Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4QGSMFragmentation.cc,v 1.10 2010-09-20 12:46:23 vuzhinsk Exp $ >> 28 // GEANT4 tag $Name: geant4-09-04-patch-02 $ 27 // 29 // 28 // ------------------------------------------- 30 // ----------------------------------------------------------------------------- 29 // GEANT 4 class implementation file 31 // GEANT 4 class implementation file 30 // 32 // 31 // History: first implementation, Maxim K 33 // History: first implementation, Maxim Komogorov, 10-Jul-1998 32 // ------------------------------------------- 34 // ----------------------------------------------------------------------------- 33 #include "G4QGSMFragmentation.hh" 35 #include "G4QGSMFragmentation.hh" 34 #include "G4PhysicalConstants.hh" << 35 #include "G4SystemOfUnits.hh" << 36 #include "Randomize.hh" << 37 #include "G4ios.hh" << 38 #include "G4FragmentingString.hh" 36 #include "G4FragmentingString.hh" 39 #include "G4DiQuarks.hh" 37 #include "G4DiQuarks.hh" 40 #include "G4Quarks.hh" 38 #include "G4Quarks.hh" 41 #include "G4HadronicParameters.hh" << 42 #include "G4Pow.hh" << 43 39 44 //#define debug_QGSMfragmentation << 40 #include "Randomize.hh" >> 41 #include "G4ios.hh" 45 42 46 // Class G4QGSMFragmentation 43 // Class G4QGSMFragmentation 47 //******************************************** 44 //**************************************************************************************** 48 45 49 G4QGSMFragmentation::G4QGSMFragmentation() << 46 G4QGSMFragmentation::G4QGSMFragmentation() : 50 { << 47 arho(0.5), aphi(0.), an(-0.5), ala(-0.75), aksi(-1.), alft(0.5) 51 SigmaQT = 0.45 * GeV; << 48 { 52 << 49 } 53 MassCut = 0.35*GeV; << 54 50 55 SetStrangenessSuppression((1.0 - 0.16)/2.) << 51 G4QGSMFragmentation::G4QGSMFragmentation(const G4QGSMFragmentation &) : G4VLongitudinalStringDecay(), >> 52 arho(0.5), aphi(0.), an(-0.5), ala(-0.75), aksi(-1.), alft(0.5) >> 53 { >> 54 } 56 55 57 // Check if charmed and bottom hadrons are << 56 G4QGSMFragmentation::~G4QGSMFragmentation() 58 // set the non-zero probabilities for c-cb << 57 { 59 // else set them to 0.0. If these probabil << 58 } 60 // hadrons can't/can be created during the << 61 // (i.e. not heavy) projectile hadron nucl << 62 if ( G4HadronicParameters::Instance()->Ena << 63 SetProbCCbar(0.0002); // According to O << 64 SetProbBBbar(5.0e-5); // According to O << 65 } else { << 66 SetProbCCbar(0.0); << 67 SetProbBBbar(0.0); << 68 } << 69 << 70 SetDiquarkSuppression(0.32); << 71 SetDiquarkBreakProbability(0.7); << 72 59 73 SetMinMasses(); << 60 //**************************************************************************************** 74 61 75 arho = 0.5; // alpha_rho0 << 62 const G4QGSMFragmentation & G4QGSMFragmentation::operator=(const G4QGSMFragmentation &) 76 aphi = 0.0; // alpha_fi << 63 { 77 aJPs =-2.2; // alpha_J/Psi << 64 throw G4HadronicException(__FILE__, __LINE__, "G4QGSMFragmentation::operator= meant to not be accessable"); 78 aUps =-8.0; // alpha_Y ??? O. Pisk << 65 return *this; 79 << 66 } 80 aksi =-1.0; << 81 alft = 0.5; // 2 * alpha'_R *<Pt^2> << 82 << 83 an = -0.5 ; << 84 ala = -0.75; // an - arho/2 + aphi/2 << 85 alaC = an - arho/2.0 + aJPs/2.0; << 86 alaB = an - arho/2.0 + aUps/2.0; << 87 aXi = 0.0; // ?? << 88 aXiC = 0.0; // ?? << 89 aXiB = 0.0; // ?? << 90 aXiCC = 0.0; // ?? << 91 aXiCB = 0.0; // ?? << 92 aXiBB = 0.0; // ?? << 93 << 94 SetFFq2q(); << 95 SetFFq2qq(); << 96 SetFFqq2q(); << 97 SetFFqq2qq(); << 98 // d u s c b << 99 G4int Index[5][5] = { { 0, 1, 2, 3, 4 } << 100 { 1, 5, 6, 7, 8 } << 101 { 2, 6, 9, 10, 11 } << 102 { 3, 7, 10, 12, 13 } << 103 { 4, 8, 11, 13, 14 } << 104 for (G4int i = 0; i < 5; i++ ) { << 105 for ( G4int j = 0; j < 5; j++ ) { << 106 IndexDiQ[i][j] = Index[i][j]; << 107 } << 108 }; << 109 } << 110 67 111 G4QGSMFragmentation::~G4QGSMFragmentation() << 68 int G4QGSMFragmentation::operator==(const G4QGSMFragmentation &right) const 112 {} << 69 { >> 70 return !memcmp(this, &right, sizeof(G4QGSMFragmentation)); >> 71 } 113 72 >> 73 int G4QGSMFragmentation::operator!=(const G4QGSMFragmentation &right) const >> 74 { >> 75 return memcmp(this, &right, sizeof(G4QGSMFragmentation)); >> 76 } >> 77 >> 78 //**************************************************************************************** 114 //-------------------------------------------- 79 //---------------------------------------------------------------------------------------------------------- 115 80 116 G4KineticTrackVector* G4QGSMFragmentation::Fra 81 G4KineticTrackVector* G4QGSMFragmentation::FragmentString(const G4ExcitedString& theString) 117 { 82 { 118 << 83 // Can no longer modify Parameters for Fragmentation. 