Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 #include "G4QGSMSplitableHadron.hh" 26 #include "G4QGSMSplitableHadron.hh" 27 #include "G4PhysicalConstants.hh" 27 #include "G4PhysicalConstants.hh" 28 #include "G4SystemOfUnits.hh" 28 #include "G4SystemOfUnits.hh" 29 #include "G4ParticleTable.hh" 29 #include "G4ParticleTable.hh" 30 #include "G4PionPlus.hh" 30 #include "G4PionPlus.hh" 31 #include "G4PionMinus.hh" 31 #include "G4PionMinus.hh" 32 #include "G4Gamma.hh" 32 #include "G4Gamma.hh" 33 #include "G4PionZero.hh" 33 #include "G4PionZero.hh" 34 #include "G4KaonPlus.hh" 34 #include "G4KaonPlus.hh" 35 #include "G4KaonMinus.hh" 35 #include "G4KaonMinus.hh" 36 36 37 #include "G4Log.hh" << 38 #include "G4Pow.hh" << 39 << 40 // based on prototype by Maxim Komogorov 37 // based on prototype by Maxim Komogorov 41 // Splitting into methods, and centralizing of 38 // Splitting into methods, and centralizing of model parameters HPW Feb 1999 42 // restructuring HPW Feb 1999 39 // restructuring HPW Feb 1999 43 // fixing bug in the sampling of 'x', HPW Feb 40 // fixing bug in the sampling of 'x', HPW Feb 1999 44 // fixing bug in sampling pz, HPW Feb 1999. 41 // fixing bug in sampling pz, HPW Feb 1999. 45 // Code now also good for p-nucleus scattering 42 // Code now also good for p-nucleus scattering (before only p-p), HPW Feb 1999. 46 // Using Parton more directly, HPW Feb 1999. 43 // Using Parton more directly, HPW Feb 1999. 47 // Shortening the algorithm for sampling x, HP 44 // Shortening the algorithm for sampling x, HPW Feb 1999. 48 // sampling of x replaced by formula, taking X 45 // sampling of x replaced by formula, taking X_min into account in the correlated sampling. HPW, Feb 1999. 49 // logic much clearer now. HPW Feb 1999 46 // logic much clearer now. HPW Feb 1999 50 // Removed the ordering problem. No Direction 47 // Removed the ordering problem. No Direction needed in selection of valence quark types. HPW Mar'99. 51 // Fixing p-t distributions for scattering of 48 // Fixing p-t distributions for scattering of nuclei. 52 // Separating out parameters. 49 // Separating out parameters. 53 50 54 void G4QGSMSplitableHadron::InitParameters() 51 void G4QGSMSplitableHadron::InitParameters() 55 { 52 { 56 // changing rapidity distribution for all << 53 // changing rapidity distribution for all 57 alpha = -0.5; // Note that this number is st << 54 alpha = -0.5; // Note that this number is still assumed in the algorithm 58 // needs to be generalized. << 55 // needs to be generalized. 59 // changing rapidity distribution for projec << 56 // changing rapidity distribution for projectile like 60 beta = 2.5;// Note that this number is still << 57 beta = 2.5;// Note that this number is still assumed in the algorithm 61 // needs to be generalized. << 58 // needs to be generalized. 