Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4LundStringFragmentation.cc,v 1.23 2010-09-22 12:36:37 vuzhinsk Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ 1.8 27 // 29 // 28 // ------------------------------------------- 30 // ----------------------------------------------------------------------------- 29 // GEANT 4 class implementation file 31 // GEANT 4 class implementation file 30 // 32 // 31 // History: first implementation, Maxim K 33 // History: first implementation, Maxim Komogorov, 10-Jul-1998 32 // ------------------------------------------- 34 // ----------------------------------------------------------------------------- 33 #include "G4LundStringFragmentation.hh" 35 #include "G4LundStringFragmentation.hh" 34 #include "G4PhysicalConstants.hh" << 35 #include "G4SystemOfUnits.hh" << 36 #include "Randomize.hh" << 37 #include "G4FragmentingString.hh" 36 #include "G4FragmentingString.hh" 38 #include "G4DiQuarks.hh" 37 #include "G4DiQuarks.hh" 39 #include "G4Quarks.hh" 38 #include "G4Quarks.hh" 40 #include "G4HadronicParameters.hh" << 41 #include "G4Exp.hh" << 42 #include "G4Pow.hh" << 43 39 44 //#define debug_LUNDfragmentation << 40 #include "Randomize.hh" 45 41 46 // Class G4LundStringFragmentation 42 // Class G4LundStringFragmentation 47 //******************************************** 43 //************************************************************************************* 48 44 49 G4LundStringFragmentation::G4LundStringFragmen 45 G4LundStringFragmentation::G4LundStringFragmentation() 50 : G4VLongitudinalStringDecay("LundStringFrag << 46 { 51 { << 47 // ------ For estimation of a minimal string mass --------------- 52 SetMassCut(210.*MeV); // Mpi + Delta << 48 Mass_of_light_quark =140.*MeV; 53 // For ProduceOneH << 49 Mass_of_heavy_quark =500.*MeV; 54 // that no one pi- << 50 Mass_of_string_junction=720.*MeV; 55 SigmaQT = 0.435 * GeV; << 51 // ------ An estimated minimal string mass ---------------------- 56 Tmt = 190.0 * MeV; << 52 MinimalStringMass = 0.; 57 << 53 MinimalStringMass2 = 0.; 58 SetStringTensionParameter(1.*GeV/fermi); << 54 // ------ Minimal invariant mass used at a string fragmentation - 59 SetDiquarkBreakProbability(0.3); << 55 WminLUND = 0.45*GeV; //0.23*GeV; // Uzhi 0.7 -> 0.23 3.8.10 //0.8 1.5 60 << 56 // ------ Smooth parameter used at a string fragmentation for --- 61 SetStrangenessSuppression((1.0 - 0.12)/2.0 << 57 // ------ smearinr sharp mass cut-off --------------------------- 62 SetDiquarkSuppression(0.07); << 58 SmoothParam = 0.2; 63 << 59 64 // Check if charmed and bottom hadrons are << 60 // SetStringTensionParameter(0.25); 65 // set the non-zero probabilities for c-cb << 61 SetStringTensionParameter(1.); 66 // else set them to 0.0. If these probabil << 62 67 // hadrons can't/can be created during the << 63 SetDiquarkBreakProbability(0.05); // Vova Aug. 22 68 // (i.e. not heavy) projectile hadron nucl << 64 69 if ( G4HadronicParameters::Instance()->Ena << 65 // For treating of small string decays 70 SetProbCCbar(0.0002); // According to O << 66 for(G4int i=0; i<3; i++) 71 SetProbBBbar(5.0e-5); // According to O << 67 { for(G4int j=0; j<3; j++) 72 } else { << 68 { for(G4int k=0; k<6; k++) 73 SetProbCCbar(0.0); << 69 { Meson[i][j][k]=0; MesonWeight[i][j][k]=0.; 74 SetProbBBbar(0.0); << 70 } 75 } << 71 } 76 << 72 } 77 SetMinMasses(); // For treating of small << 73 //-------------------------- 78 } << 74 Meson[0][0][0]=111; // dbar-d Pi0 >> 75 MesonWeight[0][0][0]=pspin_meson*(1.-scalarMesonMix[0]); 79 76 80 //-------------------------------------------- << 77 Meson[0][0][1]=221; // dbar-d Eta >> 78 MesonWeight[0][0][1]=pspin_meson*(scalarMesonMix[0]-scalarMesonMix[1]); 81 79 82 G4KineticTrackVector* G4LundStringFragmentatio << 80 Meson[0][0][2]=331; // dbar-d EtaPrime 83 { << 81 MesonWeight[0][0][2]=pspin_meson*(scalarMesonMix[1]); 84 // Can no longer modify Parameters for Fragm << 85 82 86 PastInitPhase=true; << 83 Meson[0][0][3]=113; // dbar-d Rho0 >> 84 MesonWeight[0][0][3]=(1.-pspin_meson)*(1.-vectorMesonMix[0]); 87 85 88 G4FragmentingString aString(theString); << 86 Meson[0][0][4]=223; // dbar-d Omega 89 SetMinimalStringMass(&aString); << 87 MesonWeight[0][0][4]=(1.-pspin_meson)*(vectorMesonMix[0]); >> 88 //-------------------------- 90 89 91 #ifdef debug_LUNDfragmentation << 90 Meson[0][1][0]=211; // dbar-u Pi+ 92 G4cout<<G4endl<<"LUND StringFragmentat << 91 MesonWeight[0][1][0]=pspin_meson; 93 G4cout<<G4endl<<"LUND StringFragm: Str << 94 <<theString.Get4Momentum << 95 <<"4Mom "<<theString.Get << 96 <<"--------------------- << 97 G4cout<<"String ends Direct "<<theStri << 98 <<theStri << 99 <<theStri << 100 G4cout<<"Left mom "<<theString.GetLef << 101 G4cout<<"Right mom "<<theString.GetRig << 102 G4cout<<"Check for Fragmentation "<<G4 << 103 #endif << 104 92 105 G4KineticTrackVector * LeftVector(0); << 93 Meson[0][1][1]=213; // dbar-u Rho+ >> 94 MesonWeight[0][1][1]=(1.-pspin_meson); >> 95 //-------------------------- 106 96 107 if (!aString.IsAFourQuarkString() && !IsItFr << 97 Meson[0][2][0]=311; // dbar-s K0bar 108 { << 98 MesonWeight[0][2][0]=pspin_meson; 109 #ifdef debug_LUNDfragmentation << 110 G4cout<<"Non fragmentable - th << 111 #endif << 112 // SetMassCut(210.*MeV); // F << 113 // t << 114 << 115 G4double Mcut = GetMassCut(); << 116 SetMassCut(10000.*MeV); << 117 LeftVector=ProduceOneHadron(&theString); << 118 SetMassCut(Mcut); << 119 99 120 if ( LeftVector ) << 100 Meson[0][2][1]=313; // dbar-s K*0bar 121 { << 101 MesonWeight[0][2][1]=(1.-pspin_meson); 122 if ( LeftVector->size() > 0) << 102 //-------------------------- 123 { << 103 //-------------------------- 124 LeftVector->operator[](0)->SetForm << 104 Meson[1][0][0]=211; // ubar-d Pi- 125 LeftVector->operator[](0)->SetPosi << 105 MesonWeight[1][0][0]=pspin_meson; 126 } << 127 if (LeftVector->size() > 1) << 128 { << 129 // 2 hadrons created from qq-qqbar << 130 LeftVector->operator[](1)->SetFormationT << 131 LeftVector->operator[](1)->SetPosition(t << 132 } << 133 } << 134 return LeftVector; << 135 } << 136 106 137 #ifdef debug_LUNDfragmentation << 107 Meson[1][0][1]=213; // ubar-d Rho- 138 G4cout<<"The string will be fragmented << 108 MesonWeight[1][0][1]=(1.