119 G4FragmentingString aString(theString); << 84 PastInitPhase=true; 120 SetMinimalStringMass(&aString); << 121 << 122 #ifdef debug_QGSMfragmentation << 123 G4cout<<G4endl<<"QGSM StringFragm: String Ma << 124 <<theString.Get4M << 125 <<theString.Get4M << 126 <<"-------------- << 127 G4cout<<"String ends Direct "<<theString.Get << 128 <<theString.Get << 129 <<theString.Get << 130 G4cout<<"Left mom "<<theString.GetLeftParto << 131 G4cout<<"Right mom "<<theString.GetRightPart << 132 G4cout<<"Check for Fragmentation "<<G4endl; << 133 #endif << 134 << 135 // Can no longer modify Parameters for Fragm << 136 PastInitPhase=true; << 137 85 138 // Check if string has enough mass to fragme << 86 // check if string has enough mass to fragment... 139 G4KineticTrackVector * LeftVector=NULL; << 87 G4KineticTrackVector * LeftVector=LightFragmentationTest(&theString); 140 << 88 if ( LeftVector != 0 ) return LeftVector; 141 if ( !IsItFragmentable(&aString) ) { << 142 LeftVector=ProduceOneHadron(&theString); << 143 << 144 #ifdef debug_QGSMfragmentation << 145 if ( LeftVector != 0 ) G4cout<<"Non fragm << 146 #endif << 147 << 148 if ( LeftVector == nullptr ) LeftVector = << 149 return LeftVector; << 150 } << 151 << 152 #ifdef debug_QGSMfragmentation << 153 G4cout<<"The string will be fragmented. "<<G << 154 #endif << 155 89 156 LeftVector = new G4KineticTrackVector; << 90 LeftVector = new G4KineticTrackVector; 157 G4KineticTrackVector * RightVector=new G4Kin << 91 G4KineticTrackVector * RightVector=new G4KineticTrackVector; 158 << 159 G4ExcitedString *theStringInCMS=CopyExcited( << 160 G4LorentzRotation toCms=theStringInCMS->Tran << 161 << 162 G4bool success=false, inner_sucess=true; << 163 G4int attempt=0; << 164 while ( !success && attempt++ < StringLoopIn << 165 { << 166 #ifdef debug_QGSMfragmentation << 167 G4cout<<"Loop_toFrag "<<theStr << 168 <<theStr << 169 <<theStr << 170 #endif << 171 92 >> 93 // this should work but its only a semi deep copy. %GF G4ExcitedString theStringInCMS(theString); >> 94 G4ExcitedString *theStringInCMS=CPExcited(theString); >> 95 G4LorentzRotation toCms=theStringInCMS->TransformToAlignedCms(); >> 96 >> 97 G4bool success=false, inner_sucess=true; >> 98 G4int attempt=0; >> 99 while ( !success && attempt++ < StringLoopInterrupt ) >> 100 { 172 G4FragmentingString *currentString=new G4F 101 G4FragmentingString *currentString=new G4FragmentingString(*theStringInCMS); 173 102 174 std::for_each(LeftVector->begin(), LeftVec 103 std::for_each(LeftVector->begin(), LeftVector->end(), DeleteKineticTrack()); 175 LeftVector->clear(); 104 LeftVector->clear(); 176 std::for_each(RightVector->begin(), RightV 105 std::for_each(RightVector->begin(), RightVector->end(), DeleteKineticTrack()); 177 RightVector->clear(); 106 RightVector->clear(); 178 107 179 inner_sucess=true; // set false on failur 108 inner_sucess=true; // set false on failure.. 180 const G4int maxNumberOfLoops = << 109 while (! StopFragmenting(currentString) ) 181 G4int loopCounter = -1; << 182 while (! StopFragmenting(currentString) && << 183 { // Split current string into hadron + n 110 { // Split current string into hadron + new string 184 << 185 #ifdef debug_QGSMfragm << 186 G4cout<<"The string ca << 187 #endif << 188 G4FragmentingString *newString=0; // us 111 G4FragmentingString *newString=0; // used as output from SplitUp... 189 G4KineticTrack * Hadron=Splitup(currentS 112 G4KineticTrack * Hadron=Splitup(currentString,newString); 190 << 113 if ( Hadron != 0 && IsFragmentable(newString)) 191 if ( Hadron != 0 ) << 192 { 114 { 193 #ifdef debug_QGSMfr << 194 G4cout<<"Hadron pro << 195 #endif << 196 // To close the pro << 197 if ( currentString->GetDecayDirection 115 if ( currentString->GetDecayDirection() > 0 ) 198 LeftVector->push_back(Hadron); 116 LeftVector->push_back(Hadron); 199 else 117 else 200 RightVector->push_back(Hadron); 118 RightVector->push_back(Hadron); 201 << 202 delete currentString; 119 delete currentString; 203 currentString=newString; 120 currentString=newString; 204 << 205 } else { 121 } else { 206 << 122 // abandon ... start from the beginning 207 #ifdef debug_QGSMfr << 123 if (newString) delete newString; // Uzhi restore 20.06.08 208 G4cout<<"abandon .. << 124 if (Hadron) delete Hadron; 209 #endif << 210 << 211 // Abandon ... start from the beginni << 212 if (newString) delete newString; << 213 inner_sucess=false; 125 inner_sucess=false; 214 