Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 #include "G4QGSMSplitableHadron.hh" 23 #include "G4QGSMSplitableHadron.hh" 27 #include "G4PhysicalConstants.hh" << 28 #include "G4SystemOfUnits.hh" << 29 #include "G4ParticleTable.hh" 24 #include "G4ParticleTable.hh" 30 #include "G4PionPlus.hh" 25 #include "G4PionPlus.hh" 31 #include "G4PionMinus.hh" 26 #include "G4PionMinus.hh" 32 #include "G4Gamma.hh" 27 #include "G4Gamma.hh" 33 #include "G4PionZero.hh" 28 #include "G4PionZero.hh" 34 #include "G4KaonPlus.hh" 29 #include "G4KaonPlus.hh" 35 #include "G4KaonMinus.hh" 30 #include "G4KaonMinus.hh" 36 31 37 #include "G4Log.hh" << 38 #include "G4Pow.hh" << 39 << 40 // based on prototype by Maxim Komogorov 32 // based on prototype by Maxim Komogorov 41 // Splitting into methods, and centralizing of 33 // Splitting into methods, and centralizing of model parameters HPW Feb 1999 42 // restructuring HPW Feb 1999 34 // restructuring HPW Feb 1999 43 // fixing bug in the sampling of 'x', HPW Feb 35 // fixing bug in the sampling of 'x', HPW Feb 1999 44 // fixing bug in sampling pz, HPW Feb 1999. 36 // fixing bug in sampling pz, HPW Feb 1999. 45 // Code now also good for p-nucleus scattering 37 // Code now also good for p-nucleus scattering (before only p-p), HPW Feb 1999. 46 // Using Parton more directly, HPW Feb 1999. 38 // Using Parton more directly, HPW Feb 1999. 47 // Shortening the algorithm for sampling x, HP 39 // Shortening the algorithm for sampling x, HPW Feb 1999. 48 // sampling of x replaced by formula, taking X 40 // sampling of x replaced by formula, taking X_min into account in the correlated sampling. HPW, Feb 1999. 49 // logic much clearer now. HPW Feb 1999 41 // logic much clearer now. HPW Feb 1999 50 // Removed the ordering problem. No Direction 42 // Removed the ordering problem. No Direction needed in selection of valence quark types. HPW Mar'99. 51 // Fixing p-t distributions for scattering of 43 // Fixing p-t distributions for scattering of nuclei. 52 // Separating out parameters. 44 // Separating out parameters. 53 45 54 void G4QGSMSplitableHadron::InitParameters() 46 void G4QGSMSplitableHadron::InitParameters() 55 { 47 { 56 // changing rapidity distribution for all 48 // changing rapidity distribution for all 57 alpha = -0.5; // Note that this number is st 49 alpha = -0.5; // Note that this number is still assumed in the algorithm 58 // needs to be generalized. << 50 // needs to be generalized. 59 // changing rapidity distribution for projec 51 // changing rapidity distribution for projectile like 60 beta = 2.5;// Note that this number is still 52 beta = 2.5;// Note that this number is still assumed in the algorithm 61 // needs to be generalized. << 53 // needs to be generalized. 62 theMinPz = 0.5*G4PionMinus::PionMinus()->Get << 54 theMinPz = 0.5*G4PionMinus::PionMinus()->GetPDGMass(); 63 // theMinPz = 0.1*G4PionMinus::PionMinus()- << 55 // theMinPz = 0.1*G4PionMinus::PionMinus()->GetPDGMass(); 64 // theMinPz = G4PionMinus::PionMinus()->Get << 56 // theMinPz = G4PionMinus::PionMinus()->GetPDGMass(); 65 // as low as possible, otherwise, we have un 57 // as low as possible, otherwise, we have unphysical boundary conditions in the sampling. 