Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // original by H.P. Wellisch << 26 // 27 // modified by J.L. Chuma, TRIUMF, 19-Nov-1996 << 27 // 28 // last modified: 27-Mar-1997 << 28 // original by H.P. Wellisch 29 // Chr. Volcker, 10-Nov-1997: new methods and << 29 // modified by J.L. Chuma, TRIUMF, 19-Nov-1996 >> 30 // last modified: 27-Mar-1997 >> 31 // Chr. Volcker, 10-Nov-1997: new methods and class variables. 30 // M.G. Pia, 2 Oct 1998: modified GetFermiMome 32 // M.G. Pia, 2 Oct 1998: modified GetFermiMomentum (original design was 31 // the source of memory 33 // the source of memory leaks) 32 // G.Folger, spring 2010: add integer A/Z int << 34 33 // A. Ribon, autumn 2021: extended to hypernu << 34 << 35 #ifndef G4Nucleus_h 35 #ifndef G4Nucleus_h 36 #define G4Nucleus_h 1 36 #define G4Nucleus_h 1 37 // Class Description 37 // Class Description 38 // This class knows how to describe a nucleus; 38 // This class knows how to describe a nucleus; 39 // to be used in your physics implementation ( 39 // to be used in your physics implementation (not physics list) in case you need this physics. 40 // Class Description - End 40 // Class Description - End 41 41 42 42 43 #include "globals.hh" 43 #include "globals.hh" 44 #include "G4ThreeVector.hh" 44 #include "G4ThreeVector.hh" 45 #include "G4ParticleTypes.hh" 45 #include "G4ParticleTypes.hh" 46 #include "G4ReactionProduct.hh" 46 #include "G4ReactionProduct.hh" 47 #include "G4DynamicParticle.hh" 47 #include "G4DynamicParticle.hh" 48 #include "G4ReactionProductVector.hh" 48 #include "G4ReactionProductVector.hh" 49 #include "Randomize.hh" 49 #include "Randomize.hh" 50 50 51 class G4Nucleus << 51 class G4Nucleus 52 { << 52 { 53 public: << 53 public: 54 54 55 G4Nucleus(); 55 G4Nucleus(); 56 G4Nucleus(const G4double A, const G4double << 56 57 G4Nucleus(const G4int A, const G4int Z, co << 57 G4Nucleus( const G4double A, const G4double Z ); 58 G4Nucleus(const G4Material* aMaterial); << 58 >> 59 G4Nucleus( const G4Material *aMaterial ); 59 60 60 ~G4Nucleus(); 61 ~G4Nucleus(); 61 62 62 inline G4Nucleus( const G4Nucleus &right ) 63 inline G4Nucleus( const G4Nucleus &right ) 63 { *this = right; } 64 { *this = right; } 64 65 65 inline G4Nucleus& operator = (const G4Nucl << 66 inline G4Nucleus & operator=( const G4Nucleus &right ) 66 { << 67 { 67 if (this != &right) { << 68 if( this != &right ) 68 theA=right.theA; << 69 { 69 theZ=right.theZ; << 70 aEff=right.aEff; 70 theL=right.theL; << 71 zEff=right.zEff; 71 aEff=right.aEff; << 72 pnBlackTrackEnergy=right.pnBlackTrackEnergy; 72 zEff=right.zEff; << 73 dtaBlackTrackEnergy=right.dtaBlackTrackEnergy; 73 fIsotope = right.fIsotope; << 74 theTemp = right.theTemp; 74 pnBlackTrackEnergy=right.pnBlackTrackE << 75 excitationEnergy = right.excitationEnergy; 75 dtaBlackTrackEnergy=right.dtaBlackTrac << 76 momentum = right.momentum; 76 pnBlackTrackEnergyfromAnnihilation = << 77 fermiMomentum = right.fermiMomentum; 77 right.pnBlackTrackEnergyf << 78 } 78 dtaBlackTrackEnergyfromAnnihilation = << 79 return *this; 79 right.dtaBlackTrackEnergy << 80 } 80 theTemp = right.theTemp; << 81 excitationEnergy = right.excitationEne << 82 momentum = right.momentum; << 83 fermiMomentum = right.fermiMomentum; << 84 } << 85 return *this; << 86 } << 87 81 88 inline G4bool operator==( const G4Nucleus 82 inline G4bool operator==( const G4Nucleus &right ) const 89 { return ( this == (G4Nucleus *) &right ); 83 { return ( this == (G4Nucleus *) &right ); } 90 84 91 inline G4bool operator!=( const G4Nucleus 85 inline G4bool operator!