62 theMinPz = 0.5*G4PionMinus::PionMinus()->Get << 59 theMinPz = 0.5*G4PionMinus::PionMinus()->GetPDGMass(); 63 // theMinPz = 0.1*G4PionMinus::PionMinus()- << 60 // theMinPz = 0.1*G4PionMinus::PionMinus()->GetPDGMass(); 64 // theMinPz = G4PionMinus::PionMinus()->Get << 61 // theMinPz = G4PionMinus::PionMinus()->GetPDGMass(); 65 // as low as possible, otherwise, we have un << 62 // as low as possible, otherwise, we have unphysical boundary conditions in the sampling. 66 StrangeSuppress = 0.48; << 63 StrangeSuppress = 0.48; 67 sigmaPt = 0.*GeV; // widens eta slightly, if << 64 sigmaPt = 0.*GeV; // widens eta slightly, if increased to 1.7, 68 // but Maxim's algorithm breaks energy conse << 65 // but Maxim's algorithm breaks energy conservation 69 widthOfPtSquare = 0.5*sqr(GeV); << 66 // to be revised. 70 Direction = FALSE; << 67 widthOfPtSquare = 0.01*GeV*GeV; 71 minTransverseMass = 1*keV; << 68 Direction = FALSE; 72 iP =0;// Color.begin(); << 69 minTransverseMass = 1*keV; 73 iAP =0;// AntiColor.begin(); << 74 } 70 } 75 71 76 G4QGSMSplitableHadron::G4QGSMSplitableHadron() 72 G4QGSMSplitableHadron::G4QGSMSplitableHadron() 77 { 73 { 78 InitParameters(); << 74 InitParameters(); 79 } 75 } 80 76 81 G4QGSMSplitableHadron::G4QGSMSplitableHadron(c 77 G4QGSMSplitableHadron::G4QGSMSplitableHadron(const G4ReactionProduct & aPrimary, G4bool aDirection) 82 :G4VSplitableHadron(aPrimary) 78 :G4VSplitableHadron(aPrimary) 83 { 79 { 84 InitParameters(); << 80 InitParameters(); 85 Direction = aDirection; << 81 Direction = aDirection; 86 } 82 } 87 83 88 84 89 G4QGSMSplitableHadron::G4QGSMSplitableHadron(c 85 G4QGSMSplitableHadron::G4QGSMSplitableHadron(const G4ReactionProduct & aPrimary) 90 : G4VSplitableHadron(aPrimary) 86 : G4VSplitableHadron(aPrimary) 91 { 87 { 92 InitParameters(); << 88 InitParameters(); 93 } 89 } 94 90 95 G4QGSMSplitableHadron::G4QGSMSplitableHadron(c 91 G4QGSMSplitableHadron::G4QGSMSplitableHadron(const G4Nucleon & aNucleon) 96 : G4VSplitableHadron(aNucleon) 92 : G4VSplitableHadron(aNucleon) 97 { 93 { 98 InitParameters(); << 94 InitParameters(); 99 } 95 } 100 96 101 G4QGSMSplitableHadron::G4QGSMSplitableHadron(c 97 G4QGSMSplitableHadron::G4QGSMSplitableHadron(const G4Nucleon & aNucleon, G4bool aDirection) 102 : G4VSplitableHadron(aNucleon) 98 : G4VSplitableHadron(aNucleon) 103 { 99 { 104 InitParameters(); << 100 InitParameters(); 105 Direction = aDirection; << 101 Direction = aDirection; 106 } 102 } 107 103 108 G4QGSMSplitableHadron::~G4QGSMSplitableHadron( << 104 G4QGSMSplitableHadron::~G4QGSMSplitableHadron(){} >> 105 109 106 110 107 111 //******************************************** 108 //************************************************************************************************************************** 112 109 113 void G4QGSMSplitableHadron::SplitUp() 110 void G4QGSMSplitableHadron::SplitUp() 114 { 111 { 115 if (IsSplit()) return; << 112 if (IsSplit()) return; 116 Splitting(); // To mark that a hadron is sp << 113 Splitting(); 117 if (Color.size()!=0) return; << 114 if (Color.size()!