66 StrangeSuppress = 0.48; 58 StrangeSuppress = 0.48; 67 sigmaPt = 0.*GeV; // widens eta slightly, if << 59 sigmaPt = 0.*GeV; // widens eta slightly, if increased to 1.7, 68 // but Maxim's algorithm breaks energy conse << 60 // but Maxim's algorithm breaks energy conservation 69 widthOfPtSquare = 0.5*sqr(GeV); << 61 // to be revised. >> 62 widthOfPtSquare = 0.01*GeV*GeV; 70 Direction = FALSE; 63 Direction = FALSE; 71 minTransverseMass = 1*keV; 64 minTransverseMass = 1*keV; 72 iP =0;// Color.begin(); << 73 iAP =0;// AntiColor.begin(); << 74 } 65 } 75 66 76 G4QGSMSplitableHadron::G4QGSMSplitableHadron() 67 G4QGSMSplitableHadron::G4QGSMSplitableHadron() 77 { 68 { 78 InitParameters(); 69 InitParameters(); 79 } 70 } 80 71 81 G4QGSMSplitableHadron::G4QGSMSplitableHadron(c 72 G4QGSMSplitableHadron::G4QGSMSplitableHadron(const G4ReactionProduct & aPrimary, G4bool aDirection) 82 :G4VSplitableHadron(aPrimary) << 73 :G4VSplitableHadron(aPrimary) 83 { 74 { 84 InitParameters(); 75 InitParameters(); 85 Direction = aDirection; 76 Direction = aDirection; 86 } 77 } 87 78 88 << 79 89 G4QGSMSplitableHadron::G4QGSMSplitableHadron(c 80 G4QGSMSplitableHadron::G4QGSMSplitableHadron(const G4ReactionProduct & aPrimary) 90 : G4VSplitableHadron(aPrimary) << 81 : G4VSplitableHadron(aPrimary) 91 { 82 { 92 InitParameters(); 83 InitParameters(); 93 } 84 } 94 85 95 G4QGSMSplitableHadron::G4QGSMSplitableHadron(c 86 G4QGSMSplitableHadron::G4QGSMSplitableHadron(const G4Nucleon & aNucleon) 96 : G4VSplitableHadron(aNucleon) << 87 : G4VSplitableHadron(aNucleon) 97 { 88 { 98 InitParameters(); 89 InitParameters(); 99 } 90 } 100 91 101 G4QGSMSplitableHadron::G4QGSMSplitableHadron(c 92 G4QGSMSplitableHadron::G4QGSMSplitableHadron(const G4Nucleon & aNucleon, G4bool aDirection) 102 : G4VSplitableHadron(aNucleon) << 93 : G4VSplitableHadron(aNucleon) 103 { 94 { 104 InitParameters(); 95 InitParameters(); 105 Direction = aDirection; 96 Direction = aDirection; 106 } 97 } 107 98 108 G4QGSMSplitableHadron::~G4QGSMSplitableHadron( << 99 G4QGSMSplitableHadron::~G4QGSMSplitableHadron(){} 109 100 >> 101 const G4QGSMSplitableHadron & G4QGSMSplitableHadron::operator=(const G4QGSMSplitableHadron &) >> 102 { >> 103 throw G4HadronicException(__FILE__, __LINE__, "G4QGSMSplitableHadron::operator= meant to not be accessable"); >> 104 return *this; >> 105 } 110 106 111 //******************************************** << 112 107 >> 108 //************************************************************************************************************************** >> 109 113 void G4QGSMSplitableHadron::SplitUp() 110 void G4QGSMSplitableHadron::SplitUp() 114 { 111 { 115 if (IsSplit()) return; 112 if (IsSplit()) return; 116 Splitting(); // To mark that a hadron is sp << 113 Splitting(); 117 if (Color.size()!=0) return; 114 if (Color.size()!