Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/util/src/G4LegendrePolynomial.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/util/src/G4LegendrePolynomial.cc (Version 11.3.0) and /processes/hadronic/util/src/G4LegendrePolynomial.cc (Version 10.4.p3)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25                                                   
 26 #include "G4ios.hh"                               
 27 #include "G4LegendrePolynomial.hh"                
 28 #include "G4Pow.hh"                               
 29 #include "G4Exp.hh"                               
 30 #include "G4Log.hh"                               
 31                                                   
 32 using namespace std;                              
 33                                                   
 34 G4double G4LegendrePolynomial::GetCoefficient(    
 35 {                                                 
 36   if(order >= fCoefficients.size()) BuildUpToO    
 37   if(order >= fCoefficients.size() ||             
 38      i/2 >= fCoefficients[order].size() ||        
 39      (i%2) != order %2) return 0;                 
 40   return fCoefficients[order][i/2];               
 41 }                                                 
 42                                                   
 43 G4double G4LegendrePolynomial::EvalLegendrePol    
 44 {                                                 
 45   // Call EvalAssocLegendrePoly with m=0          
 46   return (EvalAssocLegendrePoly(order,0,x));      
 47 }                                                 
 48                                                   
 49 G4double G4LegendrePolynomial::EvalAssocLegend    
 50 {                                                 
 51   // Invalid calls --> 0. (Keeping for backwar    
 52   if (l<0 || m<-l || m>l) return 0.0;             
 53                                                   
 54   // New check: g4pow doesn't handle integer a    
 55   // For us that means:                           
 56   if ((l+m) > 512 || (l-m) > 512 || (2*m) > 51    
 57                                                   
 58   G4Pow* g4pow = G4Pow::GetInstance();            
 59   G4double x2 = x*x;                              
 60                                                   
 61   // hard-code the first few orders for speed     
 62   switch (l) {                                    
 63     case 0 :                                      
 64       return 1;                                   
 65     case 1 :                                      
 66       switch (m) {                                
 67         case -1 : return 0.5 * sqrt(1.-x2);       
 68         case 0 : return x;                        
 69         case 1 : return -sqrt(1.-x2);             
 70       };                                          
 71       break;                                      
 72     case 2 :                                      
 73       switch (m) {                                
 74         case -2 : return 0.125 * (1.0 - x2);      
 75         case -1 : return 0.5 * x * sqrt(1.0 -     
 76         case 0 : return 0.5*(3.*x2 - 1.);         
 77         case 1 : return -3.*x*sqrt(1.-x2);        
 78         case 2 : return 3.*(1.-x2);               
 79       };                                          
 80       break;                                      
 81     case 3 :                                      
 82       switch (m) {                                
 83         case -3 : return (1.0/48.0) * (1.0 - x    
 84         case -2 : return 0.125 * x * (1.0 - x2    
 85         case -1 : return 0.125 * (5.0 * x2 - 1    
 86         case 0 : return 0.5*(5.*x*x2 - 3.*x);     
 87         case 1 : return -1.5*(5.*x2-1.)*sqrt(1    
 88         case 2 : return 15.*x*(1.-x2);            
 89         case 3 : return -15.*(1.-x2)*sqrt(1.-x    
 90       };                                          
 91       break;                                      
 92     case 4 :                                      
 93       switch (m) {                                
 94         case -4 : return (105.0/40320.0)*(1. -    
 95         case -3 : return (105.0/5040.0)*x*(1.-    
 96         case -2 : return (15.0/720.0)*(7.*x2-1    
 97         case -1 : return 0.125*(7.*x*x2-3.*x)*    
 98         case 0 : return 0.125*(35.*x2*x2 - 30.    
 99         case 1 : return -2.5*(7.*x*x2-3.*x)*sq    
100         case 2 : return 7.5*(7.*x2-1.)*(1.-x2)    
101         case 3 : return -105.*x*(1.-x2)*sqrt(1    
102         case 4 : return 105.*(1. - 2.*x2 + x2*    
103       };                                          
104       break;                                      
105   };                                              
106                                                   
107   // if m<0, compute P[l,-m,x] and correct        
108   if (m < 0)                                      
109   {                                               
110     G4double complementary_value = EvalAssocLe    
111     return complementary_value * (m%2==0 ? 1.0    
112   }                                               
113                                                   
114   // Iteratively walk up from P[m,m,x] to P[l,    
115                                                   
116   // prime the pump: P[l<m,m,x] = 0               
117   G4double previous = 0.0;                        
118                                                   
119   // prime the pump: P[m,m,x]                     
120   G4double current;                               
121   if (m == 0) current = 1.0;                      
122   else if (m == 1) current = -sqrt((1.0 - (x2)    
123   else {                                          
124     current = (m%2==0 ? 1.0 : -1.0) *             
125        G4Exp(g4pow->logfactorial(2*m) - g4pow-    
126        G4Exp(G4Log((1.0-(x2))*0.25)*0.5*G4doub    
127   }                                               
128                                                   
129   // Work up to P[l,m,x]                          
130   for(G4int i=m+1; i<=l; i++)                     
131   {                                               
132     G4double next = (-(G4double(i+m-1))*previo    
133     previous = current;                           
134     current = next;                               
135   }                                               
136                                                   
137   return current;                                 
138 }                                                 
139                                                   
140 void G4LegendrePolynomial::BuildUpToOrder(std:    
141 {                                                 
142   if(orderMax > 30) {                             
143     G4cout << "G4LegendrePolynomial::GetCoeffi    
144            << "I refuse to make a Legendre Pol    
145            << orderMax << G4endl;                 
146     return;                                       
147   }                                               
148   while(fCoefficients.size() < orderMax+1) {      
149     std::size_t order = fCoefficients.size();     
150     fCoefficients.resize(order+1);                
151     if(order <= 1) fCoefficients[order].push_b    
152     else {                                        
153       for(std::size_t iCoeff = 0; iCoeff < ord    
154         if((order % 2) == (iCoeff % 2)) {         
155           G4double coeff = 0;                     
156           if(iCoeff <= order-2) coeff -= fCoef    
157           if(iCoeff > 0) coeff += fCoefficient    
158           coeff /= G4double(order);               
159           fCoefficients[order].push_back(coeff    
160         }                                         
161       }                                           
162     }                                             
163   }                                               
164 }                                                 
165                                                   
166