-pspin_meson); 139 #endif << 109 //-------------------------- 140 110 141 // The string can fragment. At least two par << 111 Meson[1][1][0]=111; // ubar-u Pi0 142 LeftVector =new G4KineticTrackVec << 112 MesonWeight[1][1][0]=pspin_meson*(1.-scalarMesonMix[0]); 143 G4KineticTrackVector * RightVector=new G4Kin << 144 113 145 G4bool success = Loop_toFragmentString << 114 Meson[1][1][1]=221; // ubar-u Eta >> 115 MesonWeight[1][1][1]=pspin_meson*(scalarMesonMix[0]-scalarMesonMix[1]); 146 116 147 if ( ! success ) << 117 Meson[1][1][2]=331; // ubar-u EtaPrime 148 { << 118 MesonWeight[1][1][2]=pspin_meson*(scalarMesonMix[1]); 149 std::for_each(LeftVector->begin(), LeftVec << 150 LeftVector->clear(); << 151 std::for_each(RightVector->begin(), RightV << 152 delete RightVector; << 153 return LeftVector; << 154 } << 155 119 156 // Join Left- and RightVector into LeftVecto << 120 Meson[1][1][3]=113; // ubar-u Rho0 157 while (!RightVector->empty()) << 121 MesonWeight[1][1][3]=(1.-pspin_meson)*(1.-vectorMesonMix[0]); 158 { << 159 LeftVector->push_back(RightVector->back()) << 160 RightVector->erase(RightVector->end()-1); << 161 } << 162 delete RightVector; << 163 122 164 return LeftVector; << 123 Meson[1][1][4]=223; // ubar-u Omega 165 } << 124 MesonWeight[1][1][4]=(1.-pspin_meson)*(scalarMesonMix[0]); >> 125 //-------------------------- 166 126 167 //-------------------------------------------- << 127 Meson[1][2][0]=321; // ubar-s K- >> 128 MesonWeight[1][2][0]=pspin_meson; 168 129 169 G4bool G4LundStringFragmentation::IsItFragment << 130 Meson[1][2][1]=323; // ubar-s K*-bar - 170 { << 131 MesonWeight[1][2][1]=(1.-pspin_meson); 171 SetMinimalStringMass(string); << 132 //-------------------------- 172 //G4cout<<"MinM StrM "<<MinimalStringM << 133 //-------------------------- 173 134 174 return std::abs(MinimalStringMass) < string- << 135 Meson[2][0][0]=311; // sbar-d K0 >> 136 MesonWeight[2][0][0]=pspin_meson; 175 137 176 //MinimalStringMass is negative and la << 138 Meson[2][0][1]=313; // sbar-d K*0 177 } << 139 MesonWeight[2][0][1]=(1.-pspin_meson); >> 140 //-------------------------- 178 141 179 //-------------------------------------------- << 142 Meson[2][1][0]=321; // sbar-u K+ >> 143 MesonWeight[2][1][0]=pspin_meson; 180 144 181 G4bool G4LundStringFragmentation::Loop_toFragm << 145 Meson[2][1][1]=323; // sbar-u K*+ 182 << 146 MesonWeight[2][1][1]=(1.-pspin_meson); 183 << 147 //-------------------------- 184 { << 185 #ifdef debug_LUNDfragmentation << 186 G4cout<<"Loop_toFrag "<<theString.GetL << 187 <<theString.GetL << 188 <<" "<<theString.GetR << 189 <<theString.GetR << 190 <<"Direction "<<theString.GetD << 191 #endif << 192 148 193 G4LorentzRotation toCmsI, toObserverFr << 149 Meson[2][2][0]=221; // sbar-s Eta >> 150 MesonWeight[2][2][0]=pspin_meson*(1.-scalarMesonMix[5]); 194 151 195 G4bool final_success=false; << 152 Meson[2][2][1]=331; // sbar-s EtaPrime 196 G4bool inner_success=true; << 153 MesonWeight[2][2][1]=pspin_meson*(1.-scalarMesonMix[5]); 197 154 198 G4int attempt=0; << 155 Meson[2][2][3]=333; // sbar-s EtaPrime >> 156 MesonWeight[2][2][3]=(1.-pspin_meson)*(vectorMesonMix[5]); >> 157 //-------------------------- 199 158 200 while ( ! final_success && attempt++ < Strin << 159 for(G4int i=0; i<3; i++) 201 { // If the string fragmentation does << 160 { for(G4int j=0; j<3; j++) 202 // repeat the fragmentation. << 161 { for(G4int k=0; k<3; k++) >> 162 { for(G4int l=0; l<4; l++) >> 163 { Baryon[i][j][k][l]=0; BaryonWeight[i][j][k][l]=0.;} >> 164 } >> 165 } >> 166 } 203 167 204 G4FragmentingString *currentSt << 168 //--------------------------------------- 205 toCmsI = currentString->Transf << 169 Baryon[0][0][0][0]=1114; // Delta- 206 toObserverFrameI = toCmsI.inve << 170 BaryonWeight[0][0][0][0]=1.; 207 171 208 G4LorentzRotation toCms, toObserverFrame; << 172 //--------------------------------------- >> 173 Baryon[0][0][1][0]=2112; // neutron >> 174 BaryonWeight[0][0][1][0]=pspin_barion; 209 175 210 //G4cout<<"Main loop start whilecounter "< << 176 Baryon[0][0][1][1]=2114; // Delta0 >> 177 BaryonWeight[0][0][1][1]=(1.-pspin_barion); 211 178 212 // Cleaning up the previously produced had << 179 //--------------------------------------- 213 std::for_each(LeftVector->begin(), LeftVec << 180 Baryon[0][0][2][0]=3112; // Sigma- 214 LeftVector->clear(); << 181 BaryonWeight[0][0][2][0]=pspin_barion; 215 std::for_each(RightVector->begin(), RightV << 216 RightVector->clear(); << 217 182 218 // Main fragmentation loop until the strin << 183 Baryon[0][0][2][1]=3114; // Sigma*- 219 inner_success=true; // set false on failu << 184 BaryonWeight[0][0][2][1]=(1.-pspin_barion); 220 const G4int maxNumberOfLoops = << 221 G4int loopCounter = -1; << 222 << 223 while ( (! StopFragmenting(currentString)) << 224 { // Split current string into hadro << 225 #ifdef debug_LUNDfragm << 226 G4cout<<"The string wi << 227 //G4cout<<"1 "<<curren << 228 #endif << 229 G4FragmentingString *newString=0; // us << 230 << 231 toCms=currentString->TransformToAlignedC << 232 toObserverFrame= toCms << 233 << 234 #ifdef debug_LUNDfragm << 235 //G4cout<<"CMS Left m << 236 //G4cout<<"CMS Right m << 237 //G4cout<<"CMS String << 238 #endif << 239 185 240 G4KineticTrack * Hadron=Splitup(currentS << 186 //--------------------------------------- >> 187 Baryon[0][1][0][0]=2112; // neutron >> 188 BaryonWeight[0][1][0][0]=pspin_barion; 241 189 242 if ( Hadron != 0 ) // Store the hadron << 190 Baryon[0][1][0][1]=2114; // Delta0 243 { << 191 BaryonWeight[0][1][0][1]=(1.