break; 126 break; 215 } 127 } 216 } << 128 } 217 if ( loopCounter >= maxNumberO << 218 inner_sucess=false; << 219 } << 220 << 221 // Split current string into 2 final Hadro 129 // Split current string into 2 final Hadrons 222 #ifdef debug_QGSMfragmentation << 223 if( inner_sucess ) { << 224 G4cout<<"Split remaining str << 225 } else { << 226 G4cout<<" New attempt to fragment string << 227 } << 228 #endif << 229 // To the close production of << 230 if ( inner_sucess && 130 if ( inner_sucess && 231 SplitLast(currentString,LeftVector, R 131 SplitLast(currentString,LeftVector, RightVector) ) 232 { 132 { 233 success=true; 133 success=true; 234 } 134 } 235 delete currentString; 135 delete currentString; 236 } 136 } 237 137 238 delete theStringInCMS; 138 delete theStringInCMS; 239 139 240 if ( ! success ) 140 if ( ! success ) 241 { 141 { 242 std::for_each(LeftVector->begin(), LeftVec 142 std::for_each(LeftVector->begin(), LeftVector->end(), DeleteKineticTrack()); 243 LeftVector->clear(); 143 LeftVector->clear(); 244 std::for_each(RightVector->begin(), RightV 144 std::for_each(RightVector->begin(), RightVector->end(), DeleteKineticTrack()); 245 delete RightVector; 145 delete RightVector; 246 return LeftVector; 146 return LeftVector; 247 } 147 } 248 148 249 // Join Left- and RightVector into LeftVecto 149 // Join Left- and RightVector into LeftVector in correct order. 250 while(!RightVector->empty()) /* Loop checki << 150 while(!RightVector->empty()) 251 { 151 { 252 LeftVector->push_back(RightVector->back( 152 LeftVector->push_back(RightVector->back()); 253 RightVector->erase(RightVector->end()-1) 153 RightVector->erase(RightVector->end()-1); 254 } 154 } 255 delete RightVector; 155 delete RightVector; 256 156 257 CalculateHadronTimePosition(theString.Get4Mo 157 CalculateHadronTimePosition(theString.Get4Momentum().mag(), LeftVector); 258 158 259 G4LorentzRotation toObserverFrame(toCms.inve 159 G4LorentzRotation toObserverFrame(toCms.inverse()); 260 160 261 for (size_t C1 = 0; C1 < LeftVector->size(); << 161 for(size_t C1 = 0; C1 < LeftVector->size(); C1++) 262 { 162 { 263 G4KineticTrack* Hadron = LeftVector->oper 163 G4KineticTrack* Hadron = LeftVector->operator[](C1); 264 G4LorentzVector Momentum = Hadron->Get4Mo 164 G4LorentzVector Momentum = Hadron->Get4Momentum(); 265 Momentum = toObserverFrame*Momentum; 165 Momentum = toObserverFrame*Momentum; 266 Hadron->Set4Momentum(Momentum); 166 Hadron->Set4Momentum(Momentum); 267 G4LorentzVector Coordinate(Hadron->GetPos 167 G4LorentzVector Coordinate(Hadron->GetPosition(), Hadron->GetFormationTime()); 268 Momentum = toObserverFrame*Coordinate; 168 Momentum = toObserverFrame*Coordinate; 269 Hadron->SetFormationTime(Momentum.e()); 169 Hadron->SetFormationTime(Momentum.e()); 270 G4ThreeVector aPosition(Momentum.vect()); 170 G4ThreeVector aPosition(Momentum.vect()); 271 Hadron->SetPosition(theString.GetPosition 171 Hadron->SetPosition(theString.GetPosition()+aPosition); 272 } 172 } 273 return LeftVector; 173 return LeftVector; 274 } << 174 275 175 276 //-------------------------------------------- << 277 176 278 G4bool G4QGSMFragmentation::IsItFragmentable(c << 279 { << 280 return sqr( MinimalStringMass + MassCut ) < << 281 } 177 } 282 178 283 //-------------------------------------------- 179 //---------------------------------------------------------------------------------------------------------- 284 180 285 G4bool G4QGSMFragmentation::StopFragmenting(co << 181 G4double G4QGSMFragmentation::GetLightConeZ(G4double zmin, G4double zmax, G4int PartonEncoding, G4ParticleDefinition* , G4double , G4double ) 286 { << 182 { 287 SetMinimalStringMass(string); << 183 G4double z; 288 if ( MinimalStringMass < 0.0 ) return << 184 G4double theA(0), d1, d2, yf; 289 << 185 G4int absCode = std::abs( PartonEncoding ); 290 G4double smass = string->Mass(); << 186 if (absCode < 10) 291 G4double x = (string->IsAFourQuarkString()) << 187 { 292 : 0.66e-6*(smass - MinimalStringMass)*(sma << 188 if(absCode == 1 || absCode == 2) theA = arho; 293 << 189 else if(absCode == 3) theA = aphi; 294 G4bool res = true; << 190 else throw G4HadronicException(__FILE__, __LINE__, "Unknown PDGencoding in G4QGSMFragmentation::G4LightConeZ"); 295 if(x > 0.0) { << 296 res = (x < 200.) ? (G4UniformRand() << 297 } << 298 return res; << 299 } << 300 << 301 //-------------------------------------------- << 302 << 303 G4KineticTrack * G4QGSMFragmentation::Splitup( << 304 G4FragmentingStri << 305 { << 306 #ifdef debug_QGSMfragmentation << 307 G4cout<<G4endl; << 308 