnnihilationEvaporationEffects(G4do << 466 { << 467 // Nuclear evaporation as a function of atom << 468 // energy (MeV) of primary particle. Modifi << 469 // << 470 if( aEff < 1.5 || ekOrg < 0.) << 471 { << 472 pnBlackTrackEnergyfromAnnihilation = 0.0; << 473 dtaBlackTrackEnergyfromAnnihilation = 0.0; << 474 return 0.0; << 475 } << 476 G4double ek = kineticEnergy/GeV; << 477 G4float ekin = std::min( 4.0, std::max( 0.1, << 478 const G4float atno = std::min( 120., aEff ); << 479 const G4float gfa = 2.0*((aEff-1.0)/70.)*G4E << 480 << 481 G4float cfa = std::max( 0.15, 0.35 + ((0.35- << 482 G4float exnu = 7.716 * cfa * G4Exp(-cfa) << 483 * ((atno-1.0)/120.)*G4Exp(-(atno-1.0)/120. << 484 G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin << 485 << 486 pnBlackTrackEnergyfromAnnihilation = exnu*fp << 487 dtaBlackTrackEnergyfromAnnihilation = exnu*( << 488 << 489 G4double ran1 = -6.0; << 490 G4double ran2 = -6.0; << 491 for( G4int i=0; i<12; ++i ) { << 492 ran1 += G4UniformRand(); << 493 ran2 += G4UniformRand(); << 494 } 228 } 495 pnBlackTrackEnergyfromAnnihilation *= 1.0 + << 229 496 dtaBlackTrackEnergyfromAnnihilation *= 1.0 + << 230 G4double 497 << 231 G4Nucleus::EvaporationEffects( G4double kineticEnergy ) 498 pnBlackTrackEnergyfromAnnihilation = std::ma << 232 { 499 dtaBlackTrackEnergyfromAnnihilation = std::m << 233 // derived from original FORTRAN code EXNU by H. Fesefeldt (10-Dec-1986) 500 G4double blackSum = pnBlackTrackEnergyfromAn << 234 // 501 if (blackSum >= ekOrg/GeV) { << 235 // Nuclear evaporation as function of atomic number 502 pnBlackTrackEnergyfromAnnihilation *= ekOr << 236 // and kinetic energy (MeV) of primary particle 503 dtaBlackTrackEnergyfromAnnihilation *= ekO << 237 // >> 238 // returns kinetic energy (MeV) >> 239 // >> 240 if( aEff < 1.5 ) >> 241 { >> 242 pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0; >> 243 return 0.0; >> 244 } >> 245 G4double ek = kineticEnergy/GeV; >> 246 G4float ekin = std::min( 4.0, std::max( 0.1, ek ) ); >> 247 const G4float atno = std::min( 120., aEff ); >> 248 const G4float gfa = 2.0*((aEff-1.0)/70.)*std::exp(-(aEff-1.0)/70.); >> 249 // >> 250 // 0.35 value at 1 GeV >> 251 // 0.05 value at 0.1 GeV >> 252 // >> 253 G4float cfa = std::max( 0.15, 0.35 + ((0.35-0.05)/2.3)*std::log(ekin) ); >> 254 G4float exnu = 7.716 * cfa * std::exp(-cfa) >> 255 * ((atno-1.0)/120.)*std::exp(-(atno-1.0)/120.); >> 256 G4float fpdiv = std::max( 0.5, 1.0-0.25*ekin*ekin ); >> 257 // >> 258 // pnBlackTrackEnergy is the kinetic energy (in GeV) available for >> 259 // proton/neutron black track particles >> 260 // dtaBlackTrackEnergy is the kinetic energy (in GeV) available for >> 261 // deuteron/triton/alpha black track particles >> 262 // >> 263 pnBlackTrackEnergy = exnu*fpdiv; >> 264 dtaBlackTrackEnergy = exnu*(1.0-fpdiv); >> 265 >> 266 if( G4int(zEff+0.1) != 82 ) >> 267 { >> 268 //G4double ran1 = G4RandGauss::shoot(); >> 269 //G4double ran2 = G4RandGauss::shoot(); >> 270 G4double ran1 = -6.0; >> 271 G4double ran2 = -6.0; >> 272 for( G4int i=0; i<12; ++i ) >> 273 { >> 274 ran1 += G4UniformRand(); >> 275 ran2 += G4UniformRand(); >> 276 } >> 277 pnBlackTrackEnergy *= 1.0 + ran1*gfa; >> 278 dtaBlackTrackEnergy *= 1.0 + ran2*gfa; >> 279 } >> 280 pnBlackTrackEnergy = std::max( 0.0, pnBlackTrackEnergy ); >> 281 dtaBlackTrackEnergy = std::max( 0.0, dtaBlackTrackEnergy ); >> 282 while( pnBlackTrackEnergy+dtaBlackTrackEnergy >= ek ) >> 283 { >> 284 pnBlackTrackEnergy *= 1.0 - 0.5*G4UniformRand(); >> 285 dtaBlackTrackEnergy *= 1.0 - 0.5*G4UniformRand(); >> 286 } >> 287 // G4cout << "EvaporationEffects "<<kineticEnergy<<" " >> 288 // <<pnBlackTrackEnergy+dtaBlackTrackEnergy<<endl; >> 289 return (pnBlackTrackEnergy+dtaBlackTrackEnergy)*GeV; 504 } 290 } 505 << 506 return (pnBlackTrackEnergyfromAnnihilation+d << 507 } << 508 << 509 291 510 G4double << 292 G4double 511 G4Nucleus::Cinema( G4double kineticEnergy ) << 293 G4Nucleus::Cinema( G4double kineticEnergy ) 512 { << 294 { 513 // derived from original FORTRAN code CINEMA << 295 // derived from original FORTRAN code CINEMA by H. Fesefeldt (14-Oct-1987) 514 // << 296 // 515 // input: kineticEnergy (MeV) << 297 // input: kineticEnergy (MeV) 516 // returns modified kinetic energy (MeV) << 298 // returns modified kinetic energy (MeV) 517 // << 299 // 518 static const G4double expxu = 82.; << 300 static const G4double expxu = 82.; // upper bound for arg. of exp 519 static const G4double expxl = -expxu; << 301 static const G4double expxl = -expxu; // lower bound for arg. of exp 520 << 302 521 G4double ek = kineticEnergy/GeV; << 303 G4double ek = kineticEnergy/GeV; 522 G4double ekLog = G4Log( ek ); << 304 G4double ekLog = std::log( ek ); 523 G4double aLog = G4Log( aEff ); << 305 G4double aLog = std::log( aEff ); 524 G4double em = std::min( 1.0, 0.2390 + 0.0408 << 306 G4double em = std::min( 1.0, 0.2390 + 0.0408*aLog*aLog ); 525 G4double temp1 = -ek * std::min( 0.15, 0.001 << 307 G4double temp1 = -ek * std::min( 0.15, 0.0019*aLog*aLog*aLog ); 526 G4double temp2 = G4Exp( std::max( expxl, std << 308 G4double temp2 = std::exp( std::max( expxl, std::min( expxu, -(ekLog-em)*(ekLog-em)*2.0 ) ) ); 527 G4double result = 0.0; << 309 G4double result = 0.0; 528 if( std::abs( temp1 ) < 1.0 ) << 310 if( std::abs( temp1 ) < 1.0 ) 529 { << 311 { 530 if( temp2 > 1.0e-10 )result = temp1*temp2; << 312 if( temp2 > 1.0e-10 )result = temp1*temp2; 531 } << 313 } 532 else result = temp1*temp2; << 314 else result = temp1*temp2; 533 if( result < -ek )result = -ek; << 315 if( result < -ek )result = -ek; 534 return result*GeV; << 316 return result*GeV; 535 } << 317 } 536 318 >> 319 // >> 320 // methods for class G4Nucleus ... by Christian Volcker >> 321 // 537 322 538 G4ThreeVector G4Nucleus::GetFermiMomentum() << 323 G4ThreeVector G4Nucleus::GetFermiMomentum() 539 { << 324 { 540 // chv: .. we assume zero temperature! << 325 // chv: .. we assume zero temperature! 541 << 326 542 // momentum is equally distributed in each p << 327 // momentum is equally distributed in each phasespace volume dpx, dpy, dpz. 543 G4double ranflat1= << 328 G4double ranflat1=RandFlat::shoot((G4double)0.,(G4double)fermiMomentum); 544 G4RandFlat::shoot((G4double)0.,(G4double)f << 329 G4double ranflat2=RandFlat::shoot((G4double)0.,(G4double)fermiMomentum); 545 G4double ranflat2= << 330 G4double ranflat3=RandFlat::shoot((G4double)0.,(G4double)fermiMomentum); 546 G4RandFlat::shoot((G4double)0.,(G4double)f << 331 G4double ranmax = (ranflat1>ranflat2? ranflat1: ranflat2); 547 G4double ranflat3= << 332 ranmax = (ranmax>ranflat3? ranmax : ranflat3); 548 G4RandFlat::shoot((G4double)0.,(G4double)f << 333 549 G4double ranmax = (ranflat1>ranflat2? ranfla << 334 // - random decay angle 550 ranmax = (ranmax>ranflat3? ranmax : ranflat3 << 335 G4double theta=pi*G4UniformRand(); // isotropic decay angle theta 551 << 336 G4double phi =RandFlat::shoot((G4double)0.,(G4double)2*pi); // isotropic decay angle phi 552 // Isotropic momentum distribution << 337 553 G4double costheta = 2.*G4UniformRand() - 1.0 << 338 // - setup ThreeVector 554 G4double sintheta = std::sqrt(1.0 - costheta << 339 G4double pz=std::cos(theta)*ranmax; 555 G4double phi = 2.0*pi*G4UniformRand(); << 340 G4double px=std::sin(theta)*std::cos(phi)*ranmax; 556 << 341 G4double py=std::sin(theta)*std::sin(phi)*ranmax; 557 G4double pz=costheta*ranmax; << 342 G4ThreeVector p(px,py,pz); 558 G4double px=sintheta*std::cos(phi)*ranmax; << 343 return p; 559 G4double py=sintheta*std::sin(phi)*ranmax; << 344 } 560 G4ThreeVector p(px,py,pz); << 561 return p; << 562 } << 563 345 564 << 346 G4ReactionProductVector* G4Nucleus::Fragmentate() 565 G4ReactionProductVector* G4Nucleus::Fragmentat << 347 { 566 { << 348 // needs implementation! 567 // needs implementation! << 349 return NULL; 568 return nullptr; << 350 } 569 } << 570 351 571 << 352 void G4Nucleus::AddMomentum(const G4ThreeVector aMomentum) 572 void G4Nucleus::AddMomentum(const G4ThreeVecto << 353 { 573 { << 354 momentum+=(aMomentum); 574 momentum+=(aMomentum); << 355 } 575 } << 576 << 577 356 578 void G4Nucleus::AddExcitationEnergy( G4double << 357 void G4Nucleus::AddExcitationEnergy( G4double anEnergy ) 579 { << 358 { 580 excitationEnergy+=anEnergy; << 359 excitationEnergy+=anEnergy; 581 } << 360 } 582 361 583 /* end of file */ 362 /* end of file */ 584 363 585 364