-pspin_barion); 244 #ifdef debug_L << 245 G4cout<<"Hadro << 246 //G4cout<<"2 " << 247 #endif << 248 << 249 Hadron->Set4Momentum(toObserverFrame*H << 250 << 251 G4double TimeOftheStringCreation=theSt << 252 G4ThreeVector PositionOftheStringCreat << 253 << 254 G4LorentzVector Coordinate(Hadron->Get << 255 G4LorentzVector Momentum = toObserverF << 256 Hadron->SetFormationTime(TimeOftheStri << 257 G4ThreeVector aPosition(Momentum.vect( << 258 Hadron->SetPosition(PositionOftheStrin << 259 << 260 // Open to pro << 261 if ( currentString->GetDecayDirection( << 262 { << 263 LeftVector->push_back(Hadron); << 264 } else << 265 { << 266 RightVector->push_back(Hadron); << 267 } << 268 delete currentString; << 269 currentString=newString; << 270 } else { << 271 if ( newString ) del << 272 } << 273 << 274 currentString->Lorentz << 275 }; << 276 << 277 if ( loopCounter >= maxNumberO << 278 inner_success=false; << 279 } << 280 << 281 // Split remaining string into 2 final had << 282 #ifdef debug_LUNDfragmentation << 283 if (inner_success) G4cout<<"Sp << 284 #endif << 285 192 286 if ( inner_success && SplitLast(currentStr << 193 //--------------------------------------- 287 { << 194 Baryon[0][1][1][0]=2212; // proton 288 final_success = true; << 195 BaryonWeight[0][1][1][0]=pspin_barion; 289 } << 290 196 291 delete currentString; << 197 Baryon[0][1][1][1]=2214; // Delta+ 292 } // End of the loop where we try to fragme << 198 BaryonWeight[0][1][1][1]=(1.-pspin_barion); 293 199 294 G4int sign = +1; << 200 //--------------------------------------- 295 if ( theString.GetDirection() < 0 ) si << 201 Baryon[0][1][2][0]=3122; // Lambda 296 for ( unsigned int hadronI = 0; hadron << 202 BaryonWeight[0][1][2][0]=pspin_barion*0.5; 297 G4LorentzVector Tmp = LeftVector->o << 298 Tmp.setZ(sign*Tmp.getZ()); << 299 Tmp *= toObserverFrameI; << 300 LeftVector->operator[](hadronI)->Se << 301 } << 302 for ( unsigned int hadronI = 0; hadron << 303 G4LorentzVector Tmp = RightVector-> << 304 Tmp.setZ(sign*Tmp.getZ()); << 305 Tmp *= toObserverFrameI; << 306 RightVector->operator[](hadronI)->S << 307 } << 308 203 309 return final_success; << 204 Baryon[0][1][2][1]=3212; // Sigma0 310 } << 205 BaryonWeight[0][1][2][2]=pspin_barion*0.5; 311 206 312 //-------------------------------------------- << 207 Baryon[0][1][2][2]=3214; // Sigma*0 >> 208 BaryonWeight[0][1][2][2]=(1.-pspin_barion); 313 209 314 G4bool G4LundStringFragmentation::StopFragment << 210 //--------------------------------------- 315 { << 211 Baryon[0][2][0][0]=3112; // Sigma- 316 SetMinimalStringMass(string); << 212 BaryonWeight[0][2][0][0]=pspin_barion; 317 213 318 if ( MinimalStringMass < 0.) return true; << 214 Baryon[0][2][0][1]=3114; // Sigma*- >> 215 BaryonWeight[0][2][0][1]=(1.-pspin_barion); 319 216 320 if (string->IsAFourQuarkString()) << 217 //--------------------------------------- 321 { << 218 Baryon[0][2][1][0]=3122; // Lambda 322 return G4UniformRand() < G4Exp(-0.0005*(st << 219 BaryonWeight[0][2][1][0]=pspin_barion*0.5; 323 } else { << 324 << 325 if (MinimalStringMass < 0.0 ) << 326 << 327 G4bool Result = G4UniformRand() < << 328 G4Exp(-0.66e-6*(string->Mass()*string- << 329 // G4bool Result = string->Mas << 330 << 331 #ifdef debug_LUNDfragmentation << 332 G4cout<<"StopFragmenting Minim << 333 <<" "<<string->Mass()<<G << 334 G4cout<<"StopFragmenting - Yes << 335 #endif << 336 return Result; << 337 } << 338 } << 339 220 340 //-------------------------------------------- << 221 Baryon[0][2][1][1]=3212; // Sigma0 >> 222 BaryonWeight[0][2][1][1]=pspin_barion*0.5; 341 223 342 G4KineticTrack * G4LundStringFragmentation::Sp << 224 Baryon[0][2][1][2]=3214; // Sigma*0 343 G4Fragmentin << 225 BaryonWeight[0][2][1][2]=(1.-pspin_barion); 344 { << 345 #ifdef debug_LUNDfragmentation << 346 G4cout<<G4endl; << 347 G4cout<<"Start SplitUP ================ << 348 G4cout<<"String partons: " <<string->Ge << 349 <<string->Ge << 350 <<"Direction " <<string->Ge << 351 #endif << 352 << 353 //... random choice of string end to us << 354 G4int SideOfDecay = (G4UniformRand() < << 355 if (SideOfDecay < 0) << 356 { << 357 string->SetLeftPartonStable(); << 358 } else << 359 { << 360 string->SetRightPartonStable(); << 361 } << 362 << 363 G4ParticleDefinition *newStringEnd; << 364 G4ParticleDefinition * HadronDefinition << 365 << 366 G4double StringMass=string->Mass(); << 367 << 368 G4double ProbDqADq = GetDiquarkSuppress << 369 G4double ProbSaS = 1.0 - 2.0 * GetStr << 370 << 371 #ifdef debug_LUNDfragmentation << 372 G4cout<<"StrMass DiquarkSuppression << 373 #endif << 374 << 375 G4int NumberOfpossibleBaryons = 2; << 376 << 377 if (string->GetLeftParton()->GetParticl << 378 if (string->GetRightParton()->GetPartic << 379 << 380 G4double ActualProb = ProbDqADq ; << 381 ActualProb *= (1.0-G4Pow::GetInstance() << 382 if(ActualProb <0.0) ActualProb = 0.; << 383 << 384 SetDiquarkSuppression(ActualProb); << 385 << 386 G4double Mth = 1250.0; << 387 if ( NumberOfpossibleBaryons == 3 ){Mth << 388 else if ( NumberOfpossibleBaryons == 4 << 389 else {} << 390 << 391 ActualProb = ProbSaS; << 392 ActualProb *= (1.0 - G4Pow::GetInstance << 393 if ( ActualProb < 0.0 ) ActualProb = 0. << 394 SetStrangenessSuppression((1.0-ActualPr << 395 << 396 #ifdef debug_LUNDfragmentation << 397 G4cout<<"StrMass DiquarkSuppression cor << 398 #endif << 399 << 400 if (string->DecayIsQuark()) << 401 { << 402 HadronDefinition= QuarkSplitup(strin << 403 } else { << 404 HadronDefinition= DiQuarkSplitup(str << 405 } << 406 << 407 SetDiquarkSuppression(ProbDqADq); << 408 SetStrangenessSuppression((1.0-ProbSaS) << 409 << 410 if ( HadronDefinition == NULL ) { G4Kin << 411 << 412 #ifdef debug_LUNDfragmentation << 413 G4cout<<"The parton "<<string->GetDecay << 414 <<" produces hadron "<<HadronDefi << 415 <<" and is transformed to "<<newS << 416 G4cout<<"The side of the string decay L << 417 #endif << 418 // create new String from old, ie. keep << 419 << 420 if ( newString ) delete newString; << 421 << 422 newString=new G4FragmentingString(*stri << 423 << 424 #ifdef debug_LUNDfragmentation << 425 G4cout<<"An attempt to determine its en << 426 #endif << 427 G4LorentzVector* HadronMomentum=SplitEa << 428 226 429 delete newString; newString=0; << 227 //--------------------------------------- 430 << 228 Baryon[0][2][2][0]=3312; // Theta- 431 G4KineticTrack * Hadron =0; << 229 BaryonWeight[0][2][2][0]=pspin_barion; 432 if ( HadronMomentum != 0 ) { << 433 230 434 #ifdef debug_LUNDfragmentation << 231 Baryon[0][2][2][1]=3314; // Theta*- 435 G4cout<<"The attempt was successful << 232 BaryonWeight[0][2][2][1]=(1.