G4cout<<"Start SplitUP (G4VLongitudinal << 309 G4cout<<"String partons: " <<string->Ge << 310 <<string->Ge << 311 <<"Direction " <<string->Ge << 312 #endif << 313 << 314 //... random choice of string end to us << 315 G4int SideOfDecay = (G4UniformRand() < << 316 if (SideOfDecay < 0) << 317 { << 318 string->SetLeftPartonStable(); << 319 } else << 320 { << 321 string->SetRightPartonStable(); << 322 } << 323 << 324 G4ParticleDefinition *newStringEnd; << 325 G4ParticleDefinition * HadronDefinition << 326 if (string->DecayIsQuark()) << 327 { << 328 G4double ProbDqADq = GetDiquarkSuppress(); << 329 << 330 G4int NumberOfpossibleBaryons = 2; << 331 << 332 if (string->GetLeftParton()->GetParticleSu << 333 if (string->GetRightParton()->GetParticleS << 334 << 335 G4double ActualProb = ProbDqADq ; << 336 ActualProb *= (1.0-G4Exp(2.0*(1.0 - << 337 << 338 SetDiquarkSuppression(ActualProb); << 339 << 340 HadronDefinition= QuarkSplitup(strin << 341 << 342 SetDiquarkSuppression(ProbDqADq); << 343 } else { << 344 HadronDefinition= DiQuarkSplitup(str << 345 } << 346 << 347 if ( HadronDefinition == NULL ) return << 348 << 349 #ifdef debug_QGSMfragmentation << 350 G4cout<<"The parton "<<string->GetDecay << 351 <<" produces hadron "<<HadronDefi << 352 <<" and is transformed to "<<newS << 353 G4cout<<"The side of the string decay L << 354 #endif << 355 // create new String from old, ie. keep << 356 << 357 newString=new G4FragmentingString(*stri << 358 << 359 << 360 #ifdef debug_QGSMfragmentation << 361 G4cout<<"An attempt to determine its en << 362 #endif << 363 G4LorentzVector* HadronMomentum=SplitEa << 364 << 365 delete newString; newString=0; << 366 << 367 G4KineticTrack * Hadron =0; << 368 if ( HadronMomentum != 0 ) { << 369 << 370 #ifdef debug_QGSMfragmentation << 371 G4cout<<"The attempt was successful << 372 #endif << 373 G4ThreeVector Pos; << 374 Hadron = new G4KineticTrack(HadronDefinit << 375 << 376 newString=new G4FragmentingString(*st << 377 << 378 delete HadronMomentum; << 379 } << 380 else << 381 { << 382 #ifdef debug_QGSMfragmentation << 383 G4cout<<"The attempt was not successf << 384 #endif << 385 } << 386 << 387 #ifdef debug_VStringDecay << 388 G4cout<<"End SplitUP (G4VLongitudinalSt << 389 #endif << 390 << 391 return Hadron; << 392 } << 393 << 394 //-------------------------------------------- << 395 << 396 G4ParticleDefinition *G4QGSMFragmentation::DiQ << 397 << 398 { << 399 //... can Diquark break or not? << 400 if (G4UniformRand() < DiquarkBreakProb ) / << 401 { << 402 G4int stableQuarkEncoding = decay->GetPD << 403 G4int decayQuarkEncoding = (decay->GetPD << 404 << 405 if (G4UniformRand() < 0.5) << 406 { << 407 G4int Swap = stableQuarkEncoding; << 408 stableQuarkEncoding = decayQuarkEncod << 409 decayQuarkEncoding = Swap; << 410 } << 411 << 412 G4int IsParticle=(decayQuarkEncoding>0) << 413 << 414 G4double StrSup=GetStrangeSuppress(); << 415 SetStrangenessSuppression((1.0 - 0.07)/2 << 416 pDefPair QuarkPair = CreatePartonPair(Is << 417 SetStrangenessSuppression(StrSup); << 418 << 419 //... Build new Diquark << 420 G4int QuarkEncoding=QuarkPair.second->Ge << 421 G4int i10 = std::max(std::abs(QuarkEnco << 422 G4int i20 = std::min(std::abs(QuarkEnco << 423 G4int spin = (i10 != i20 && G4UniformRan << 424 G4int NewDecayEncoding = -1*IsParticle*( << 425 << 426 created = FindParticle(NewDecayEncoding) << 427 G4ParticleDefinition * decayQuark=FindPa << 428 G4ParticleDefinition * had=hadronizer->B << 429 << 430 DecayQuark = decay->GetPDGEncoding(); << 431 NewQuark = NewDecayEncoding; << 432 << 433 return had; << 434 << 435 } else { //... Diquark does not break << 436 << 437 G4int IsParticle=(decay->GetPDGEncoding( << 438 G4double StrSup=GetStrangeSuppress(); / << 439 SetStrangenessSuppression((1.0 - 0.07)/2 << 440 pDefPair QuarkPair = CreatePartonPair(Is << 441 SetStrangenessSuppression(StrSup); << 442 << 443 created = QuarkPair.second; << 444 191 445 DecayQuark = decay->GetPDGEncoding(); << 192 do 446 NewQuark = created->GetPDGEncoding(); << 193 { >> 194 z = zmin + G4UniformRand() * (zmax - zmin); >> 195 d1 = (1. - z); >> 196 d2 = (alft - theA); >> 197 yf = std::pow(d1, d2); >> 198 } >> 199 while (G4UniformRand() > yf); >> 200 } >> 201 else >> 202 { >> 203 if(absCode == 1103 || absCode == 2101 || >> 204 absCode == 2203 || absCode == 2103) >> 205 { >> 206 d2 = (alft - (2.*an - arho)); >> 207 } >> 208 else if(absCode == 3101 || absCode == 3103 || >> 209 absCode == 3201 || absCode == 3203) >> 210 { >> 211 d2 = (alft - (2.*ala - arho)); >> 212 } >> 213 else >> 214 { >> 215 d2 = (alft - (2.