=0) return; 118 if (GetSoftCollisionCount() == 0) // GetSof << 115 if (GetSoftCollisionCount() == 0) 119 { << 116 { 120 DiffractiveSplitUp(); << 117 DiffractiveSplitUp(); 121 } << 118 } 122 else << 119 else 123 { << 120 { 124 SoftSplitUp(); << 121 SoftSplitUp(); 125 } << 122 } 126 } 123 } 127 124 128 void G4QGSMSplitableHadron::DiffractiveSplitUp 125 void G4QGSMSplitableHadron::DiffractiveSplitUp() 129 { 126 { 130 // take the particle definitions and get the << 127 // take the particle definitions and get the partons HPW 131 G4Parton * Left = NULL; << 128 G4Parton * Left = NULL; 132 G4Parton * Right = NULL; << 129 G4Parton * Right = NULL; 133 GetValenceQuarkFlavors(GetDefinition(), Left << 130 GetValenceQuarkFlavors(GetDefinition(), Left, Right); 134 Left->SetPosition(GetPosition()); << 131 Left->SetPosition(GetPosition()); 135 Right->SetPosition(GetPosition()); << 132 Right->SetPosition(GetPosition()); 136 << 133 137 G4LorentzVector HadronMom = Get4Momentum(); << 134 G4LorentzVector HadronMom = Get4Momentum(); 138 << 135 //std::cout << "DSU 1 - "<<HadronMom<<std::endl; 139 G4double maxAvailMomentum2 = sqr(HadronMom.m << 136 140 << 137 // momenta of string ends 141 G4ThreeVector pt(minTransverseMass, minTrans << 138 G4double pt2 = HadronMom.perp2(); 142 if (maxAvailMomentum2/widthOfPtSquare>0.01) << 139 G4double transverseMass2 = HadronMom.plus()*HadronMom.minus(); 143 << 140 G4double maxAvailMomentum2 = sqr(std::sqrt(transverseMass2) - std::sqrt(pt2)); 144 G4LorentzVector LeftMom(pt, 0.); << 141 G4ThreeVector pt(minTransverseMass, minTransverseMass, 0); 145 G4LorentzVector RightMom; << 142 if(maxAvailMomentum2/widthOfPtSquare>0.01) pt = GaussianPt(widthOfPtSquare, maxAvailMomentum2); 146 RightMom.setPx(HadronMom.px() - pt.x()); << 143 //std::cout << "DSU 1.1 - "<< maxAvailMomentum2<< pt <<std::endl; 147 RightMom.setPy(HadronMom.py() - pt.y()); << 144 148 << 145 G4LorentzVector LeftMom(pt, 0.); 149 G4double Local1 = HadronMom.minus() + (Right << 146 G4LorentzVector RightMom; 150 G4double Local2 = std::sqrt(std::max(0., sqr << 147 RightMom.setPx(HadronMom.px() - pt.x()); 151 << 148 RightMom.setPy(HadronMom.py() - pt.y()); 152 if (Direction) Local2 = -Local2; << 149 //std::cout << "DSU 2 - "<<RightMom<<" "<< LeftMom <<std::endl; 153 G4double RightMinus = 0.5*(Local1 + Local2 << 150 154 G4double LeftMinus = HadronMom.minus() - Rig << 151 G4double Local1 = HadronMom.minus() + (RightMom.perp2() - LeftMom.perp2())/HadronMom.plus(); 155 << 152 G4double Local2 = std::sqrt(std::max(0., sqr(Local1) - 4.*RightMom.perp2()*HadronMom.minus()/HadronMom.plus())); 156 if (LeftMinus <= 0.) { << 153 //std::cout << "DSU 3 - "<< Local1 <<" "<< Local2 <<std::endl; 157 RightMinus = 0.5*(Local1 - Local2); << 154 if (Direction) Local2 = -Local2; 158 LeftMinus = HadronMom.minus() - RightMinus << 155 G4double RightMinus = 0.5*(Local1 + Local2); 159 } << 156 G4double LeftMinus = HadronMom.minus() - RightMinus; 160 << 157 //std::cout << "DSU 4 - "<< RightMinus <<" "<< LeftMinus << " "<<HadronMom.minus() <<std::endl; 161 G4double LeftPlus = LeftMom.perp2()/LeftMin << 158 162 G4double RightPlus = HadronMom.plus() - Left << 159 G4double LeftPlus = LeftMom.perp2()/LeftMinus; 163 << 160 G4double RightPlus = HadronMom.plus() - LeftPlus; 164 LeftMom.setPz(0.5*(LeftPlus - LeftMinus)); << 161 //std::cout << "DSU 5 - "<< RightPlus <<" "<< LeftPlus <<std::endl; 165 LeftMom.setE (0.5*(LeftPlus + LeftMinus)); << 162 LeftMom.setPz(0.5*(LeftPlus - LeftMinus)); 166 RightMom.setPz(0.5*(RightPlus - RightMinus)) << 163 LeftMom.setE (0.5*(LeftPlus + LeftMinus)); 167 RightMom.setE (0.5*(RightPlus + RightMinus)) << 164 RightMom.setPz(0.5*(RightPlus - RightMinus)); 168 << 165 RightMom.setE (0.5*(RightPlus + RightMinus)); 169 Left->Set4Momentum(LeftMom); << 166 //std::cout << "DSU 6 - "<< LeftMom <<" "<< RightMom <<std::endl; 170 Right->Set4Momentum(RightMom); << 167 Left->Set4Momentum(LeftMom); 171 << 168 Right->Set4Momentum(RightMom); 172 Color.push_back(Left); << 169 Color.push_back(Left); 173 AntiColor.push_back(Right); << 170 AntiColor.push_back(Right); 174 iP=0; iAP=0; << 175 } 171 } 176 172 177 173 178 void G4QGSMSplitableHadron::SoftSplitUp() 174 void G4QGSMSplitableHadron::SoftSplitUp() 179 { 175 { 180 G4int nSeaPair = GetSoftCollisionCount()-1; << 176 //... sample transversal momenta for sea and valence quarks 181 << 177 G4double phi, pts; 182 G4LorentzVector tmp(0., 0., 0., 0.); << 178 G4double SumPy = 0.; 183 << 179 G4double SumPx = 0.; 184 G4int aSeaPair; << 180 G4ThreeVector Pos = GetPosition(); 185 for (aSeaPair = 0; aSeaPair < nSeaPair; aSea << 181 G4int nSeaPair = GetSoftCollisionCount()-1; 186 { << 182 187 // choose quark flavour, d:u:s = 1:1:(1/S << 183 // here the condition,to ensure viability of splitting, also in cases 188 G4int aPDGCode = 1 + (G4int)(G4UniformRand << 184 // where difractive excitation occured together with soft scattering. 189 << 185 // G4double LightConeMomentum = (Direction)? Get4Momentum().plus() : Get4Momentum().minus(); 190 // BuildSeaQuark() determines quark spin, << 186 // G4double Xmin = theMinPz/LightConeMomentum; 191 // via parton-constructor G4Parton(aPDGCo << 187 G4double Xmin = theMinPz/( Get4Momentum().e() - GetDefinition()->GetPDGMass() ); 192 G4Parton * aParton = BuildSeaQuark(false, << 188 while(Xmin>=1-(2*nSeaPair+1)*Xmin) Xmin*=0.95; 193 << 189 194 G4int firstPartonColour = aParton->GetColo << 190 G4int aSeaPair; 195 G4double firstPartonSpinZ = aParton->GetSp << 191 for (aSeaPair = 0; aSeaPair < nSeaPair; aSeaPair++) 196 << 192 { 197 aParton->Set4Momentum(tmp); << 193 // choose quark flavour, d:u:s = 1:1:(1/StrangeSuppress-2) 198 Color.push_back(aParton); << 194 199 << 195 G4int aPDGCode = 1 + (G4int)(G4UniformRand()/StrangeSuppress); 200 // create anti-quark << 196 201 aParton = BuildSeaQuark(true, aPDGCode, nS << 197 // BuildSeaQuark() determines quark spin, isospin and colour 202 aParton->SetSpinZ(-firstPartonSpinZ); << 198 // via parton-constructor G4Parton(aPDGCode) 203 aParton->SetColour(-firstPartonColour); << 199 204 AntiColor.push_back(aParton); << 200 G4Parton * aParton = BuildSeaQuark(false, aPDGCode, nSeaPair); 205 } << 201 206 << 202 // G4cerr << "G4QGSMSplitableHadron::SoftSplitUp()" << G4endl; 207 // Valence quark << 203 208 G4Parton* pColorParton = NULL; << 204 // G4cerr << "Parton 1: " 209 