-pspin_barion); 436 #endif << 437 G4ThreeVector Pos; << 438 Hadron = new G4KineticTrack(HadronDefinit << 439 << 440 if ( newString ) delete newString; << 441 << 442 newString=new G4FragmentingString(*string << 443 HadronMomentum); << 444 delete HadronMomentum; << 445 } << 446 else << 447 { << 448 #ifdef debug_LUNDfragmentation << 449 G4cout<<"The attempt was not succes << 450 #endif << 451 } << 452 << 453 #ifdef debug_LUNDfragmentation << 454 G4cout<<"End SplitUP (G4VLongitudinalSt << 455 #endif << 456 233 457 return Hadron; << 234 //--------------------------------------- 458 } << 235 //--------------------------------------- >> 236 Baryon[1][0][0][0]=2112; // neutron >> 237 BaryonWeight[1][0][0][0]=pspin_barion; 459 238 460 //-------------------------------------------- << 239 Baryon[1][0][0][1]=2114; // Delta0 >> 240 BaryonWeight[1][0][0][1]=(1.-pspin_barion); 461 241 462 G4ParticleDefinition * G4LundStringFragmentati << 242 //--------------------------------------- 463 << 243 Baryon[1][0][1][0]=2212; // proton 464 { << 244 BaryonWeight[1][0][1][0]=pspin_barion; 465 G4double StrSup=GetStrangeSuppress(); << 466 G4double ProbQQbar = (1.0 - 2.0*StrSup)*1.2 << 467 245 468 //... can Diquark break or not? << 246 Baryon[1][0][1][1]=2214; // Delta+ 469 if (G4UniformRand() < DiquarkBreakProb ){ << 247 BaryonWeight[1][0][1][1]=(1.-pspin_barion); 470 248 471 //... Diquark break << 249 //--------------------------------------- 472 G4int stableQuarkEncoding = decay->GetPD << 250 Baryon[1][0][2][0]=3122; // Lambda 473 G4int decayQuarkEncoding = (decay->GetPD << 251 BaryonWeight[1][0][2][0]=pspin_barion*0.5; 474 if (G4UniformRand() < 0.5) << 475 { << 476 G4int Swap = stableQuarkEncoding; << 477 stableQuarkEncoding = decayQuarkEncod << 478 decayQuarkEncoding = Swap; << 479 } << 480 252 481 G4int IsParticle=(decayQuarkEncoding>0) << 253 Baryon[1][0][2][1]=3212; // Sigma0 >> 254 BaryonWeight[1][0][2][1]=pspin_barion*0.5; 482 255 483 SetStrangenessSuppression((1.0-ProbQQbar << 256 Baryon[1][0][2][2]=3214; // Sigma*0 484 pDefPair QuarkPair = CreatePartonPair(Is << 257 BaryonWeight[1][0][2][2]=(1.-pspin_barion); 485 SetStrangenessSuppression((1.0-StrSup)/2 << 486 258 487 //... Build new Diquark << 259 //--------------------------------------- 488 G4int QuarkEncoding=QuarkPair.second->Ge << 260 Baryon[1][1][0][0]=2212; // proton 489 G4int i10 = std::max(std::abs(QuarkEnco << 261 BaryonWeight[1][1][0][0]=pspin_barion; 490 G4int i20 = std::min(std::abs(QuarkEnco << 491 G4int spin = (i10 != i20 && G4UniformRan << 492 G4int NewDecayEncoding = -1*IsParticle*( << 493 created = FindParticle(NewDecayEncoding) << 494 G4ParticleDefinition * decayQuark=FindPa << 495 G4ParticleDefinition * had=hadronizer->B << 496 StrangeSuppress=StrSup; << 497 262 498 return had; << 263 Baryon[1][1][0][1]=2214; // Delta+ >> 264 BaryonWeight[1][1][0][1]=(1.-pspin_barion); 499 265 500 } else { << 266 //--------------------------------------- 501 //... Diquark does not break << 267 Baryon[1][1][1][0]=2224; // Delta++ >> 268 BaryonWeight[1][1][1][0]=1.; 502 269 503 G4int IsParticle=(decay->GetPDGEncoding( << 270 //--------------------------------------- >> 271 Baryon[1][1][2][0]=3222; // Sigma+ >> 272 BaryonWeight[1][1][2][0]=pspin_barion; 504 273 505 StrangeSuppress=(1.0 - ProbQQbar)/2.0; << 274 Baryon[1][1][2][1]=3224; // Sigma*+ 506 pDefPair QuarkPair = CreatePartonPair(Is << 275 BaryonWeight[1][1][2][1]=(1.-pspin_barion); 507 276 508 created = QuarkPair.second; << 277 //--------------------------------------- >> 278 Baryon[1][2][0][0]=3122; // Lambda >> 279 BaryonWeight[1][2][0][0]=pspin_barion*0.5; 509 280 510 G4ParticleDefinition * had=hadronizer->B << 281 Baryon[1][2][0][1]=3212; // Sigma0 511 StrangeSuppress=StrSup; << 282 BaryonWeight[1][2][0][1]=pspin_barion*0.5; 512 283 513 return had; << 284 Baryon[1][2][0][2]=3214; // Sigma*0 514 } << 285 BaryonWeight[1][2][0][2]=(1.-pspin_barion); 515 } << 516 286 517 //-------------------------------------------- << 287 //--------------------------------------- >> 288 Baryon[1][2][1][0]=3222; // Sigma+ >> 289 BaryonWeight[1][2][1][0]=pspin_barion; 518 290 519 G4LorentzVector * G4LundStringFragmentation::S << 291 Baryon[1][2][1][1]=3224; // Sigma*+ 520 << 292 BaryonWeight[1][2][1][1]=(1.-pspin_barion); 521 << 522 { << 523 G4LorentzVector String4Momentum=string->Get4 << 524 G4double StringMT2=string->MassT2(); << 525 G4double StringMT =std::sqrt(StringMT2); << 526 << 527 G4double HadronMass = pHadron->GetPDGMass(); << 528 SetMinimalStringMass(newString); << 529 << 530 if ( MinimalStringMass < 0.0 ) return n << 531 << 532 #ifdef debug_LUNDfragmentation << 533 G4cout<<G4endl<<"Start LUND SplitEandP << 534 G4cout<<"String 4 mom, String M and Mt << 535 <<" "<<std::sqrt(StringMT2)<<G4e << 536 G4cout<<"Hadron "<<pHadron->GetParticl << 537 G4cout<<"HadM MinimalStringMassLeft St << 538 <<String4Momentum.mag()<<" "<<Ha << 539 #endif << 540 293 541 if ((HadronMass + MinimalStringMass > string << 294 //--------------------------------------- 542 { << 295 Baryon[1][2][2][0]=3322; // Theta0 543 #ifdef debug_LUNDfragmentation << 296 BaryonWeight[1][2][2][0]=pspin_barion; 544 G4cout<<"Mass of the string is not s << 545 #endif << 546 return 0; << 547 } // have to start all over! << 548 << 549 String4Momentum.setPz(0.); << 550 G4ThreeVector StringPt=String4Momentum.vect( << 551 StringPt.setZ(0.); << 552 << 553 // calculate and assign hadron transverse mo << 554 G4ThreeVector HadronPt , RemSysPt; << 555 G4double HadronMassT2, ResidualMassT2; << 556 G4double HadronMt, Pt, Pt2, phi; << 557 << 558 G4double TmtCur = Tmt; << 559 << 560 if ( (string->GetDecayParton()->GetPar << 561 (pHadron->GetBaryonNumber() != 0) << 562 TmtCur = Tmt*0.37; // q << 563 } else if ( (string->GetDecayParton()- << 564 (pHadron->GetBaryonNumber( << 565 //TmtCur = Tmt; << 566 } else if ( (string->GetDecayParton()->GetPa << 567 (pHadron->GetBaryonNumber( << 568 //TmtCur = Tmt*0.89; << 569 } else if ( (string->GetDecayParton()- << 570 (pHadron->GetBaryonNumber( << 571 TmtCur = Tmt*1.35; << 572 } << 573 297 574 //... sample Pt of the hadron << 298 Baryon[1][2][2][1]=3324; // Theta*0 575 G4int attempt=0; << 299 BaryonWeight[1][2][2][1]=(1.