*aksi - arho)); >> 216 } 447 217 448 G4ParticleDefinition * had=hadronizer->B << 218 do 449 return had; << 219 { 450 } << 220 z = zmin + G4UniformRand() * (zmax - zmin); >> 221 d1 = (1. - z); >> 222 yf = std::pow(d1, d2); >> 223 } >> 224 while (G4UniformRand() > yf); >> 225 } >> 226 return z; 451 } 227 } 452 << 453 //-------------------------------------------- 228 //----------------------------------------------------------------------------------------- 454 229 455 G4LorentzVector * G4QGSMFragmentation::SplitEa 230 G4LorentzVector * G4QGSMFragmentation::SplitEandP(G4ParticleDefinition * pHadron, 456 << 231 G4FragmentingString * string, // Uzhi 457 << 232 G4FragmentingString * ) // Uzhi 458 { 233 { 459 G4double HadronMass = pHadron->GetPDGMa 234 G4double HadronMass = pHadron->GetPDGMass(); 460 235 461 SetMinimalStringMass(NewString); << 462 << 463 if ( MinimalStringMass < 0.0 ) return n << 464 << 465 #ifdef debug_QGSMfragmentation << 466 G4cout<<"G4QGSMFragmentation::SplitEand << 467 G4cout<<"String 4 mom, String M "<<stri << 468 G4cout<<"HadM MinimalStringMassLeft Str << 469 <<string->Mass()<<" "<<HadronMass << 470 #endif << 471 << 472 if (HadronMass + MinimalStringMass > st << 473 { << 474 #ifdef debug_QGSMfragmentation << 475 G4cout<<"Mass of the string is not su << 476 #endif << 477 return 0; << 478 } // have to start all over! << 479 << 480 // calculate and assign hadron transver 236 // calculate and assign hadron transverse momentum component HadronPx andHadronPy 481 G4double StringMT2 = string->MassT2(); << 237 G4ThreeVector thePt; 482 G4double StringMT = std::sqrt(StringMT << 238 thePt=SampleQuarkPt(); 483 << 239 G4ThreeVector HadronPt = thePt +string->DecayPt(); 484 G4LorentzVector String4Momentum = strin << 240 HadronPt.setZ(0); 485 String4Momentum.setPz(0.); << 486 G4ThreeVector StringPt = String4Momentu << 487 << 488 G4ThreeVector HadronPt , RemSysPt; << 489 G4double HadronMassT2, ResidualMas << 490 << 491 // Mt distribution is implemented << 492 G4double HadronMt, Pt, Pt2, phi; << 493 << 494 //... sample Pt of the hadron << 495 G4int attempt=0; << 496 do << 497 { << 498 attempt++; if (attempt > StringLoopIn << 499 << 500 HadronMt = HadronMass - 200.0*G4Log(G << 501 Pt2 = sqr(HadronMt)-sqr(HadronMass); << 502 phi = 2.*pi*G4UniformRand(); << 503 G4ThreeVector SampleQuarkPtw= G4Three << 504 HadronPt =SampleQuarkPtw + string->D << 505 HadronPt.setZ(0); << 506 RemSysPt = StringPt - HadronPt; << 507 << 508 HadronMassT2 = sqr(HadronMass) + Hadr << 509 ResidualMassT2=sqr(MinimalStringMass) << 510 << 511 } while (std::sqrt(HadronMassT2) + std: << 512 << 513 //... sample z to define hadron longit 241 //... sample z to define hadron longitudinal momentum and energy 514 //... but first check the available pha 242 //... but first check the available phase space >> 243 G4double DecayQuarkMass2 = sqr(string->GetDecayParton()->GetPDGMass()); >> 244 G4double HadronMass2T = sqr(HadronMass) + HadronPt.mag2(); >> 245 if (DecayQuarkMass2 + HadronMass2T >= SmoothParam*(string->Mass2()) ) >> 246 return 0; // have to start all over! 515 247 516 G4double Pz2 = (sqr(StringMT2 - HadronM << 248 //... then compute allowed z region z_min <= z <= z_max 517 4*HadronMassT2 * ResidualMassT2)/4./ << 249 518 << 250 G4double zMin = HadronMass2T/(string->Mass2()); 519 if ( Pz2 < 0 ) {return 0;} // << 251 G4double zMax = 1. - DecayQuarkMass2/(string->Mass2()); 520 << 521 //... then compute allowed z region z_ << 522 << 523 G4double Pz = std::sqrt(Pz2); << 524 G4double zMin = (std::sqrt(HadronMassT2 << 525 G4double zMax = (std::sqrt(HadronMassT2 << 526 << 527 if (zMin >= zMax) return 0; // have 252 if (zMin >= zMax) return 0; // have to start all over! 528 253 529 G4double z = GetLightConeZ(zMin, zMax, 254 G4double z = GetLightConeZ(zMin, zMax, 530 string->GetDecayParton() << 255 string->GetDecayParton()->GetPDGEncoding(), pHadron, 531 HadronPt.x(), HadronPt.y << 256 HadronPt.x(), HadronPt.y()); 532 << 257 533 //... now compute hadron longitudinal m 258 //... now compute hadron longitudinal momentum and energy 534 // longitudinal hadron momentum compone 259 // longitudinal hadron momentum component HadronPz 535 260 536 HadronPt.setZ( 0.5* string->GetDecayDir << 261 HadronPt.setZ(0.5* string->GetDecayDirection() * 537 (z * string->LightConeDecay() - << 262 (z * string->LightConeDecay() - 538 HadronMassT2/(z * string->LightCone << 263 HadronMass2T/(z * string->LightConeDecay()))); 539 G4double HadronE = 0.5* (z * string->L << 264 G4double