=0) return; 118 if (GetSoftCollisionCount() == 0) // GetSof << 115 if (GetSoftCollisionCount() == 0) 119 { 116 { 120 DiffractiveSplitUp(); 117 DiffractiveSplitUp(); 121 } 118 } 122 else 119 else 123 { 120 { 124 SoftSplitUp(); 121 SoftSplitUp(); 125 } 122 } 126 } 123 } 127 << 124 128 void G4QGSMSplitableHadron::DiffractiveSplitUp 125 void G4QGSMSplitableHadron::DiffractiveSplitUp() 129 { 126 { 130 // take the particle definitions and get the 127 // take the particle definitions and get the partons HPW 131 G4Parton * Left = NULL; 128 G4Parton * Left = NULL; 132 G4Parton * Right = NULL; 129 G4Parton * Right = NULL; 133 GetValenceQuarkFlavors(GetDefinition(), Left 130 GetValenceQuarkFlavors(GetDefinition(), Left, Right); 134 Left->SetPosition(GetPosition()); 131 Left->SetPosition(GetPosition()); 135 Right->SetPosition(GetPosition()); 132 Right->SetPosition(GetPosition()); 136 << 133 137 G4LorentzVector HadronMom = Get4Momentum(); 134 G4LorentzVector HadronMom = Get4Momentum(); >> 135 //std::cout << "DSU 1 - "<<HadronMom<<std::endl; 138 136 139 G4double maxAvailMomentum2 = sqr(HadronMom.m << 137 // momenta of string ends 140 << 138 G4double pt2 = HadronMom.perp2(); >> 139 G4double transverseMass2 = HadronMom.plus()*HadronMom.minus(); >> 140 G4double maxAvailMomentum2 = sqr(std::sqrt(transverseMass2) - std::sqrt(pt2)); 141 G4ThreeVector pt(minTransverseMass, minTrans 141 G4ThreeVector pt(minTransverseMass, minTransverseMass, 0); 142 if (maxAvailMomentum2/widthOfPtSquare>0.01) << 142 if(maxAvailMomentum2/widthOfPtSquare>0.01) pt = GaussianPt(widthOfPtSquare, maxAvailMomentum2); >> 143 //std::cout << "DSU 1.1 - "<< maxAvailMomentum2<< pt <<std::endl; 143 144 144 G4LorentzVector LeftMom(pt, 0.); 145 G4LorentzVector LeftMom(pt, 0.); 145 G4LorentzVector RightMom; 146 G4LorentzVector RightMom; 146 RightMom.setPx(HadronMom.px() - pt.x()); 147 RightMom.setPx(HadronMom.px() - pt.x()); 147 RightMom.setPy(HadronMom.py() - pt.y()); 148 RightMom.setPy(HadronMom.py() - pt.y()); >> 149 //std::cout << "DSU 2 - "<<RightMom<<" "<< LeftMom <<std::endl; 148 150 149 G4double Local1 = HadronMom.minus() + (Right 151 G4double Local1 = HadronMom.minus() + (RightMom.perp2() - LeftMom.perp2())/HadronMom.plus(); 150 G4double Local2 = std::sqrt(std::max(0., sqr 152 G4double Local2 = std::sqrt(std::max(0., sqr(Local1) - 4.*RightMom.perp2()*HadronMom.minus()/HadronMom.plus())); 151 << 153 //std::cout << "DSU 3 - "<< Local1 <<" "<< Local2 <<std::endl; 152 if (Direction) Local2 = -Local2; << 154 if (Direction) Local2 = -Local2; 153 G4double RightMinus = 0.5*(Local1 + Local2 155 G4double RightMinus = 0.5*(Local1 + Local2); 154 G4double LeftMinus = HadronMom.minus() - Rig 156 G4double LeftMinus = HadronMom.minus() - RightMinus; 155 << 157 //std::cout << "DSU 4 - "<< RightMinus <<" "<< LeftMinus << " "<<HadronMom.minus() <<std::endl; 156 if (LeftMinus <= 0.) { << 157 RightMinus = 0.5*(Local1 - Local2); << 158 LeftMinus = HadronMom.minus() - RightMinus << 159 } << 160 158 161 G4double LeftPlus = LeftMom.perp2()/LeftMin 159 G4double LeftPlus = LeftMom.perp2()/LeftMinus; 162 G4double RightPlus = HadronMom.plus() - Left 160 G4double RightPlus = HadronMom.plus() - LeftPlus; 163 << 161 //std::cout << "DSU 5 - "<< RightPlus <<" "<< LeftPlus <<std::endl; 164 LeftMom.setPz(0.5*(LeftPlus - LeftMinus)); 162 LeftMom.setPz(0.5*(LeftPlus - LeftMinus)); 165 LeftMom.setE (0.5*(LeftPlus + LeftMinus)); 163 LeftMom.setE (0.5*(LeftPlus + LeftMinus)); 166 RightMom.setPz(0.5*(RightPlus - RightMinus)) 164 RightMom.setPz(0.5*(RightPlus - RightMinus)); 167 RightMom.setE (0.5*(RightPlus + RightMinus)) 165 RightMom.setE (0.5*(RightPlus + RightMinus)); 168 << 166 //std::cout << "DSU 6 - "<< LeftMom <<" "<< RightMom <<std::endl; 169 Left->Set4Momentum(LeftMom); 167 Left->Set4Momentum(LeftMom); 170 Right->Set4Momentum(RightMom); 168 Right->Set4Momentum(RightMom); 171 << 172 Color.push_back(Left); 169 Color.push_back(Left); 173 AntiColor.push_back(Right); 170 AntiColor.push_back(Right); 174 iP=0; iAP=0; << 175 } 171 } 176 172 177 173 178 void G4QGSMSplitableHadron::SoftSplitUp() 174 void G4QGSMSplitableHadron::SoftSplitUp() 179 { 175 { 180 G4int nSeaPair = GetSoftCollisionCount()-1; << 176 //... sample transversal momenta for sea and valence quarks 181 << 177 G4double phi, pts; 182 G4LorentzVector tmp(0., 0., 0., 0.); << 178 G4double SumPy = 0.; 183 << 179 G4double SumPx = 0.; 184 G4int aSeaPair; << 180 G4ThreeVector Pos = GetPosition(); 185 for (aSeaPair = 0; aSeaPair < nSeaPair; aSea << 181 G4int nSeaPair = GetSoftCollisionCount()-1; 186 { << 182 187 // choose quark flavour, d:u:s = 1:1:(1/S << 183 // here the condition,to ensure viability of splitting, also in cases 188 G4int aPDGCode = 1 + (G4int)(G4UniformRand << 184 // where difractive excitation occured together with soft scattering. 189 << 185 // G4double LightConeMomentum = (Direction)? Get4Momentum().plus() : Get4Momentum().minus(); 190 // BuildSeaQuark() determines quark spin, << 186 // G4double Xmin = theMinPz/LightConeMomentum; 191 // via parton-constructor G4Parton(aPDGCo << 187 G4double Xmin = theMinPz/( Get4Momentum().e() - GetDefinition()->GetPDGMass() ); 192 G4Parton * aParton = BuildSeaQuark(false, << 188 while(Xmin>=1-(2*nSeaPair+1)*Xmin) Xmin*=0.95; 193 << 189 194 G4int firstPartonColour = aParton->GetColo << 190 G4int aSeaPair; 195 G4double firstPartonSpinZ = aParton->GetSp << 191 for (aSeaPair = 0; aSeaPair < nSeaPair; aSeaPair++) 196 << 192 { 197 aParton->Set4Momentum(tmp); << 193 // choose quark flavour, d:u:s = 1:1:(1/StrangeSuppress-2) 198 Color.push_back(aParton); << 194 199 << 195 G4int aPDGCode = 1 + (G4int)(G4UniformRand()/StrangeSuppress); 200 // create anti-quark << 196 201 aParton = BuildSeaQuark(true, aPDGCode, nS << 197 // BuildSeaQuark() determines quark spin, isospin and colour 202 aParton->SetSpinZ(-firstPartonSpinZ); << 198 // via parton-constructor G4Parton(aPDGCode) 203 aParton->SetColour(-firstPartonColour); << 199 204 AntiColor.push_back(aParton); << 200 G4Parton * aParton = BuildSeaQuark(false, aPDGCode, nSeaPair); 205 } << 201 206 << 202 // G4cerr << "G4QGSMSplitableHadron::SoftSplitUp()" << G4endl; 207 // Valence quark << 203 208 G4Parton* pColorParton = NULL; << 204 // G4cerr << "Parton 1: " 209 G4Parton* pAntiColorParton = NULL; << 205 // << " PDGcode: " << aPDGCode 210 GetValenceQuarkFlavors(GetDefinition(), pCol << 206 // << " - Name: " << aParton->GetDefinition()->GetParticleName() 211 << 207 // << " - Type: " << aParton->GetDefinition()->GetParticleType() 212 pColorParton->Set4Momentum(tmp); << 208 // << " - Spin-3: " << aParton->GetSpinZ() 213 pAntiColorParton->Set4Momentum(tmp); << 209 // << " - Colour: " << aParton->GetColour() << G4endl; 214 << 210 215 Color.push_back(pColorParton); << 211 // save colour a spin-3 for anti-quark 216 AntiColor.push_back(pAntiColorParton); << 212 217 << 213 G4int firstPartonColour = aParton->GetColour(); 218 iP=0; iAP=0; << 214 G4double firstPartonSpinZ = aParton->GetSpinZ(); 219 << 215 220 return; << 216 SumPx += aParton->Get4Momentum().px(); >> 217 SumPy += aParton->Get4Momentum().py(); >> 218 Color.push_back(aParton); >> 219 >> 220 // create anti-quark >> 221 >> 222 aParton = BuildSeaQuark(true, aPDGCode, nSeaPair); >> 223 aParton->SetSpinZ(-firstPartonSpinZ); >> 224 aParton->SetColour(-firstPartonColour); >> 225 >> 226 // G4cerr << "Parton 2: " >> 227 // << " PDGcode: " << -aPDGCode >> 228 // << " - Name: " << aParton->GetDefinition()->GetParticleName() >> 229 // << " - Type: " << aParton->GetDefinition()->GetParticleType() >> 230 // << " - Spin-3: " << aParton->GetSpinZ() >> 231 // << " - Colour: " << aParton->GetColour() << G4endl; >> 232 // G4cerr << "------------" << G4endl; >> 233 >> 234 SumPx += aParton->Get4Momentum().px(); >> 235 SumPy += aParton->Get4Momentum().py(); >> 236 AntiColor.push_back(aParton); >> 237 } >> 238 // Valence quark >> 239 G4Parton* pColorParton = NULL; >> 240 G4Parton* pAntiColorParton = NULL; >> 241 GetValenceQuarkFlavors(GetDefinition(), pColorParton, pAntiColorParton); >> 242 G4int ColorEncoding = pColorParton->GetPDGcode(); >> 243 G4int AntiColorEncoding = pAntiColorParton->GetPDGcode(); >> 244 >> 245 pts = sigmaPt*std::sqrt(-std::log(G4UniformRand())); >> 246 phi = 2.*pi*G4UniformRand(); >> 247 G4double Px = pts*std::cos(phi); >> 248 G4double Py = pts*std::sin(phi); >> 249 SumPx += Px; >> 250 SumPy += Py; >> 251 >> 252 if (ColorEncoding < 0) // use particle definition >> 253 { >> 254 G4LorentzVector ColorMom(-SumPx, -SumPy, 0, 0); >> 255 pColorParton->Set4Momentum(ColorMom); >> 256 G4LorentzVector AntiColorMom(Px, Py, 0, 0); >> 257 pAntiColorParton->Set4Momentum(AntiColorMom); >> 258 } >> 259 else >> 260 { >> 261 G4LorentzVector ColorMom(Px, Py, 0, 0); >> 262 pColorParton->Set4Momentum(ColorMom); >> 263 G4LorentzVector AntiColorMom(-SumPx, -SumPy, 0, 0); >> 264 pAntiColorParton->Set4Momentum(AntiColorMom); >> 265 } >> 266 Color.push_back(pColorParton); >> 267 AntiColor.push_back(pAntiColorParton); >> 268 >> 269 // Sample X >> 270 G4int nAttempt = 0; >> 271 G4double SumX = 0; >> 272 G4double aBeta = beta; >> 273 G4double ColorX, AntiColorX; >> 274 G4double HPWtest = 0; >> 275 if (GetDefinition() == G4PionMinus::PionMinusDefinition()) aBeta = 1.; >> 276 if (GetDefinition() == G4Gamma::GammaDefinition()) aBeta = 1.; >> 277 if (GetDefinition() == G4PionPlus::PionPlusDefinition()) aBeta = 1.; >> 278 if (GetDefinition() == G4PionZero::PionZeroDefinition()) aBeta = 1.; >> 279 if (GetDefinition() == G4KaonPlus::KaonPlusDefinition()) aBeta = 0.; >> 280 if (GetDefinition() == G4KaonMinus::KaonMinusDefinition()) aBeta = 0.; >> 281 do >> 282 { >> 283 SumX = 0; >> 284 nAttempt++; >> 285 G4int NumberOfUnsampledSeaQuarks = 2*nSeaPair; >> 286 G4double beta1 = beta; >> 287 if (std::abs(ColorEncoding) <= 1000 && std::abs(AntiColorEncoding) <= 1000) beta1 = 1.; //... in a meson >> 288 ColorX = SampleX(Xmin, NumberOfUnsampledSeaQuarks, 2*nSeaPair, aBeta); >> 289 HPWtest = ColorX; >> 290 while (ColorX < Xmin || ColorX > 1.