-pspin_barion); 576 do << 577 { << 578 attempt++; if (attempt > StringLoopI << 579 300 580 HadronMt = HadronMass - TmtCur*G4Log << 301 //--------------------------------------- 581 Pt2 = sqr(HadronMt)-sqr(HadronMass); Pt=st << 302 //--------------------------------------- 582 phi = 2.*pi*G4UniformRand(); << 303 Baryon[2][0][0][0]=3112; // Sigma- 583 HadronPt = G4ThreeVector( Pt*std::co << 304 BaryonWeight[2][0][0][0]=pspin_barion; 584 RemSysPt = StringPt - HadronPt; << 585 HadronMassT2 = sqr(HadronMass) + Had << 586 ResidualMassT2=sqr(MinimalStringMass << 587 305 588 } while (std::sqrt(HadronMassT2) + std << 306 Baryon[2][0][0][1]=3114; // Sigma*- >> 307 BaryonWeight[2][0][0][1]=(1.-pspin_barion); 589 308 590 //... sample z to define hadron longitudina << 309 //--------------------------------------- 591 //... but first check the available phase sp << 310 Baryon[2][0][1][0]=3122; // Lambda >> 311 BaryonWeight[2][0][1][0]=pspin_barion*0.5; 592 312 593 G4double Pz2 = (sqr(StringMT2 - HadronMassT2 << 313 Baryon[2][0][1][1]=3212; // Sigma0 594 4*HadronMassT2 * ResidualMassT2)/4./Stri << 314 BaryonWeight[2][0][1][1]=pspin_barion*0.5; 595 315 596 if (Pz2 < 0 ) {return 0;} // have t << 316 Baryon[2][0][1][2]=3214; // Sigma*0 >> 317 BaryonWeight[2][0][1][2]=(1.-pspin_barion); 597 318 598 //... then compute allowed z region z_min < << 319 //--------------------------------------- >> 320 Baryon[2][0][2][0]=3312; // Sigma- >> 321 BaryonWeight[2][0][2][0]=pspin_barion; 599 322 600 G4double Pz = std::sqrt(Pz2); << 323 Baryon[2][0][2][1]=3314; // Sigma*- 601 G4double zMin = (std::sqrt(HadronMassT2+Pz2) << 324 BaryonWeight[2][0][2][1]=(1.-pspin_barion); 602 // G4double zMin = (std::sqrt(HadronMa << 603 G4double zMax = (std::sqrt(HadronMassT2+Pz2) << 604 325 605 if (zMin >= zMax) return 0; // have to sta << 326 //--------------------------------------- >> 327 Baryon[2][1][0][0]=3122; // Lambda >> 328 BaryonWeight[2][1][0][0]=pspin_barion*0.5; 606 329 607 G4double z = GetLightConeZ(zMin, zMax, << 330 Baryon[2][1][0][1]=3212; // Sigma0 608 string->GetDecayParton()->Get << 331 BaryonWeight[2][1][0][1]=pspin_barion*0.5; 609 HadronPt.x(), HadronPt.y()); << 610 332 611 //... now compute hadron longitudinal moment << 333 Baryon[2][1][0][2]=3214; // Sigma*0 612 // longitudinal hadron momentum component Ha << 334 BaryonWeight[2][1][0][2]=(1.-pspin_barion); 613 335 614 HadronPt.setZ(0.5* string->GetDecayDirection << 336 //--------------------------------------- 615 (z * string->LightConeDecay() - << 337 Baryon[2][1][1][0]=3222; // Sigma+ 616 HadronMassT2/(z * string->LightConeD << 338 BaryonWeight[2][1][1][0]=pspin_barion; 617 G4double HadronE = 0.5* (z * string->LightC << 618 HadronMassT2/(z * string->LightConeD << 619 339 620 G4LorentzVector * a4Momentum= new G4LorentzV << 340 Baryon[2][1][1][1]=3224; // Sigma*+ >> 341 BaryonWeight[2][1][1][1]=(1.-pspin_barion); 621 342 622 #ifdef debug_LUNDfragmentation << 343 //--------------------------------------- 623 G4cout<<G4endl<<" string->GetDecayDire << 344 Baryon[2][1][2][0]=3322; // Theta0 624 G4cout<<"string->LightConeDecay() "<<s << 345 BaryonWeight[2][1][2][0]=pspin_barion; 625 G4cout<<"HadronPt,HadronE "<<HadronPt< << 626 G4cout<<"String4Momentum "<<String4Mom << 627 G4cout<<"Out of LUND SplitEandP "<<G4e << 628 #endif << 629 346 630 return a4Momentum; << 347 Baryon[2][1][2][1]=3324; // Theta*0 631 } << 348 BaryonWeight[2][1][2][2]=(1.-pspin_barion); 632 349 633 //-------------------------------------------- << 350 //--------------------------------------- >> 351 Baryon[2][2][0][0]=3312; // Theta- >> 352 BaryonWeight[2][2][0][0]=pspin_barion; 634 353 635 G4double G4LundStringFragmentation::GetLightCo << 354 Baryon[2][2][0][1]=3314; // Theta*- 636 G4int PD << 355 BaryonWeight[2][2][0][1]=(1.-pspin_barion); 637 G4Partic << 638 G4double << 639 { << 640 G4double Mass = pHadron->GetPDGMass(); << 641 G4int HadronEncoding=std::abs(pHadron- << 642 356 643 G4double Mt2 = Px*Px + Py*Py + Mass*Mass; << 357 //--------------------------------------- >> 358 Baryon[2][2][1][0]=3322; // Theta0 >> 359 BaryonWeight[2][2][1][0]=pspin_barion; 644 360 645 G4double Alund, Blund; << 361 Baryon[2][2][1][1]=3324; // Theta*0 646 G4double zOfMaxyf(0.), maxYf(1.), z(0.), yf( << 362 BaryonWeight[2][2][1][1]=(1.-pspin_barion); 647 363 648 if (!((std::abs(PDGEncodingOfDecayParton) > << 364 //--------------------------------------- 649 { // ---------------- Quark fragmentation << 365 Baryon[2][2][2][0]=3334; // Omega 650 Alund=1.; << 366 BaryonWeight[2][2][2][0]=1.; 651 Blund=0.7/GeV/GeV; << 652 << 653 G4double BMt2 = Blund*Mt2; << 654 if (Alund == 1.0) { << 655 zOfMaxyf=BMt2/(Blund*Mt2 + 1.);} << 656 else { << 657 zOfMaxyf = ((1.0+BMt2) - std::sqrt(sq << 658 } << 659 << 660 if (zOfMaxyf < zmin) {zOfMaxyf=zmin;} << 661 if (zOfMaxyf > zmax) {zOfMaxyf=zmax;} << 662 maxYf=(1-zOfMaxyf)/zOfMaxyf * G4Exp(-Blun << 663 << 664 const G4int maxNumberOfLoops = 1000 << 665 G4int loopCounter = 0; << 666 do << 667 { << 668 z = zmin + G4UniformRand()*(zmax-zmin); << 669 //yf = (1-z)/z * G4Exp(-Blund* << 670 yf = G4Pow::GetInstance()->powA(1.0-z,Alun << 671 } << 672 while ( (G4UniformRand()*maxYf > yf) && + << 673 if ( loopCounter >= maxNumberOfLoop << 674 z = 0.5*(zmin + zmax); // Just a << 675 } << 676 return z; << 677 } << 678 367 679 if (std::abs(PDGEncodingOfDecayParton) > 100 << 368 //--------------------------------------- 680 { << 369 /* 681 G4double an = 2.5; << 370 for(G4int i=0; i<3; i++) 682 an +=(sqr(Px)+sqr(Py))/sqr(GeV << 371 { for(G4int j=0; j<3; j++) 683 z=zmin + (zmax-zmin)*G4Pow::Ge << 372 { for(G4int k=0; k<3; k++) 684 if( PDGEncodingOfDecayParton > << 373 { for(G4int l=0; l<4; l++) 685 } << 374 { G4cout<<i<<" "<<j<<" "<<k<<" "<<l<<" "<<Baryon[i][j][k][l]<<G4endl;} >> 375 } >> 376 } >> 377 } >> 378 G4int Uzhi; >> 379 G4cin>>Uzhi; >> 380 */ >> 381 //StrangeSuppress=0.38; >> 382 Prob_QQbar[0]=StrangeSuppress; // Probability of ddbar production >> 383 Prob_QQbar[1]=StrangeSuppress; // Probability of uubar production >> 384 Prob_QQbar[2]=StrangeSuppress/(2.