G4Parton* pAntiColorParton = NULL; << 205 // << " PDGcode: " << aPDGCode 210 GetValenceQuarkFlavors(GetDefinition(), pCol << 206 // << " - Name: " << aParton->GetDefinition()->GetParticleName() 211 << 207 // << " - Type: " << aParton->GetDefinition()->GetParticleType() 212 pColorParton->Set4Momentum(tmp); << 208 // << " - Spin-3: " << aParton->GetSpinZ() 213 pAntiColorParton->Set4Momentum(tmp); << 209 // << " - Colour: " << aParton->GetColour() << G4endl; 214 << 210 215 Color.push_back(pColorParton); << 211 // save colour a spin-3 for anti-quark 216 AntiColor.push_back(pAntiColorParton); << 212 217 << 213 G4int firstPartonColour = aParton->GetColour(); 218 iP=0; iAP=0; << 214 G4double firstPartonSpinZ = aParton->GetSpinZ(); 219 << 215 220 return; << 216 SumPx += aParton->Get4Momentum().px(); >> 217 SumPy += aParton->Get4Momentum().py(); >> 218 Color.push_back(aParton); >> 219 >> 220 // create anti-quark >> 221 >> 222 aParton = BuildSeaQuark(true, aPDGCode, nSeaPair); >> 223 aParton->SetSpinZ(-firstPartonSpinZ); >> 224 aParton->SetColour(-firstPartonColour); >> 225 >> 226 // G4cerr << "Parton 2: " >> 227 // << " PDGcode: " << -aPDGCode >> 228 // << " - Name: " << aParton->GetDefinition()->GetParticleName() >> 229 // << " - Type: " << aParton->GetDefinition()->GetParticleType() >> 230 // << " - Spin-3: " << aParton->GetSpinZ() >> 231 // << " - Colour: " << aParton->GetColour() << G4endl; >> 232 // G4cerr << "------------" << G4endl; >> 233 >> 234 SumPx += aParton->Get4Momentum().px(); >> 235 SumPy += aParton->Get4Momentum().py(); >> 236 AntiColor.push_back(aParton); >> 237 } >> 238 // Valence quark >> 239 G4Parton* pColorParton = NULL; >> 240 G4Parton* pAntiColorParton = NULL; >> 241 GetValenceQuarkFlavors(GetDefinition(), pColorParton, pAntiColorParton); >> 242 G4int ColorEncoding = pColorParton->GetPDGcode(); >> 243 >> 244 pts = sigmaPt*std::sqrt(-std::log(G4UniformRand())); >> 245 phi = 2.*pi*G4UniformRand(); >> 246 G4double Px = pts*std::cos(phi); >> 247 G4double Py = pts*std::sin(phi); >> 248 SumPx += Px; >> 249 SumPy += Py; >> 250 >> 251 if (ColorEncoding < 0) // use particle definition >> 252 { >> 253 G4LorentzVector ColorMom(-SumPx, -SumPy, 0, 0); >> 254 pColorParton->Set4Momentum(ColorMom); >> 255 G4LorentzVector AntiColorMom(Px, Py, 0, 0); >> 256 pAntiColorParton->Set4Momentum(AntiColorMom); >> 257 } >> 258 else >> 259 { >> 260 G4LorentzVector ColorMom(Px, Py, 0, 0); >> 261 pColorParton->Set4Momentum(ColorMom); >> 262 G4LorentzVector AntiColorMom(-SumPx, -SumPy, 0, 0); >> 263 pAntiColorParton->Set4Momentum(AntiColorMom); >> 264 } >> 265 Color.push_back(pColorParton); >> 266 AntiColor.push_back(pAntiColorParton); >> 267 >> 268 // Sample X >> 269 G4int nAttempt = 0; >> 270 G4double SumX = 0; >> 271 G4double aBeta = beta; >> 272 G4double ColorX, AntiColorX; >> 273 if (GetDefinition() == G4PionMinus::PionMinusDefinition()) aBeta = 1.; >> 274 if (GetDefinition() == G4Gamma::GammaDefinition()) aBeta = 1.; >> 275 if (GetDefinition() == G4PionPlus::PionPlusDefinition()) aBeta = 1.; >> 276 if (GetDefinition() == G4PionZero::PionZeroDefinition()) aBeta = 1.; >> 277 if (GetDefinition() == G4KaonPlus::KaonPlusDefinition()) aBeta = 0.; >> 278 if (GetDefinition() == G4KaonMinus::KaonMinusDefinition()) aBeta = 0.; >> 279 do >> 280 { >> 281 SumX = 0; >> 282 nAttempt++; >> 283 G4int NumberOfUnsampledSeaQuarks = 2*nSeaPair; >> 284 ColorX = SampleX(Xmin, NumberOfUnsampledSeaQuarks, 2*nSeaPair, aBeta); >> 285 Color.back()->SetX(SumX = ColorX);// this is the valenz quark. >> 286 for(G4int aPair = 0; aPair < nSeaPair; aPair++) >> 287 { >> 288 NumberOfUnsampledSeaQuarks--; >> 289 ColorX = SampleX(Xmin, NumberOfUnsampledSeaQuarks, 2*nSeaPair, aBeta); >> 290 Color[aPair]->SetX(ColorX); >> 291 SumX += ColorX; >> 292 NumberOfUnsampledSeaQuarks--; >> 293 AntiColorX = SampleX(Xmin, NumberOfUnsampledSeaQuarks, 2*nSeaPair, aBeta); >> 294 AntiColor[aPair]->SetX(AntiColorX); // the 'sea' partons >> 295 SumX += AntiColorX; >> 296 if (1. - SumX <= Xmin) break; >> 297 } >> 298 } >> 299 while (1. - SumX <= Xmin); >> 300 >> 301 (*(AntiColor.end()-1))->SetX(1. - SumX); // the di-quark takes the rest, then go to momentum >> 302 G4double lightCone = ((!Direction) ? Get4Momentum().minus() : Get4Momentum().plus()); >> 303 G4double lightCone2 = ((!Direction) ? Get4Momentum().plus() : Get4Momentum().minus()); >> 304 for(aSeaPair = 0; aSeaPair < nSeaPair+1; aSeaPair++) >> 305 { >> 306 G4Parton* aParton = Color[aSeaPair]; >> 307 aParton->DefineMomentumInZ(lightCone, lightCone2, Direction); >> 308 >> 309 aParton = AntiColor[aSeaPair]; >> 310 aParton->DefineMomentumInZ(lightCone, lightCone2, Direction); >> 311 } >> 312 return; 221 } 313 } 222 314 223 << 315 void G4QGSMSplitableHadron::GetValenceQuarkFlavors(const G4ParticleDefinition * aPart, G4Parton *& Parton1, G4Parton *& Parton2) 224 void G4QGSMSplitableHadron::GetValenceQuarkFla << 225 << 226 { 316 { 227 // Note! convention aEnd = q or (qq)bar and << 317 // Note! convention aEnd = q or (qq)bar and bEnd = qbar or qq. 228 G4int aEnd=0; << 318 G4int aEnd; 229 G4int bEnd=0; << 319 G4int bEnd; 230 G4int HadronEncoding = aPart->GetPDGEncoding << 320 G4int HadronEncoding = aPart->GetPDGEncoding(); 231 if (aPart->GetBaryonNumber() == 0) << 321 if (aPart->GetBaryonNumber() == 0) 232 { << 322 { 233 theMesonSplitter.SplitMeson(HadronEncoding << 323 theMesonSplitter.SplitMeson(HadronEncoding, &aEnd, &bEnd); 234 } << 324 } 235 else << 325 else 236 { << 326 { 237 theBaryonSplitter.SplitBarion(HadronEncodi << 327 theBaryonSplitter.SplitBarion(HadronEncoding, &aEnd, &bEnd); 238 } << 328 } 239 << 329 240 Parton1 = new G4Parton(aEnd); << 330 Parton1 = new G4Parton(aEnd); 241 Parton1->SetPosition(GetPosition()); << 331 Parton1->SetPosition(GetPosition()); 242 << 332 243 Parton2 = new G4Parton(bEnd); << 333 // G4cerr << "G4QGSMSplitableHadron::GetValenceQuarkFlavors()" << G4endl; 244 Parton2->SetPosition(GetPosition()); << 334 // G4cerr << "Parton 1: " 245 << 335 // << " PDGcode: " << aEnd 246 // colour of parton 1 choosen at random by G << 336 // << " - Name: " << Parton1->GetDefinition()->GetParticleName() 