Geant4 Cross Reference |
>> 1 // This code implementation is the intellectual property of >> 2 // the GEANT4 collaboration. 1 // 3 // 2 // ******************************************* << 4 // By copying, distributing or modifying the Program (or any work 3 // * License and Disclaimer << 5 // based on the Program) you indicate your acceptance of this statement, 4 // * << 6 // and all its terms. 5 // * The Geant4 software is copyright of th << 6 // * the Geant4 Collaboration. It is provided << 7 // * conditions of the Geant4 Software License << 8 // * LICENSE and available at http://cern.ch/ << 9 // * include a list of copyright holders. << 10 // * << 11 // * Neither the authors of this software syst << 12 // * institutes,nor the agencies providing fin << 13 // * work make any representation or warran << 14 // * regarding this software system or assum << 15 // * use. Please see the license in the file << 16 // * for the full disclaimer and the limitatio << 17 // * << 18 // * This code implementation is the result << 19 // * technical work of the GEANT4 collaboratio << 20 // * By using, copying, modifying or distri << 21 // * any work based on the software) you ag << 22 // * use in resulting scientific publicati << 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* << 25 // 7 // 26 // original by H.P. Wellisch << 8 // $Id: G4Nucleus.hh,v 1.1.10.1 1999/12/07 20:52:42 gunter Exp $ 27 // modified by J.L. Chuma, TRIUMF, 19-Nov-1996 << 9 // GEANT4 tag $Name: geant4-01-00 $ 28 // last modified: 27-Mar-1997 << 10 // 29 // Chr. Volcker, 10-Nov-1997: new methods and << 11 // original by H.P. Wellisch >> 12 // modified by J.L. Chuma, TRIUMF, 19-Nov-1996 >> 13 // last modified: 27-Mar-1997 >> 14 // Chr. Volcker, 10-Nov-1997: new methods and class variables. 30 // M.G. Pia, 2 Oct 1998: modified GetFermiMome 15 // M.G. Pia, 2 Oct 1998: modified GetFermiMomentum (original design was 31 // the source of memory 16 // the source of memory leaks) 32 // G.Folger, spring 2010: add integer A/Z int << 17 33 // A. Ribon, autumn 2021: extended to hypernu << 34 << 35 #ifndef G4Nucleus_h 18 #ifndef G4Nucleus_h 36 #define G4Nucleus_h 1 19 #define G4Nucleus_h 1 37 // Class Description << 38 // This class knows how to describe a nucleus; << 39 // to be used in your physics implementation ( << 40 // Class Description - End << 41 << 42 20 43 #include "globals.hh" 21 #include "globals.hh" 44 #include "G4ThreeVector.hh" 22 #include "G4ThreeVector.hh" 45 #include "G4ParticleTypes.hh" 23 #include "G4ParticleTypes.hh" 46 #include "G4ReactionProduct.hh" 24 #include "G4ReactionProduct.hh" 47 #include "G4DynamicParticle.hh" 25 #include "G4DynamicParticle.hh" 48 #include "G4ReactionProductVector.hh" 26 #include "G4ReactionProductVector.hh" 49 #include "Randomize.hh" 27 #include "Randomize.hh" 50 28 51 class G4Nucleus << 29 class G4Nucleus 52 { << 30 { 53 public: << 31 public: 54 << 32 55 G4Nucleus(); << 33 G4Nucleus() { pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0; 56 G4Nucleus(const G4double A, const G4double << 34 excitationEnergy = 0.0; 57 G4Nucleus(const G4int A, const G4int Z, co << 35 momentum = G4ThreeVector(0.,0.,0.); 58 G4Nucleus(const G4Material* aMaterial); << 36 fermiMomentum = 1.52*hbarc/fermi; >> 37 theTemp = 293.16*kelvin; >> 38 } 59 39 60 ~G4Nucleus(); << 40 G4Nucleus( const G4double A, const G4double Z ) >> 41 { >> 42 SetParameters( A, Z ); >> 43 pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0; >> 44 excitationEnergy = 0.0; >> 45 momentum = G4ThreeVector(0.,0.,0.); >> 46 fermiMomentum = 1.52*hbarc/fermi; >> 47 theTemp = 293.16*kelvin; >> 48 } >> 49 >> 50 G4Nucleus( const G4Material *aMaterial ) >> 51 { >> 52 ChooseParameters( aMaterial ); >> 53 pnBlackTrackEnergy = dtaBlackTrackEnergy = 0.0; >> 54 excitationEnergy = 0.0; >> 55 momentum = G4ThreeVector(0.,0.,0.); >> 56 fermiMomentum = 1.52*hbarc/fermi; >> 57 theTemp = aMaterial->GetTemperature(); >> 58 } >> 59 >> 60 ~G4Nucleus() {} 61 61 62 inline G4Nucleus( const G4Nucleus &right ) 62 inline G4Nucleus( const G4Nucleus &right ) 63 { *this = right; } 63 { *this = right; } 64 64 65 inline G4Nucleus& operator = (const G4Nucl << 65 inline G4Nucleus & operator=( const G4Nucleus &right ) 66 { << 66 { 67 if (this != &right) { << 67 if( this != &right ) 68 theA=right.theA; << 68 { 69 theZ=right.theZ; << 69 aEff=right.aEff; 70 theL=right.theL; << 70 zEff=right.zEff; 71 aEff=right.aEff; << 71 pnBlackTrackEnergy=right.pnBlackTrackEnergy; 72 zEff=right.zEff; << 72 dtaBlackTrackEnergy=right.dtaBlackTrackEnergy; 73 fIsotope = right.fIsotope; << 73 theTemp = right.theTemp; 74 pnBlackTrackEnergy=right.pnBlackTrackE << 74 } 75 dtaBlackTrackEnergy=right.dtaBlackTrac << 75 return *this; 76 pnBlackTrackEnergyfromAnnihilation = << 76 } 77 right.pnBlackTrackEnergyf << 77 78 dtaBlackTrackEnergyfromAnnihilation = << 79 right.dtaBlackTrackEnergy << 80 theTemp = right.theTemp; << 81 excitationEnergy = right.excitationEne << 82 momentum = right.momentum; << 83 fermiMomentum = right.fermiMomentum; << 84 } << 85 return *this; << 86 } << 87 << 88 inline G4bool operator==( const G4Nucleus 78 inline G4bool operator==( const G4Nucleus &right ) const 89 { return ( this == (G4Nucleus *) &right ); 79 { return ( this == (G4Nucleus *) &right ); } 90 80 91 inline G4bool operator!=( const G4Nucleus 81 inline G4bool operator!=( const G4Nucleus &right ) const 92 { return ( this != (G4Nucleus *) &right ); 82 { return ( this != (G4Nucleus *) &right ); } 93 83 94 void ChooseParameters( const G4Material *a 84 void ChooseParameters( const G4Material *aMaterial ); 95 85 96 void SetParameters( const G4double A, cons << 86 void SetParameters( const G4double A, const G4double Z ); 97 void SetParameters( const G4int A, const G << 87 98 << 88 inline G4double GetN() const 99 inline G4int GetA_asInt() const << 89 { return aEff; } 100 { return theA; } << 90 101 << 91 inline G4double GetZ() const 102 inline G4int GetN_asInt() const << 92 { return zEff; } 103 { return theA-theZ-theL; } << 93 104 << 105 inline G4int GetZ_asInt() const << 106 { return theZ; } << 107 << 108 inline G4int GetL() const // Number of La << 109 { return theL; } << 110 << 111 inline const G4Isotope* GetIsotope() << 112 { return fIsotope; } << 113 << 114 inline void SetIsotope(const G4Isotope* is << 115 { << 116 fIsotope = iso; << 117 if(iso) { << 118 theZ = iso->GetZ(); << 119 theA = iso->GetN(); << 120 theL = 0; << 121 aEff = theA; << 122 zEff = theZ; << 123 } << 124 } << 125 << 126 G4DynamicParticle *ReturnTargetParticle() 94 G4DynamicParticle *ReturnTargetParticle() const; 127 95 128 G4double AtomicMass( const G4double A, con << 96 G4double AtomicMass( const G4double A, const G4double Z ) const; 129 G4double AtomicMass( const G4int A, const << 130 << 131 G4double GetThermalPz( const G4double mass << 132 97 133 G4ReactionProduct GetThermalNucleus(G4doub << 98 G4double GetThermalPz( const G4double mass, const G4double temp ) const; 134 99 135 G4ReactionProduct GetBiasedThermalNucleus( << 100 G4ReactionProduct GetThermalNucleus(G4double aMass) const; 136 101 137 void DoKinematicsOfThermalNucleus(const G4 << 138 G4Reacti << 139 << 140 G4double Cinema( G4double kineticEnergy ); 102 G4double Cinema( G4double kineticEnergy ); 141 103 142 G4double EvaporationEffects( G4double kine 104 G4double EvaporationEffects( G4double kineticEnergy ); 143 << 144 G4double AnnihilationEvaporationEffects(G4 << 145 105 146 inline G4double GetPNBlackTrackEnergy() co 106 inline G4double GetPNBlackTrackEnergy() const 147 { return pnBlackTrackEnergy; } 107 { return pnBlackTrackEnergy; } 148 108 149 inline G4double GetDTABlackTrackEnergy() c 109 inline G4double GetDTABlackTrackEnergy() const 150 { return dtaBlackTrackEnergy; } 110 { return dtaBlackTrackEnergy; } 151 111 152 inline G4double GetAnnihilationPNBlackTrac << 153 { return pnBlackTrackEnergyfromAnnihilatio << 154 << 155 inline G4double GetAnnihilationDTABlackTra << 156 { return dtaBlackTrackEnergyfromAnnihilati << 157 << 158 // ****************** methods introduced by C 112 // ****************** methods introduced by ChV *********************** 159 // return fermi momentum 113 // return fermi momentum 160 G4ThreeVector GetFermiMomentum(); 114 G4ThreeVector GetFermiMomentum(); 161 115 162 /* 116 /* 163 // return particle to be absorbed. 