+StrangeSuppress);//(1.-2.*StrangeSuppress); // Probability of ssbar production >> 385 } 686 386 687 return z; << 387 // -------------------------------------------------------------- 688 } << 388 G4LundStringFragmentation::G4LundStringFragmentation(const G4LundStringFragmentation &) : G4VLongitudinalStringDecay() >> 389 { >> 390 } 689 391 690 //-------------------------------------------- << 392 G4LundStringFragmentation::~G4LundStringFragmentation() >> 393 { >> 394 } 691 395 692 G4bool G4LundStringFragmentation::SplitLast(G4 << 396 //************************************************************************************* 693 G4 << 397 694 G4 << 398 const G4LundStringFragmentation & G4LundStringFragmentation::operator=(const G4LundStringFragmentation &) >> 399 { >> 400 throw G4HadronicException(__FILE__, __LINE__, "G4LundStringFragmentation::operator= meant to not be accessable"); >> 401 return *this; >> 402 } >> 403 >> 404 int G4LundStringFragmentation::operator==(const G4LundStringFragmentation &right) const >> 405 { >> 406 return !memcmp(this, &right, sizeof(G4LundStringFragmentation)); >> 407 } >> 408 >> 409 int G4LundStringFragmentation::operator!=(const G4LundStringFragmentation &right) const >> 410 { >> 411 return memcmp(this, &right, sizeof(G4LundStringFragmentation)); >> 412 } >> 413 >> 414 //-------------------------------------------------------------------------------------- >> 415 void G4LundStringFragmentation::SetMinimalStringMass(const G4FragmentingString * const string) 695 { 416 { 696 //... perform last cluster decay << 417 G4double EstimatedMass=0.; 697 SetMinimalStringMass( string); << 418 G4int Number_of_quarks=0; 698 if ( MinimalStringMass < 0.) return fa << 699 #ifdef debug_LUNDfragmentation << 700 G4cout<<G4endl<<"Split last----------- << 701 G4cout<<"MinimalStringMass "<<MinimalS << 702 G4cout<<"Left "<<string->GetLeftParto << 703 G4cout<<"Right "<<string->GetRightPart << 704 G4cout<<"String4mom "<<string->GetPstr << 705 #endif << 706 << 707 G4LorentzVector Str4Mom=string->Get4Mo << 708 G4LorentzRotation toCms(-1*Str4Mom.boo << 709 G4LorentzVector Pleft = toCms * string << 710 toCms.rotateZ(-1*Pleft.phi()); << 711 toCms.rotateY(-1*Pleft.theta()); << 712 << 713 G4LorentzRotation toObserverFrame= toC << 714 419 715 G4double StringMass=string->Mass(); << 420 G4int Qleft =std::abs(string->GetLeftParton()->GetPDGEncoding()); 716 421 717 G4ParticleDefinition * LeftHadron(0), * Righ << 422 if( Qleft > 1000) >> 423 { >> 424 Number_of_quarks+=2; >> 425 G4int q1=Qleft/1000; >> 426 if( q1 < 3) {EstimatedMass +=Mass_of_light_quark;} >> 427 if( q1 > 2) {EstimatedMass +=Mass_of_heavy_quark;} >> 428 >> 429 G4int q2=(Qleft/100)%10; >> 430 if( q2 < 3) {EstimatedMass +=Mass_of_light_quark;} >> 431 if( q2 > 2) {EstimatedMass +=Mass_of_heavy_quark;} >> 432 EstimatedMass +=Mass_of_string_junction; >> 433 } >> 434 else >> 435 { >> 436 Number_of_quarks++; >> 437 if( Qleft < 3) {EstimatedMass +=Mass_of_light_quark;} >> 438 if( Qleft > 2) {EstimatedMass +=Mass_of_heavy_quark;} >> 439 } 718 440 719 NumberOf_FS=0; << 441 G4int Qright=std::abs(string->GetRightParton()->GetPDGEncoding()); 720 for (G4int i=0; i<350; i++) {FS_Weight[i]=0. << 721 442 722 G4int sampledState = 0; << 443 if( Qright > 1000) >> 444 { >> 445 Number_of_quarks+=2; >> 446 G4int q1=Qright/1000; >> 447 if( q1 < 3) {EstimatedMass +=Mass_of_light_quark;} >> 448 if( q1 > 2) {EstimatedMass +=Mass_of_heavy_quark;} >> 449 >> 450 G4int q2=(Qright/100)%10; >> 451 if( q2 < 3) {EstimatedMass +=Mass_of_light_quark;} >> 452 if( q2 > 2) {EstimatedMass +=Mass_of_heavy_quark;} >> 453 EstimatedMass +=Mass_of_string_junction; >> 454 } >> 455 else >> 456 { >> 457 Number_of_quarks++; >> 458 if( Qright < 3) {EstimatedMass +=Mass_of_light_quark;} >> 459 if( Qright > 2) {EstimatedMass +=Mass_of_heavy_quark;} >> 460 } 723 461 724 #ifdef debug_LUNDfragmentation << 462 if(Number_of_quarks==2){EstimatedMass +=100.*MeV;} 725 G4cout<<"StrMass "<<StringMass<<" q's << 463 if(Number_of_quarks==3){EstimatedMass += 20.*MeV;} 726 <<string->GetLeftParton()->GetPa << 464 if(Number_of_quarks==4){EstimatedMass -=2.*Mass_of_string_junction; 727 <<string->GetRightParton()->GetP << 465 if(EstimatedMass <= 1600.*MeV){EstimatedMass-=200.*MeV;} 728 #endif << 466 else {EstimatedMass+=100.*MeV;} >> 467 } >> 468 MinimalStringMass=EstimatedMass; >> 469 SetMinimalStringMass2(EstimatedMass); >> 470 } 729 471 730 string->SetLeftPartonStable(); // to query q << 472 //-------------------------------------------------------------------------------------- >> 473 void G4LundStringFragmentation::SetMinimalStringMass2( >> 474 const G4double aValue) >> 475 { >> 476 MinimalStringMass2=aValue * aValue; >> 477 } 731 478 732 if (string->IsAFourQuarkString() ) << 479 //-------------------------------------------------------------------------------------- 733 { << 480 G4KineticTrackVector* G4LundStringFragmentation::FragmentString( 734 G4int IDleft =std::abs(string->GetLe << 481 const G4ExcitedString& theString) 735 G4int IDright=std::abs(string->GetRi << 482 { >> 483 // Can no longer modify Parameters for Fragmentation. >> 484 PastInitPhase=true; >> 485 //SetVectorMesonProbability(1.); >> 486 //SetSpinThreeHalfBarionProbability(1.); 736 487 737 if ( (IDleft > 3000) || (IDright > 3 << 488 // check if string has enough mass to fragment... 