247 // colour of parton 2 is the opposite: << 337 // << " - Type: " << Parton1->GetDefinition()->GetParticleType() 248 << 338 // << " - Spin-3: " << Parton1->GetSpinZ() 249 Parton2->SetColour(-(Parton1->GetColour())); << 339 // << " - Colour: " << Parton1->GetColour() << G4endl; 250 << 340 251 // isospin-3 of both partons is handled by G << 341 Parton2 = new G4Parton(bEnd); 252 << 342 Parton2->SetPosition(GetPosition()); 253 // spin-3 of parton 1 and 2 choosen at rando << 343 254 // spin-3 of parton 2 may be constrained by << 344 // G4cerr << "Parton 2: " 255 << 345 // << " PDGcode: " << bEnd 256 if ( std::abs(Parton1->GetSpinZ() + Parton2- << 346 // << " - Name: " << Parton2->GetDefinition()->GetParticleName() 257 { << 347 // << " - Type: " << Parton2->GetDefinition()->GetParticleType() 258 Parton2->SetSpinZ(-(Parton2->GetSpinZ())); << 348 // << " - Spin-3: " << Parton2->GetSpinZ() 259 } << 349 // << " - Colour: " << Parton2->GetColour() << G4endl; >> 350 // G4cerr << "... now checking for color and spin conservation - yielding: " << G4endl; >> 351 >> 352 // colour of parton 1 choosen at random by G4Parton(aEnd) >> 353 // colour of parton 2 is the opposite: >> 354 >> 355 Parton2->SetColour(-(Parton1->GetColour())); >> 356 >> 357 // isospin-3 of both partons is handled by G4Parton(PDGCode) >> 358 >> 359 // spin-3 of parton 1 and 2 choosen at random by G4Parton(aEnd) >> 360 // spin-3 of parton 2 may be constrained by spin of original particle: >> 361 >> 362 if ( std::abs(Parton1->GetSpinZ() + Parton2->GetSpinZ()) > aPart->GetPDGSpin()) >> 363 { >> 364 Parton2->SetSpinZ(-(Parton2->GetSpinZ())); >> 365 } >> 366 >> 367 // G4cerr << "Parton 2: " >> 368 // << " PDGcode: " << bEnd >> 369 // << " - Name: " << Parton2->GetDefinition()->GetParticleName() >> 370 // << " - Type: " << Parton2->GetDefinition()->GetParticleType() >> 371 // << " - Spin-3: " << Parton2->GetSpinZ() >> 372 // << " - Colour: " << Parton2->GetColour() << G4endl; >> 373 // G4cerr << "------------" << G4endl; >> 374 260 } 375 } 261 376 262 377 263 G4ThreeVector G4QGSMSplitableHadron::GaussianP 378 G4ThreeVector G4QGSMSplitableHadron::GaussianPt(G4double widthSquare, G4double maxPtSquare) 264 { 379 { 265 G4double R; << 380 G4double R; 266 const G4int maxNumberOfLoops = 1000; << 381 while((R = -widthSquare*std::log(G4UniformRand())) > maxPtSquare) {;} 267 G4int loopCounter = -1; << 382 R = std::sqrt(R); 268 while( ((R = -widthSquare*G4Log(G4UniformRan << 383 G4double phi = twopi*G4UniformRand(); 269 ++loopCounter < maxNumberOfLoops ) {; << 384 return G4ThreeVector (R*std::cos(phi), R*std::sin(phi), 0.); 270 if ( loopCounter >= maxNumberOfLoops ) { << 271 R = 0.99*maxPtSquare; // Just an acceptab << 272 } << 273 R = std::sqrt(R); << 274 G4double phi = twopi*G4UniformRand(); << 275 return G4ThreeVector (R*std::cos(phi), R*std << 276 } 385 } 277 386 278 << 279 G4Parton * G4QGSMSplitableHadron:: 387 G4Parton * G4QGSMSplitableHadron:: 280 BuildSeaQuark(G4bool isAntiQuark, G4int aPDGCo 388 BuildSeaQuark(G4bool isAntiQuark, G4int aPDGCode, G4int /* nSeaPair*/) 281 { 389 { 282 if (isAntiQuark) aPDGCode*=-1; << 390 if (isAntiQuark) aPDGCode*=-1; 283 G4Parton* result = new G4Parton(aPDGCode); << 391 G4Parton* result = new G4Parton(aPDGCode); 284 result->SetPosition(GetPosition()); << 392 result->SetPosition(GetPosition()); 285 G4ThreeVector aPtVector = GaussianPt(sigmaPt << 393 G4ThreeVector aPtVector = GaussianPt(sigmaPt, DBL_MAX); 286 G4LorentzVector a4Momentum(aPtVector, 0); << 394 G4LorentzVector a4Momentum(aPtVector, 0); 287 result->Set4Momentum(a4Momentum); << 395 result->Set4Momentum(a4Momentum); 288 return result; << 396 return result; 289 } 397 } 290 398 291 << 292 G4double G4QGSMSplitableHadron:: 399 G4double G4QGSMSplitableHadron:: 293 SampleX(G4double anXmin, G4int nSea, G4int tot 400 SampleX(G4double anXmin, G4int nSea, G4int totalSea, G4double aBeta) 294 { 401 { 295 G4double result; << 402 G4double result; 296 G4double x1, x2; << 403 G4double x1, x2; 297 G4double ymax = 0; << 404 G4double ymax = 0; 298 for(G4int ii=1; ii<100; ii++) << 405 for(G4int ii=1; ii<100; ii++) 299 { << 406 { 300 G4double y = G4Pow::GetInstance()->powA(1. << 407 G4double y = std::pow(1./G4double(ii), alpha); 301 y *= G4Pow::GetInstance()->powN( G4Pow::Ge << 408 y *= std::pow( std::pow(1-anXmin-totalSea*anXmin, alpha+1) - std::pow(anXmin, alpha+1), nSea); 302 G4Pow::Ge << 409 y *= std::pow(1-anXmin-totalSea*anXmin, aBeta+1) - std::pow(anXmin, aBeta+1); 303 y *= G4Pow::GetInstance()->powA(1-anXmin-t << 410 if(y>ymax) ymax = y; 304 G4Pow::GetInstance()->powA(anXmin, aB << 411 } 305 if (y>ymax) ymax = y; << 412 G4double y; 306 } << 413 G4double xMax=1-(totalSea+1)*anXmin; 307 G4double y; << 414 if(anXmin > xMax) 308 G4double xMax=1-(totalSea+1)*anXmin; << 415 { 309 if (anXmin > xMax) << 416 G4cout << "anXmin = "<<anXmin<<" nSea = "<<nSea<<" totalSea = "<< totalSea<<G4endl; 310 { << 417 throw G4HadronicException(__FILE__, __LINE__, "G4QGSMSplitableHadron - Fatal: Cannot sample parton densities under these constraints."); 311 throw G4HadronicException(__FILE__, __LINE << 418 } 312 "G4QGSMSplitableHadron - Fatal: Ca << 419 do 313 } << 420 { 314 const G4int maxNumberOfLoops = 1000; << 421 x1 = G4RandFlat::shoot(anXmin, xMax); 315 G4int loopCounter = 0; << 422 y = std::pow(x1, alpha); 316 do << 423 y *= std::pow( std::pow(1-x1-totalSea*anXmin, alpha+1) - std::pow(anXmin, alpha+1), nSea); 317 { << 424 y *= std::pow(1-x1-totalSea*anXmin, aBeta+1) - std::pow(anXmin, aBeta+1); 318 x1 = G4RandFlat::shoot(anXmin, xMax); << 425 x2 = ymax*G4UniformRand(); 319 y = G4Pow::GetInstance()->powA(x1, alpha); << 426 } 320 y *= G4Pow::GetInstance()->powN( G4Pow::Ge << 427 while(x2>y); 321 G4Pow::Ge << 428 result = x1; 322 y *= G4Pow::GetInstance()->powA(1-x1-total << 429 return result; 323 G4Pow::GetInstance()->powA(anXmin, aB << 324 x2 = ymax*G4UniformRand(); << 325 } while( (x2>y) && ++loopCounter < maxNumber << 326 if ( loopCounter >= maxNumberOfLoops ) { << 327 x1 = 0.5*( anXmin + xMax ); // Just an ac << 328 } << 329 result = x1; << 330 return result; << 331 } 430 } 332 431