|| 1. - ColorX <= Xmin); >> 291 Color.back()->SetX(SumX = ColorX);// this is the valenz quark. >> 292 for(G4int aPair = 0; aPair < nSeaPair; aPair++) >> 293 { >> 294 NumberOfUnsampledSeaQuarks--; >> 295 ColorX = SampleX(Xmin, NumberOfUnsampledSeaQuarks, 2*nSeaPair, aBeta); >> 296 Color[aPair]->SetX(ColorX); >> 297 SumX += ColorX; >> 298 NumberOfUnsampledSeaQuarks--; >> 299 AntiColorX = SampleX(Xmin, NumberOfUnsampledSeaQuarks, 2*nSeaPair, aBeta); >> 300 AntiColor[aPair]->SetX(AntiColorX); // the 'sea' partons >> 301 SumX += AntiColorX; >> 302 if (1. - SumX <= Xmin) break; >> 303 } >> 304 } >> 305 while (1. - SumX <= Xmin); >> 306 (*(AntiColor.end()-1))->SetX(1. - SumX); // the di-quark takes the rest, then go to momentum >> 307 /// and here is the bug ;-) @@@@@@@@@@@@@ >> 308 if(getenv("debug_QGSMSplitableHadron") )G4cout << "particle energy at split = "<<Get4Momentum().t()<<G4endl; >> 309 G4double lightCone = ((!Direction) ? Get4Momentum().minus() : Get4Momentum().plus()); >> 310 // lightCone -= 0.5*Get4Momentum().m(); >> 311 // hpw testing @@@@@ lightCone = 2.*Get4Momentum().t(); >> 312 if(getenv("debug_QGSMSplitableHadron") )G4cout << "Light cone = "<<lightCone<<G4endl; >> 313 for(aSeaPair = 0; aSeaPair < nSeaPair+1; aSeaPair++) >> 314 { >> 315 G4Parton* aParton = Color[aSeaPair]; >> 316 aParton->DefineMomentumInZ(lightCone, Direction); >> 317 >> 318 aParton = AntiColor[aSeaPair]; >> 319 aParton->DefineMomentumInZ(lightCone, Direction); >> 320 } >> 321 //--DEBUG-- cout <<G4endl<<"XSAMPLE "<<HPWtest<<G4endl; >> 322 return; 221 } 323 } 222 324 223 << 325 void G4QGSMSplitableHadron::GetValenceQuarkFlavors(const G4ParticleDefinition * aPart, G4Parton *& Parton1, G4Parton *& Parton2) 224 void G4QGSMSplitableHadron::GetValenceQuarkFla << 225 << 226 { 326 { 227 // Note! convention aEnd = q or (qq)bar and << 327 // Note! convention aEnd = q or (qq)bar and bEnd = qbar or qq. 228 G4int aEnd=0; << 328 G4int aEnd; 229 G4int bEnd=0; << 329 G4int bEnd; 230 G4int HadronEncoding = aPart->GetPDGEncoding 330 G4int HadronEncoding = aPart->GetPDGEncoding(); 231 if (aPart->GetBaryonNumber() == 0) << 331 if (aPart->GetBaryonNumber() == 0) 232 { 332 { 233 theMesonSplitter.SplitMeson(HadronEncoding << 333 theMesonSplitter.SplitMeson(HadronEncoding, &aEnd, &bEnd); 234 } 334 } 235 else 335 else 236 { 336 { 237 theBaryonSplitter.SplitBarion(HadronEncodi << 337 theBaryonSplitter.SplitBarion(HadronEncoding, &aEnd, &bEnd); 238 } << 338 } 239 339 240 Parton1 = new G4Parton(aEnd); 340 Parton1 = new G4Parton(aEnd); 241 Parton1->SetPosition(GetPosition()); 341 Parton1->SetPosition(GetPosition()); 242 342 >> 343 // G4cerr << "G4QGSMSplitableHadron::GetValenceQuarkFlavors()" << G4endl; >> 344 // G4cerr << "Parton 