738 if ( ! Diquark_AntiDiquark_belowTh << 489 739 { << 490 SetMassCut(160.*MeV); // For LightFragmentationTest it is required 740 return false; << 491 // that no one pi-meson can be produced 741 } << 492 // 742 } else { << 493 //G4cout<<G4endl<<"G4LundStringFragmentation::"<<G4endl; 743 // The string is qq-qqbar type. Diquarks a << 494 //G4cout<<"FragmentString Position"<<theString.GetPosition()/fermi<<" "<<theString.GetTimeOfCreation()/fermi<<G4endl; 744 if (StringMass-MinimalStringMass < 0 << 495 //G4cout<<"FragmentString Momentum"<<theString.Get4Momentum()<<theString.Get4Momentum().mag()<<G4endl; 745 { << 496 // 746 if (! Diquark_AntiDiquark_belowThreshold << 497 G4FragmentingString aString(theString); 747 { << 498 SetMinimalStringMass(&aString); 748 return false; << 749 } << 750 } else << 751 { << 752 Diquark_AntiDiquark_aboveThreshold_lastS << 753 499 754 if (NumberOf_FS == 0) return false; << 500 /* >> 501 G4cout<<"St Frag "<<MinimalStringMass<<" "<<WminLUND<<" "<<(1.-SmoothParam)<<" "<< theString.Get4Momentum().mag()<<G4endl; >> 502 G4cout<<(MinimalStringMass+WminLUND)*(1.-SmoothParam)<<" "<<theString.Get4Momentum().mag()<<G4endl; >> 503 >> 504 if((MinimalStringMass+WminLUND)*(1.-SmoothParam) > theString.Get4Momentum().mag()) >> 505 {SetMassCut(1000.*MeV);} >> 506 else {SetMassCut(160.*MeV);} >> 507 */ >> 508 // V.U. 20.06.10 in order to put in correspondence LightFragTest and MinStrMass >> 509 >> 510 G4KineticTrackVector * LeftVector(0); >> 511 // G4KineticTrackVector * LeftVector=LightFragmentationTest(&theString); >> 512 //G4cout<<"Min Str Mass "<<MinimalStringMass<<G4endl; >> 513 if(!IsFragmentable(&aString)) // produce 1 hadron >> 514 { >> 515 //G4cout<<"Non fragmentable"<<G4endl; >> 516 SetMassCut(1000.*MeV); >> 517 LeftVector=LightFragmentationTest(&theString); >> 518 SetMassCut(160.*MeV); >> 519 >> 520 >> 521 //G4cout<<"Prod hadron "<<LeftVector->operator[](0)->GetDefinition()->GetParticleName()<<G4endl; >> 522 /* >> 523 if(LeftVector->size() == 1) >> 524 { >> 525 if(! (std::abs(LeftVector->operator[](0)->GetDefinition()->GetPDGMass()- >> 526 theString.Get4Momentum().mag()) < 100*MeV)) >> 527 { // produce a particle with arbitrary isospin >> 528 G4cout<<" produce a particle with arbitrary isospin"<<G4endl; >> 529 >> 530 pDefPair hadrons((G4ParticleDefinition *)0,(G4ParticleDefinition *)0); >> 531 Pcreate build=&G4HadronBuilder::Build; >> 532 FragmentationMass(&aString,build,&hadrons); // 0->1 >> 533 G4cout<<"Hadron PDG "<<hadrons.first->GetPDGEncoding()<<G4endl; >> 534 if ( hadrons.second ==0 ) >> 535 {// Substitute string by light hadron, Note that Energy is not conserved here! >> 536 // Cleaning up the previously produced hadrons ------------------------------ >> 537 std::for_each(LeftVector->begin() , LeftVector->end() , DeleteKineticTrack()); >> 538 LeftVector->clear(); >> 539 >> 540 G4ThreeVector Mom3 = aString.Get4Momentum().vect(); >> 541 G4LorentzVector Mom(Mom3,std::sqrt(Mom3.mag2() + sqr(hadrons.first->GetPDGMass()))); >> 542 LeftVector->push_back(new G4KineticTrack(hadrons.first, 0, >> 543 theString.GetPosition(), >> 544 Mom)); >> 545 } // end of if ( hadrons.second ==0 ) >> 546 } // end of produce a particle with arbitrary isospin >> 547 >> 548 } // end of if(LeftVector->size() == 1) >> 549 */ >> 550 } // end of if(!IsFragmentable(&aString)) >> 551 >> 552 if ( LeftVector != 0 ) { >> 553 // Uzhi insert 6.05.08 start >> 554 if(LeftVector->size() == 1){ >> 555 // One hadron is saved in the interaction >> 556 LeftVector->operator[](0)->SetFormationTime(theString.GetTimeOfCreation()); >> 557 LeftVector->operator[](0)->SetPosition(theString.GetPosition()); >> 558 >> 559 /* // To set large formation time open * >> 560 LeftVector->operator[](0)->SetFormationTime(theString.GetTimeOfCreation()+100.*fermi); >> 561 LeftVector->operator[](0)->SetPosition(theString.GetPosition()); >> 562 G4ThreeVector aPosition(theString.GetPosition().x(), >> 563 theString.GetPosition().y(), >> 564 theString.GetPosition().z()+100.*fermi); >> 565 LeftVector->operator[](0)->SetPosition(aPosition); >> 566 */ >> 567 } else { // 2 hadrons created from qq-qqbar are stored >> 568 >> 569 LeftVector->operator[](0)->SetFormationTime(theString.GetTimeOfCreation()); >> 570 LeftVector->operator[](0)->SetPosition(theString.GetPosition()); >> 571 LeftVector->operator[](1)->SetFormationTime(theString.GetTimeOfCreation()); >> 572 LeftVector->operator[](1)->SetPosition(theString.GetPosition()); >> 573 } >> 574 return LeftVector; >> 575 } 755 576 756 sampledState = SampleS << 577 //--------------------- The string can fragment ------------------------------- 757 if (string->GetLeftParton()->GetPDGEncod << 578 //--------------- At least two particles can be produced ---------------------- 758 { << 579 //G4cout<<"Fragmentable"<<G4endl; 759 LeftHadron =FS_LeftHadron[sampledState << 580 LeftVector =new G4KineticTrackVector; 760 RightHadron=FS_RightHadron[sampledStat << 581 G4KineticTrackVector * RightVector=new G4KineticTrackVector; 761 } else << 762 { << 763 LeftHadron =FS_RightHadron[sampledStat << 764 RightHadron=FS_LeftHadron[sampledState << 765 } << 766 } << 767 } // ID > 3300 << 768 } else { << 769 if (string->DecayIsQuark() && string->Stab << 770 { //... there are quarks on cluster << 771 #ifdef debug_LUNDfragm << 772 G4cout<<"Q Q string La << 773 #endif << 774 582 775 Quark_AntiQuark_lastSplitting(string, Le << 583 G4ExcitedString *theStringInCMS=CPExcited(theString); >> 584 G4LorentzRotation toCms=theStringInCMS->TransformToAlignedCms(); >> 585 >> 586 G4bool success=false, inner_sucess=true; >> 587 G4int attempt=0; >> 588 while ( !success && attempt++ < StringLoopInterrupt ) >> 589 { // If the string fragmentation do not be happend, repeat the fragmentation--- >> 590 G4FragmentingString *currentString=new G4FragmentingString(*theStringInCMS); >> 591 //G4cout<<"Main loop start whilecounter "<<attempt<<G4endl; >> 592 // Cleaning up the previously produced hadrons ------------------------------ >> 593 std::for_each(LeftVector->begin() , LeftVector->end() , DeleteKineticTrack()); >> 594 LeftVector->clear(); >> 595 >> 596 std::for_each(RightVector->begin(), RightVector->end(), DeleteKineticTrack()); >> 597 RightVector->clear(); 776 598 777 if (NumberOf_FS == 0) return false; << 599 // Main fragmentation loop until the string will not be able to fragment ---- 778 sampledState = SampleState() << 600 inner_sucess=true; // set false on failure.. 