=( const G4Nucleus &right ) const 92 { return ( this != (G4Nucleus *) &right ); 86 { return ( this != (G4Nucleus *) &right ); } 93 87 94 void ChooseParameters( const G4Material *a 88 void ChooseParameters( const G4Material *aMaterial ); 95 89 96 void SetParameters( const G4double A, cons << 90 void SetParameters( const G4double A, const G4double Z ); 97 void SetParameters( const G4int A, const G << 98 << 99 inline G4int GetA_asInt() const << 100 { return theA; } << 101 91 102 inline G4int GetN_asInt() const << 92 inline G4double GetN() const 103 { return theA-theZ-theL; } << 93 { return aEff; } >> 94 >> 95 inline G4double GetZ() const >> 96 { return zEff; } 104 97 105 inline G4int GetZ_asInt() const << 106 { return theZ; } << 107 << 108 inline G4int GetL() const // Number of La << 109 { return theL; } << 110 << 111 inline const G4Isotope* GetIsotope() << 112 { return fIsotope; } << 113 << 114 inline void SetIsotope(const G4Isotope* is << 115 { << 116 fIsotope = iso; << 117 if(iso) { << 118 theZ = iso->GetZ(); << 119 theA = iso->GetN(); << 120 theL = 0; << 121 aEff = theA; << 122 zEff = theZ; << 123 } << 124 } << 125 << 126 G4DynamicParticle *ReturnTargetParticle() 98 G4DynamicParticle *ReturnTargetParticle() const; 127 99 128 G4double AtomicMass( const G4double A, con << 100 G4double AtomicMass( const G4double A, const G4double Z ) const; 129 G4double AtomicMass( const G4int A, const << 101 130 << 131 G4double GetThermalPz( const G4double mass 102 G4double GetThermalPz( const G4double mass, const G4double temp ) const; 132 103 133 G4ReactionProduct GetThermalNucleus(G4doub 104 G4ReactionProduct GetThermalNucleus(G4double aMass, G4double temp=-1) const; 134 105 135 G4ReactionProduct GetBiasedThermalNucleus( 106 G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const; 136 107 137 void DoKinematicsOfThermalNucleus(const G4 << 138 G4Reacti << 139 << 140 G4double Cinema( G4double kineticEnergy ); 108 G4double Cinema( G4double kineticEnergy ); 141 109 142 G4double EvaporationEffects( G4double kine 110 G4double EvaporationEffects( G4double kineticEnergy ); 143 111 144 G4double AnnihilationEvaporationEffects(G4 112 G4double AnnihilationEvaporationEffects(G4double kineticEnergy, G4double ekOrg); 145 113 146 inline G4double GetPNBlackTrackEnergy() co 114 inline G4double GetPNBlackTrackEnergy() const 147 { return pnBlackTrackEnergy; } 115 { return pnBlackTrackEnergy; } 148 116 149 inline G4double GetDTABlackTrackEnergy() c 117 inline G4double GetDTABlackTrackEnergy() const 150 { return dtaBlackTrackEnergy; } 118 { return dtaBlackTrackEnergy; } 151 119 152 inline G4double GetAnnihilationPNBlackTrac 120 inline G4double GetAnnihilationPNBlackTrackEnergy() const 153 { return pnBlackTrackEnergyfromAnnihilatio 121 { return pnBlackTrackEnergyfromAnnihilation; } 154 122 155 inline G4double GetAnnihilationDTABlackTra 123 inline G4double GetAnnihilationDTABlackTrackEnergy() const 156 { return dtaBlackTrackEnergyfromAnnihilati 124 { return dtaBlackTrackEnergyfromAnnihilation; } 157 125 158 // ****************** methods introduced by C 126 // ****************** methods introduced by ChV *********************** 159 // return fermi momentum 127 // return fermi momentum 160 G4ThreeVector GetFermiMomentum(); 128 G4ThreeVector GetFermiMomentum(); 161 129 162 /* 130 /* 163 // return particle to be absorbed. 131 // return particle to be absorbed. 164 G4DynamicParticle* ReturnAbsorbingParticl 132 G4DynamicParticle* ReturnAbsorbingParticle(G4double weight); 165 */ 133 */ 166 134 167 // final nucleus fragmentation. Return List 135 // final nucleus fragmentation. Return List of particles 168 // which should be used for further tracking 136 // which should be used for further tracking. 