HadronE = 0.5* (z * string->LightConeDecay() + 540 HadronMassT2/(z * string->LightConeDe << 265 HadronMass2T/(z * string->LightConeDecay())); 541 266 542 G4LorentzVector * a4Momentum= new G4Lor 267 G4LorentzVector * a4Momentum= new G4LorentzVector(HadronPt,HadronE); 543 268 544 #ifdef debug_QGSMfragmentation << 545 G4cout<<"string->GetDecayDirection() st << 546 <<string->GetDecayDirection()<<" << 547 G4cout<<"HadronPt,HadronE "<<HadronPt<< << 548 G4cout<<"Out of QGSM SplitEandP "<<G4en << 549 #endif << 550 << 551 return a4Momentum; 269 return a4Momentum; 552 } 270 } 553 271 554 //-------------------------------------------- << 555 << 556 G4double G4QGSMFragmentation::GetLightConeZ(G4 << 557 G4 << 558 { << 559 G4double lambda = 2.0*(sqr(ptx)+sqr(pty))/sq << 560 << 561 #ifdef debug_QGSMfragmentation << 562 G4cout<<"GetLightConeZ zmin zmax Parton pHad << 563 <<" "/*<< pHadron->GetParticleName() * << 564 #endif << 565 << 566 G4double z(0.); << 567 G4int DiQold(0), DiQnew(0); << 568 G4double d1(-1.0), d2(0.); << 569 G4double invD1(0.),invD2(0.), r1(0.),r2(0.), << 570 << 571 G4int absDecayQuarkCode = std::abs( DecayQua << 572 G4int absNewQuarkCode = std::abs( NewQuark << 573 << 574 G4int q1(0), q2(0); << 575 // q1 = absDecayQuarkCode/1000; q2 = (absDe << 576 << 577 G4int qA(0), qB(0); << 578 // qA = absNewQuarkCode/1000; qB = (absNe << 579 << 580 if ( (absDecayQuarkCode < 6) && (absNewQuark << 581 d1 = FFq2q[absDecayQuarkCode-1][absNewQuar << 582 } << 583 << 584 if ( (absDecayQuarkCode < 6) && (absNewQuark << 585 qA = absNewQuarkCode/1000; qB = (absNewQu << 586 d1 = FFq2qq[absDecayQuarkCode-1][DiQnew][0] << 587 } << 588 << 589 if ( (absDecayQuarkCode > 6) && (absNewQuark << 590 q1 = absDecayQuarkCode/1000; q2 = (absDeca << 591 d1 = FFqq2q[DiQold][absNewQuarkCode-1][0]; << 592 } << 593 << 594 if ( d1 < 0. ) { << 595 q1 = absDecayQuarkCode/1000; q2 = (absDeca << 596 qA = absNewQuarkCode/1000; qB = (absNewQ << 597 d1 = FFqq2qq[DiQold][DiQnew][0]; d2 = FFqq << 598 } << 599 << 600 d2 +=lambda; << 601 d1+=1.0; d2+=1.0; << 602 << 603 invD1=1./d1; invD2=1./d2; << 604 << 605 const G4int maxNumberOfLoops = 10000; << 606 G4int loopCounter = 0; << 607 do // Jong's algorithm << 608 { << 609 r1=G4Pow::GetInstance()->powA(G4UniformRan << 610 r2=G4Pow::GetInstance()->powA(G4UniformRan << 611 r12=r1+r2; << 612 z=r1/r12; << 613 } while ( ( (r12 > 1.0) || !((zmin <= z)&&(z << 614 ++loopCounter < maxNumberOfLoops ) << 615 << 616 if ( loopCounter >= maxNumberOfLoops ) { << 617 z = 0.5*(zmin + zmax); // Just a value be << 618 } << 619 << 620 return z; << 621 } << 622 272 623 //-------------------------------------------- 273 //----------------------------------------------------------------------------------------- 624 274 625 G4bool G4QGSMFragmentation::SplitLast(G4Fragme 275 G4bool G4QGSMFragmentation::SplitLast(G4FragmentingString * string, 626 G4KineticTrackVector * Lef << 276 G4KineticTrackVector * LeftVector, 627 G4KineticTrackVector * Right << 277 G4KineticTrackVector * RightVector) 628 { 278 { 629 //... perform last cluster decay 279 //... perform last cluster decay 630 << 631 G4ThreeVector ClusterVel =string->Get4Mome 280 G4ThreeVector ClusterVel =string->Get4Momentum().boostVector(); 632 G4double ResidualMass =string->Mass(); << 281 G4double ResidualMass =string->Mass(); 633 << 282 G4double ClusterMassCut = ClusterMass; 634 #ifdef debug_QGSMfragmentation << 635 G4cout<<"Split last----------------------- << 636 G4cout<<"StrMass "<<ResidualMass<<" q's " << 637 <<string->GetLeftParton()->GetPartic << 638 <<string->GetRightParton()->GetParti << 639 #endif << 640 << 641 G4int cClusterInterrupt = 0; 283 G4int cClusterInterrupt = 0; 642 G4ParticleDefinition *LeftHadron = nullptr << 284 G4ParticleDefinition * LeftHadron, * RightHadron; 643 G4ParticleDefinition *RightHadron = nullpt << 644 const G4int maxNumberOfLoops = 1000; << 645 G4int loopCounter = 0; << 646 << 647 G4double LeftHadronMass(0.); G4double Righ << 648 do 285 do 649 { 286 { 650 if (cClusterInterrupt++ >= ClusterLoop << 287 if (cClusterInterrupt++ >= ClusterLoopInterrupt) 651 LeftHadronMass = -MaxMass; RightHadron << 288 { 652 << 289 return false; 653 G4ParticleDefinition * quark = nullptr; << 290 } >> 291 G4ParticleDefinition * quark = NULL; 654 string->SetLeftPartonStable(); // to query q 292 string->SetLeftPartonStable(); // to query quark contents.. 