1: " >> 345 // << " PDGcode: " << aEnd >> 346 // << " - Name: " << Parton1->GetDefinition()->GetParticleName() >> 347 // << " - Type: " << Parton1->GetDefinition()->GetParticleType() >> 348 // << " - Spin-3: " << Parton1->GetSpinZ() >> 349 // << " - Colour: " << Parton1->GetColour() << G4endl; >> 350 243 Parton2 = new G4Parton(bEnd); 351 Parton2 = new G4Parton(bEnd); 244 Parton2->SetPosition(GetPosition()); 352 Parton2->SetPosition(GetPosition()); 245 353 >> 354 // G4cerr << "Parton 2: " >> 355 // << " PDGcode: " << bEnd >> 356 // << " - Name: " << Parton2->GetDefinition()->GetParticleName() >> 357 // << " - Type: " << Parton2->GetDefinition()->GetParticleType() >> 358 // << " - Spin-3: " << Parton2->GetSpinZ() >> 359 // << " - Colour: " << Parton2->GetColour() << G4endl; >> 360 // G4cerr << "... now checking for color and spin conservation - yielding: " << G4endl; >> 361 246 // colour of parton 1 choosen at random by G 362 // colour of parton 1 choosen at random by G4Parton(aEnd) 247 // colour of parton 2 is the opposite: 363 // colour of parton 2 is the opposite: 248 364 249 Parton2->SetColour(-(Parton1->GetColour())); 365 Parton2->SetColour(-(Parton1->GetColour())); 250 366 251 // isospin-3 of both partons is handled by G << 367 // isospin-3 of both partons is handled by G4Parton(PDGCode) 252 368 253 // spin-3 of parton 1 and 2 choosen at rando << 369 // spin-3 of parton 1 and 2 choosen at random by G4Parton(aEnd) 254 // spin-3 of parton 2 may be constrained by << 370 // spin-3 of parton 2 may be constrained by spin of original particle: 255 371 256 if ( std::abs(Parton1->GetSpinZ() + Parton2- << 372 if ( std::abs(Parton1->GetSpinZ() + Parton2->GetSpinZ()) > aPart->GetPDGSpin()) 257 { 373 { 258 Parton2->SetSpinZ(-(Parton2->GetSpinZ())); << 374 Parton2->SetSpinZ(-(Parton2->GetSpinZ())); 259 } << 375 } 260 } << 261 376 >> 377 // G4cerr << "Parton 2: " >> 378 // << " PDGcode: " << bEnd >> 379 // << " - Name: " << Parton2->GetDefinition()->GetParticleName() >> 380 // << " - Type: " << Parton2->GetDefinition()->GetParticleType() >> 381 // << " - Spin-3: " << Parton2->GetSpinZ() >> 382 // << " - Colour: " << Parton2->GetColour() << G4endl; >> 383 // G4cerr << "------------" << G4endl; 262 384 >> 385 } >> 386 >> 387 263 G4ThreeVector G4QGSMSplitableHadron::GaussianP 388 G4ThreeVector G4QGSMSplitableHadron::GaussianPt(G4double widthSquare, G4double maxPtSquare) 264 { 389 { 265 G4double R; 390 G4double R; 266 const G4int maxNumberOfLoops = 1000; << 391 while((R = -widthSquare*std::log(G4UniformRand())) > maxPtSquare); 267 G4int loopCounter = -1; << 268 while( ((R = -widthSquare*G4Log(G4UniformRan << 269 ++loopCounter < maxNumberOfLoops ) {; << 270 if ( loopCounter >= maxNumberOfLoops ) { << 271 R = 0.99*maxPtSquare; // Just an acceptab << 272 } << 273 R = std::sqrt(R); 392 R = std::sqrt(R); 274 G4double phi = twopi*G4UniformRand(); 393 G4double phi = twopi*G4UniformRand(); 275 return G4ThreeVector (R*std::cos(phi), R*std << 394 return G4ThreeVector (R*std::cos(phi), R*std::sin(phi), 0.); 276 } 395 } 277 396 278 << 279 G4Parton * G4QGSMSplitableHadron:: 397 G4Parton * G4QGSMSplitableHadron:: 280 BuildSeaQuark(G4bool isAntiQuark, G4int aPDGCo 398 BuildSeaQuark(G4bool isAntiQuark, G4int aPDGCode, G4int /* nSeaPair*/) 281 { 399 { 282 if (isAntiQuark) aPDGCode*=-1; 400 if (isAntiQuark) aPDGCode*=-1; 283 G4Parton* result = new G4Parton(aPDGCode); << 401 G4Parton* result = new G4Parton(aPDGCode); 284 result->SetPosition(GetPosition()); 402 result->SetPosition(GetPosition()); 285 G4ThreeVector aPtVector = GaussianPt(sigmaPt 403 G4ThreeVector aPtVector = GaussianPt(sigmaPt, DBL_MAX); 286 G4LorentzVector a4Momentum(aPtVector, 0); 404 G4LorentzVector a4Momentum(aPtVector, 0); 287 result->Set4Momentum(a4Momentum); 405 result->Set4Momentum(a4Momentum); 288 return result; 406 return result; 289 } 407 } 290 408 291 << 292 G4double G4QGSMSplitableHadron:: 409 G4double G4QGSMSplitableHadron:: 293 SampleX(G4double anXmin, G4int nSea, G4int tot 410 SampleX(G4double anXmin, G4int nSea, G4int totalSea, G4double aBeta) 294 { 411 { 295 G4double result; 412 G4double result; 296 G4double x1, x2; 413 G4double x1, x2; 297 G4double ymax = 0; 414 G4double ymax = 0; 298 for(G4int ii=1; ii<100; ii++) << 415 for(G4int ii=0; ii<100; ii++) 299 { 416 { 300 G4double y = G4Pow::GetInstance()->powA(1. << 417 G4double y = std::pow(1./G4double(ii), alpha); 301 y *= G4Pow::GetInstance()->powN( G4Pow::Ge << 418 y *= std::pow( std::pow(1-anXmin-totalSea*anXmin, alpha+1) - std::pow(anXmin, alpha+1), nSea); 302 G4Pow::Ge << 419 y *= std::pow(1-anXmin-totalSea*anXmin, aBeta+1) - std::pow(anXmin, aBeta+1); 303 y *= G4Pow::GetInstance()->powA(1-anXmin-t << 420 if(y>ymax) ymax = y; 304 G4Pow::GetInstance()->powA(anXmin, aB << 305 if (y>ymax) ymax = y; << 306 } 421 } 307 G4double y; 422 G4double y; 308 G4double xMax=1-(totalSea+1)*anXmin; 423 G4double xMax=1-(totalSea+1)*anXmin; 309 if (anXmin > xMax) << 424 if(anXmin > xMax) 310 { 425 { 311 throw G4HadronicException(__FILE__, __LINE << 426 G4cout << "anXmin = "<<anXmin<<" nSea = "<<nSea<<" totalSea = "<< totalSea<<G4endl; 312 "G4QGSMSplitableHadron - Fatal: Ca << 427 throw G4HadronicException(__FILE__, __LINE__, "G4QGSMSplitableHadron - Fatal: Cannot sample parton densities under these constraints."); 313 } 428 } 314 const G4int maxNumberOfLoops = 1000; << 315 G4int loopCounter = 0; << 316 do 429 do 317 { 430 { 318 x1 = G4RandFlat::shoot(anXmin, xMax); << 431 x1 = CLHEP::RandFlat::shoot(anXmin, xMax); 319 y = G4Pow::GetInstance()->powA(x1, alpha); << 432 y = std::pow(x1, alpha); 320 y *= G4Pow::GetInstance()->powN( G4Pow::Ge << 433 y *= std::pow( std::pow(1-x1-totalSea*anXmin, alpha+1) - std::pow(anXmin, alpha+1), nSea); 321 G4Pow::Ge << 434 y *= std::pow(1-x1-totalSea*anXmin, aBeta+1) - std::pow(anXmin, aBeta+1); 322 y *= G4Pow::GetInstance()->powA(1-x1-total << 323 G4Pow::GetInstance()->powA(anXmin, aB << 324 x2 = ymax*G4UniformRand(); 435 x2 = ymax*G4UniformRand(); 325 } while( (x2>y) && ++loopCounter < maxNumber << 326 if ( loopCounter >= maxNumberOfLoops ) { << 327 x1 = 0.5*( anXmin + xMax ); // Just an ac << 328 } 436 } >> 437 while(x2>y); 329 result = x1; 438 result = x1; 330 return result; << 439 return result; 331 } 440 } 332 441