117 // return particle to be absorbed. 164 G4DynamicParticle* ReturnAbsorbingParticl 118 G4DynamicParticle* ReturnAbsorbingParticle(G4double weight); 165 */ 119 */ 166 120 167 // final nucleus fragmentation. Return List 121 // final nucleus fragmentation. Return List of particles 168 // which should be used for further tracking 122 // which should be used for further tracking. 169 G4ReactionProductVector* Fragmentate(); 123 G4ReactionProductVector* Fragmentate(); 170 124 171 125 172 // excitation Energy... 126 // excitation Energy... 173 void AddExcitationEnergy(G4double anEnerg 127 void AddExcitationEnergy(G4double anEnergy); 174 128 175 129 176 // momentum of absorbed Particles .. 130 // momentum of absorbed Particles .. 177 void AddMomentum(const G4ThreeVector aMom 131 void AddMomentum(const G4ThreeVector aMomentum); 178 132 179 // return excitation Energy 133 // return excitation Energy 180 G4double GetEnergyDeposit() {return excit 134 G4double GetEnergyDeposit() {return excitationEnergy; } 181 135 182 136 183 137 184 // ****************************** end ChV **** 138 // ****************************** end ChV ****************************** 185 139 186 140 187 private: 141 private: 188 142 189 G4int theA; << 190 G4int theZ; << 191 G4int theL; // Number of Lambdas (in t << 192 G4double aEff; // effective atomic weight 143 G4double aEff; // effective atomic weight 193 G4double zEff; // effective atomic number 144 G4double zEff; // effective atomic number 194 << 195 const G4Isotope* fIsotope; << 196 145 197 G4double pnBlackTrackEnergy; // the kinet 146 G4double pnBlackTrackEnergy; // the kinetic energy available for 198 // proton/ne << 147 // proton/neutron black track particles 199 G4double dtaBlackTrackEnergy; // the kinet 148 G4double dtaBlackTrackEnergy; // the kinetic energy available for 200 // deuteron/ << 149 // deuteron/triton/alpha particles 201 G4double pnBlackTrackEnergyfromAnnihilatio << 202 // kinetic energy availab << 203 // track particles based << 204 G4double dtaBlackTrackEnergyfromAnnihilati << 205 // kinetic energy availab << 206 // black track particles << 207 150 208 151 209 // ************************** member variables 152 // ************************** member variables by ChV ******************* 210 // Excitation Energy leading to evaporation 153 // Excitation Energy leading to evaporation or deexcitation. 211 G4double excitationEnergy; 154 G4double excitationEnergy; 212 155 213 // Momentum, accumulated by absorbing Partic 156 // Momentum, accumulated by absorbing Particles 214 G4ThreeVector momentum; 157 G4ThreeVector momentum; 215 158 216 // Fermi Gas model: at present, we assume co 159 // Fermi Gas model: at present, we assume constant nucleon density for all 217 // nuclei. The radius of a nucleon is taken 160 // nuclei. The radius of a nucleon is taken to be 1 fm. 218 // see for example S.Fl"ugge, Encyclopedia o 161 // see for example S.Fl"ugge, Encyclopedia of Physics, Vol XXXIX, 219 // Structure of Atomic Nuclei (Berlin-Gottin 162 // Structure of Atomic Nuclei (Berlin-Gottingen-Heidelberg, 1957) page 426. 220 163 221 // maximum momentum possible from fermi gas 164 // maximum momentum possible from fermi gas model: 222 G4double fermiMomentum; 165 G4double fermiMomentum; 223 G4double theTemp; // temperature 166 G4double theTemp; // temperature 224 // ****************************** end ChV **** 167 // ****************************** end ChV ****************************** 225 168 226 }; 169 }; 227 170 228 #endif 171 #endif 229 172 230 173