655 << 656 if (string->DecayIsQuark() && string->Stable 293 if (string->DecayIsQuark() && string->StableIsQuark() ) 657 { 294 { 658 //... there are quarks on cluster ends << 295 //... there are quarks on cluster ends 659 << 296 LeftHadron= QuarkSplitup(string->GetLeftParton(), quark); 660 G4int IsParticle=(string->GetLeftParton()- << 297 } else { 661 // if we have a quark, we need << 298 //... there is a Diquark on cluster ends 662 << 299 G4int IsParticle; 663 pDefPair QuarkPair = CreatePartonPair(IsPa << 300 if ( string->StableIsQuark() ) { 664 quark = QuarkPair.second; << 301 IsParticle=(string->GetLeftParton()->GetPDGEncoding()>0) ? -1 : +1; 665 << 302 } else { 666 LeftHadron= hadronizer->Build(QuarkPair.fi << 303 IsParticle=(string->GetLeftParton()->GetPDGEncoding()>0) ? +1 : -1; 667 if ( LeftHadron == NULL ) continue; << 304 } 668 RightHadron = hadronizer->Build(stri << 305 pDefPair QuarkPair = CreatePartonPair(IsParticle,false); // no diquarks wanted 669 if ( RightHadron == NULL ) continue; << 306 quark = QuarkPair.second; 670 } else if( (!string->DecayIsQuark() && stri << 307 LeftHadron=hadronizer->Build(QuarkPair.first, string->GetLeftParton()); 671 ( string->DecayIsQuark() && !stri << 308 } 672 //... there is a Diquark on one of cluster << 309 RightHadron = hadronizer->Build(string->GetRightParton(), quark); 673 G4int IsParticle; << 674 if ( string->StableIsQuark() ) { << 675 IsParticle=(string->GetLeftParton()->Get << 676 } else { << 677 IsParticle=(string->GetLeftParton()->Get << 678 } << 679 << 680 //G4double ProbSaS = 1.0 - 2.0 * G << 681 //G4double ActualProb = ProbSaS * 1. << 682 //SetStrangenessSuppression((1.0-Act << 683 << 684 pDefPair QuarkPair = CreatePartonPai << 685 //SetStrangenessSuppression((1.0-Pro << 686 quark = QuarkPair.second; << 687 LeftHadron=hadronizer->Build(QuarkPa << 688 if ( LeftHadron == NULL ) continue; << 689 RightHadron = hadronizer->Build(stri << 690 if ( RightHadron == NULL ) continue; << 691 } else { // Diquark and anti-diquark << 692 if (cClusterInterrupt++ >= ClusterLo << 693 G4int LeftQuark1= string->GetLeftPar << 694 G4int LeftQuark2=(string->GetLeftPar << 695 G4int RightQuark1= string->GetRightP << 696 G4int RightQuark2=(string->GetRightP << 697 if (G4UniformRand()<0.5) { << 698 LeftHadron =hadronizer->Build(Fin << 699 RightHadron =hadronizer->Build(Fin << 700 } else { << 701 LeftHadron =hadronizer->Build(Fin << 702 RightHadron =hadronizer->Build(Fin << 703 } << 704 if ( (LeftHadron == NULL) || (RightHadron << 705 } << 706 LeftHadronMass = LeftHadron->GetPDGMa << 707 RightHadronMass = RightHadron->GetPDGM << 708 //... repeat procedure, if mass of clu << 709 } while ( ( ResidualMass <= LeftHadronMass << 710 && ++loopCounter < maxNumberOfLo << 711 310 712 if ( loopCounter >= maxNumberOfLoops ) { << 311 //... repeat procedure, if mass of cluster is too low to produce hadrons 713 return false; << 312 //... ClusterMassCut = 0.15*GeV model parameter 714 } << 313 if ( quark->GetParticleSubType()== "quark" ) {ClusterMassCut = 0.;} >> 314 else {ClusterMassCut = ClusterMass;} >> 315 } >> 316 while (ResidualMass <= LeftHadron->GetPDGMass() + RightHadron->GetPDGMass() + ClusterMassCut); 715 317 716 //... compute hadron momenta and energies 318 //... compute hadron momenta and energies 717 G4LorentzVector LeftMom, RightMom; 319 G4LorentzVector LeftMom, RightMom; 718 G4ThreeVector Pos; 320 G4ThreeVector Pos; 719 Sample4Momentum(&LeftMom , LeftHadron->Get << 321 Sample4Momentum(&LeftMom, LeftHadron->GetPDGMass(), &RightMom, RightHadron->GetPDGMass(), ResidualMass); 720 &RightMom, RightHadron->Ge << 721 LeftMom.boost(ClusterVel); 322 LeftMom.boost(ClusterVel); 722 RightMom.boost(ClusterVel); 323 RightMom.boost(ClusterVel); 723 << 724 #ifdef debug_QGSMfragmentation << 725 G4cout<<LeftHadron->GetParticleName()<<" " << 726 G4cout<<"Left Hadrom P M "<<LeftMom<<" "< << 727 G4cout<<"Right Hadrom P M "<<RightMom<<" " << 728 #endif << 729 << 730 LeftVector->push_back(new G4KineticTrack(L 324 LeftVector->push_back(new G4KineticTrack(LeftHadron, 0, Pos, LeftMom)); 731 RightVector->push_back(new G4KineticTrack( 325 RightVector->push_back(new G4KineticTrack(RightHadron, 0, Pos, RightMom)); 732 326 733 return true; 327 return true; >> 328 734 } 329 } 735 330 736 //-------------------------------------------- 331 //---------------------------------------------------------------------------------------------------------- 737 332 738 void G4QGSMFragmentation::Sample4Momentum(G4Lo << 333 G4bool G4QGSMFragmentation::IsFragmentable(const G4FragmentingString * const string) 739 G4Lo << 740 { 334 { 741 #ifdef debug_QGSMfragmentation << 335 return sqr(FragmentationMass(string)+MassCut) < 742 