169 G4ReactionProductVector* Fragmentate(); 137 G4ReactionProductVector* Fragmentate(); 170 138 171 139 172 // excitation Energy... 140 // excitation Energy... 173 void AddExcitationEnergy(G4double anEnerg 141 void AddExcitationEnergy(G4double anEnergy); 174 142 175 143 176 // momentum of absorbed Particles .. 144 // momentum of absorbed Particles .. 177 void AddMomentum(const G4ThreeVector aMom 145 void AddMomentum(const G4ThreeVector aMomentum); 178 146 179 // return excitation Energy 147 // return excitation Energy 180 G4double GetEnergyDeposit() {return excit 148 G4double GetEnergyDeposit() {return excitationEnergy; } 181 149 182 150 183 151 184 // ****************************** end ChV **** 152 // ****************************** end ChV ****************************** 185 153 186 154 187 private: 155 private: 188 156 189 G4int theA; << 190 G4int theZ; << 191 G4int theL; // Number of Lambdas (in t << 192 G4double aEff; // effective atomic weight 157 G4double aEff; // effective atomic weight 193 G4double zEff; // effective atomic number 158 G4double zEff; // effective atomic number 194 << 195 const G4Isotope* fIsotope; << 196 159 197 G4double pnBlackTrackEnergy; // the kinet 160 G4double pnBlackTrackEnergy; // the kinetic energy available for 198 // proton/ne 161 // proton/neutron black track particles 199 G4double dtaBlackTrackEnergy; // the kinet 162 G4double dtaBlackTrackEnergy; // the kinetic energy available for 200 // deuteron/ 163 // deuteron/triton/alpha particles 201 G4double pnBlackTrackEnergyfromAnnihilatio 164 G4double pnBlackTrackEnergyfromAnnihilation; 202 // kinetic energy availab 165 // kinetic energy available for proton/neutron black 203 // track particles based 166 // track particles based on baryon annihilation 204 G4double dtaBlackTrackEnergyfromAnnihilati 167 G4double dtaBlackTrackEnergyfromAnnihilation; 205 // kinetic energy availab 168 // kinetic energy available for deuteron/triton/alpha 206 // black track particles 169 // black track particles based on baryon annihilation 207 170 208 171 209 // ************************** member variables 172 // ************************** member variables by ChV ******************* 210 // Excitation Energy leading to evaporation 173 // Excitation Energy leading to evaporation or deexcitation. 211 G4double excitationEnergy; 174 G4double excitationEnergy; 212 175 213 // Momentum, accumulated by absorbing Partic 176 // Momentum, accumulated by absorbing Particles 214 G4ThreeVector momentum; 177 G4ThreeVector momentum; 215 178 216 // Fermi Gas model: at present, we assume co 179 // Fermi Gas model: at present, we assume constant nucleon density for all 217 // nuclei. The radius of a nucleon is taken 180 // nuclei. The radius of a nucleon is taken to be 1 fm. 218 // see for example S.Fl"ugge, Encyclopedia o 181 // see for example S.Fl"ugge, Encyclopedia of Physics, Vol XXXIX, 219 // Structure of Atomic Nuclei (Berlin-Gottin 182 // Structure of Atomic Nuclei (Berlin-Gottingen-Heidelberg, 1957) page 426. 220 183 221 // maximum momentum possible from fermi gas 184 // maximum momentum possible from fermi gas model: 222 G4double fermiMomentum; 185 G4double fermiMomentum; 223 G4double theTemp; // temperature 186 G4double theTemp; // temperature 224 // ****************************** end ChV **** 187 // ****************************** end ChV ****************************** 225 188 226 }; 189 }; 227 190 228 #endif 191 #endif 229 192 230 193