G4cout<<"Sample4Momentum Last------------- << 336 string->Mass2(); 743 G4cout<<" StrMass "<<InitialMass<<" Mass1 << 337 } 744 G4cout<<" SumMass "<<Mass+AntiMass<<G4end << 338 745 #endif << 339 //---------------------------------------------------------------------------------------------------------- >> 340 >> 341 G4bool G4QGSMFragmentation::StopFragmenting(const G4FragmentingString * const string) >> 342 { >> 343 return >> 344 sqr(FragmentationMass(string,&G4HadronBuilder::BuildHighSpin)+MassCut) > >> 345 string->Get4Momentum().mag2(); >> 346 } 746 347 >> 348 //---------------------------------------------------------------------------------------------------------- >> 349 >> 350 //---------------------------------------------------------------------------------------------------------- >> 351 >> 352 void G4QGSMFragmentation::Sample4Momentum(G4LorentzVector* Mom, G4double Mass, G4LorentzVector* AntiMom, G4double AntiMass, G4double InitialMass) >> 353 { 747 G4double r_val = sqr(InitialMass*InitialMa 354 G4double r_val = sqr(InitialMass*InitialMass - Mass*Mass - AntiMass*AntiMass) - sqr(2.*Mass*AntiMass); 748 G4double Pabs = (r_val > 0.)? std::sqrt(r_ 355 G4double Pabs = (r_val > 0.)? std::sqrt(r_val)/(2.*InitialMass) : 0; 749 356 750 //... sample unit vector 357 //... sample unit vector 751 G4double pz = 1. - 2.*G4UniformRand(); 358 G4double pz = 1. - 2.*G4UniformRand(); 752 G4double st = std::sqrt(1. - pz * pz)* 359 G4double st = std::sqrt(1. - pz * pz)*Pabs; 753 G4double phi = 2.*pi*G4UniformRand(); 360 G4double phi = 2.*pi*G4UniformRand(); 754 G4double px = st*std::cos(phi); 361 G4double px = st*std::cos(phi); 755 G4double py = st*std::sin(phi); 362 G4double py = st*std::sin(phi); 756 pz *= Pabs; 363 pz *= Pabs; 757 364 758 Mom->setPx(px); Mom->setPy(py); Mom->setPz 365 Mom->setPx(px); Mom->setPy(py); Mom->setPz(pz); 759 Mom->setE(std::sqrt(Pabs*Pabs + Mass*Mass) 366 Mom->setE(std::sqrt(Pabs*Pabs + Mass*Mass)); 760 367 761 AntiMom->setPx(-px); AntiMom->setPy(-py); 368 AntiMom->setPx(-px); AntiMom->setPy(-py); AntiMom->setPz(-pz); 762 AntiMom->setE (std::sqrt(Pabs*Pabs + AntiM 369 AntiMom->setE (std::sqrt(Pabs*Pabs + AntiMass*AntiMass)); 763 } << 370 } 764 << 765 //-------------------------------------------- << 766 << 767 void G4QGSMFragmentation::SetFFq2q() // q-> q << 768 { << 769 for (G4int i=0; i < 5; i++) { << 770 FFq2q[i][0][0] = 2.0 ; FFq2q[i][0][1] = -a << 771 FFq2q[i][1][0] = 2.0 ; FFq2q[i][1][1] = -a << 772 FFq2q[i][2][0] = 1.0 ; FFq2q[i][2][1] = -a << 773 FFq2q[i][3][0] = 1.0 ; FFq2q[i][3][1] = -a << 774 FFq2q[i][4][0] = 1.0 ; FFq2q[i][4][1] = -a << 775 } << 776 } << 777 << 778 //-------------------------------------------- << 779 << 780 void G4QGSMFragmentation::SetFFq2qq() // q-> << 781 { << 782 for (G4int i=0; i < 5; i++) { << 783 FFq2qq[i][ 0][0] = 0.0 ; FFq2qq[i][ 0][1] << 784 FFq2qq[i][ 1][0] = 0.0 ; FFq2qq[i][ 1][1] << 785 FFq2qq[i][ 2][0] = 0.0 ; FFq2qq[i][ 2][1] << 786 FFq2qq[i][ 3][0] = 0.0 ; FFq2qq[i][ 3][1] << 787 FFq2qq[i][ 4][0] = 0.0 ; FFq2qq[i][ 4][1] << 788 FFq2qq[i][ 5][0] = 0.0 ; FFq2qq[i][ 5][1] << 789 FFq2qq[i][ 6][0] = 0.0 ; FFq2qq[i][ 6][1] << 790 FFq2qq[i][ 7][0] = 0.0 ; FFq2qq[i][ 7][1] << 791 FFq2qq[i][ 8][0] = 0.0 ; FFq2qq[i][ 8][1] << 792 FFq2qq[i][ 9][0] = 0.0 ; FFq2qq[i][ 9][1] << 793 FFq2qq[i][10][0] = 0.0 ; FFq2qq[i][10][1] << 794 FFq2qq[i][11][0] = 0.0 ; FFq2qq[i][11][1] << 795 FFq2qq[i][12][0] = 0.0 ; FFq2qq[i][12][1] << 796 FFq2qq[i][13][0] = 0.0 ; FFq2qq[i][13][1] << 797 FFq2qq[i][14][0] = 0.0 ; FFq2qq[i][14][1] << 798 } << 799 } << 800 << 801 //-------------------------------------------- << 802 << 803 void G4QGSMFragmentation::SetFFqq2q() // q1q2 << 804 { << 805 for (G4int i=0; i < 15; i++) { << 806 FFqq2q[i][0][0] = 2.0*(arho - an); FFqq2q[ << 807 FFqq2q[i][1][0] = 2.0*(arho - an); FFqq2q[ << 808 FFqq2q[i][2][0] = 2.0*(arho - an); FFqq2q[ << 809 FFqq2q[i][3][0] = 2.0*(arho - an); FFqq2q[ << 810 FFqq2q[i][4][0] = 2.0*(arho - an); FFqq2q[ << 811 } << 812 } << 813 << 814 //-------------------------------------------- << 815 << 816 void G4QGSMFragmentation::SetFFqq2qq() // q1( << 817 { << 818 for (G4int i=0; i < 15; i++) { << 819 FFqq2qq[i][0][0] = 0. ; FFqq2qq[i][0][1] << 820 FFqq2qq[i][1][0] = 0. ; FFqq2qq[i][1][1] << 821 FFqq2qq[i][2][0] = 0. ; FFqq2qq[i][2][1] << 822 FFqq2qq[i][3][0] = 0. ; FFqq2qq[i][3][1] << 823 FFqq2qq[i][4][0] = 0. ; FFqq2qq[i][4][1] << 824 } << 825 } << 826 371 >> 372 >> 373 //********************************************************************************************* 827 374