779 if (string->GetLeftParton()->GetPDGEncod << 780 { << 781 LeftHadron =FS_RightHadron[sampledStat << 782 RightHadron=FS_LeftHadron[sampledState << 783 } else << 784 { << 785 LeftHadron =FS_LeftHadron[sampledState << 786 RightHadron=FS_RightHadron[sampledStat << 787 } << 788 } else << 789 { //... there is a Diquark on one of << 790 #ifdef debug_LUNDfragm << 791 G4cout<<"DiQ Q string << 792 #endif << 793 601 794 Quark_Diquark_lastSplitting(string, Left << 602 while (! StopFragmenting(currentString) ) >> 603 { // Split current string into hadron + new string 795 604 796 if (NumberOf_FS == 0) return false; << 605 G4FragmentingString *newString=0; // used as output from SplitUp... 797 sampledState = SampleState() << 798 606 799 if (string->GetLeftParton()->GetParticle << 607 G4KineticTrack * Hadron=Splitup(currentString,newString); 800 { << 608 //G4cout<<"SplitUp------"<<Hadron<<G4endl; 801 LeftHadron =FS_LeftHadron[sampledState << 609 802 RightHadron=FS_RightHadron[sampledStat << 610 if ( Hadron != 0 ) // Store the hadron 803 } else << 804 { 611 { 805 LeftHadron =FS_RightHadron[sampledStat << 612 //G4cout<<"Hadron prod at fragm. "<<Hadron->GetDefinition()->GetParticleName()<<G4endl; 806 RightHadron=FS_LeftHadron[sampledState << 613 if ( currentString->GetDecayDirection() > 0 ) 807 } << 614 LeftVector->push_back(Hadron); >> 615 else >> 616 RightVector->push_back(Hadron); >> 617 delete currentString; >> 618 currentString=newString; >> 619 } >> 620 }; >> 621 // Split remaining string into 2 final Hadrons ------------------------ >> 622 //G4cout<<"Split Last"<<G4endl; >> 623 if ( inner_sucess && >> 624 SplitLast(currentString,LeftVector, RightVector) ) >> 625 { >> 626 success=true; 808 } 627 } 809 << 628 delete currentString; >> 629 } // End of the loop in attemps to fragment the string >> 630 >> 631 delete theStringInCMS; >> 632 >> 633 if ( ! success ) >> 634 { >> 635 std::for_each(LeftVector->begin(), LeftVector->end(), DeleteKineticTrack()); >> 636 LeftVector->clear(); >> 637 std::for_each(RightVector->begin(), RightVector->end(), DeleteKineticTrack()); >> 638 delete RightVector; >> 639 return LeftVector; 810 } 640 } 811 << 641 812 #ifdef debug_LUNDfragmentation << 642 // Join Left- and RightVector into LeftVector in correct order. 813 G4cout<<"Sampled hadrons: "<<LeftHadro << 643 while(!RightVector->empty()) 814 #endif << 644 { 815 << 645 LeftVector->push_back(RightVector->back()); 816 G4LorentzVector P_left =string->GetPleft(), << 646 RightVector->erase(RightVector->end()-1); 817 << 818 G4LorentzVector LeftMom, RightMom; << 819 G4ThreeVector Pos; << 820 << 821 Sample4Momentum(&LeftMom, LeftHadron->GetPD << 822 &RightMom, RightHadron->GetPDGMass(), << 823 StringMass); << 824 << 825 // Sample4Momentum ascribes LeftMom.pz << 826 // It must be negative in case when th << 827 << 828 if (!(string->DecayIsQuark() && string->Stab << 829 { // Only for qq - q, q - qq, and qq - qqbar << 830 << 831 if ( G4UniformRand() <= 0.5 ) << 832 { << 833 if (P_left.z() <= 0.) {G4LorentzVector t << 834 } << 835 else << 836 { << 837 if (P_right.z() >= 0.) {G4LorentzVector << 838 } << 839 } 647 } >> 648 delete RightVector; 840 649 841 LeftMom *=toObserverFrame; << 650 CalculateHadronTimePosition(theString.Get4Momentum().mag(), LeftVector); 842 RightMom*=toObserverFrame; << 843 651 844 LeftVector->push_back(new G4KineticTrack(Lef << 652 G4LorentzRotation toObserverFrame(toCms.inverse()); 845 RightVector->push_back(new G4KineticTrack(Ri << 846 653 847 string->LorentzRotate(toObserverFrame); << 654 // LeftVector->operator[](0)->SetFormationTime(theString.GetTimeOfCreation()); 848 return true; << 655 // LeftVector->operator[](0)->SetPosition(theString.GetPosition()); 849 } << 850 656 851 //-------------------------------------------- << 657 G4double TimeOftheStringCreation=theString.GetTimeOfCreation(); 852 << 658 G4ThreeVector PositionOftheStringCreation(theString.GetPosition()); 853 G4bool G4LundStringFragmentation:: << 854 Diquark_AntiDiquark_belowThreshold_lastSplitti << 855 << 856 << 857 { << 858 G4double StringMass = string->Mass(); << 859 659 860 G4int cClusterInterrupt = 0; << 660 //G4cout<<"# prod hadrons "<<LeftVector->size()<<G4endl; 861 G4bool isOK = false; << 661 for(size_t C1 = 0; C1 < LeftVector->size(); C1++) 862 do << 863 { 662 { 864 G4int LeftQuark1= string->GetLeftParton()- << 663 G4KineticTrack* Hadron = LeftVector->operator[](C1); 865 G4int LeftQuark2=(string->GetLeftParton()- << 664 G4LorentzVector Momentum = Hadron->Get4Momentum(); >> 665 //G4cout<<"Hadron "<<Hadron->GetDefinition()->GetParticleName()<<" "<<Momentum<<G4endl; >> 666 Momentum = toObserverFrame*Momentum; >> 667 Hadron->Set4Momentum(Momentum); >> 668 >> 669 G4LorentzVector Coordinate(Hadron->GetPosition(), Hadron->GetFormationTime()); >> 670 Momentum = toObserverFrame*Coordinate; >> 671 Hadron->SetFormationTime(TimeOftheStringCreation+Momentum.e() >> 672 -fermi/c_light); >> 673 G4ThreeVector aPosition(Momentum.vect()); >> 674 // Hadron->SetPosition(theString.GetPosition()+aPosition); >> 675 Hadron->SetPosition(PositionOftheStringCreation+aPosition); >> 676 }; 866 677 867 G4int RightQuark1= string->GetRightParton( << 678 return LeftVector; 868 G4int RightQuark2=(string->GetRightParton( << 679 >> 680 } 869 681 870 if (G4UniformRand()<0.5) << 682 //---------------------------------------------------------------------------------- 871 { << 683 G4bool G4LundStringFragmentation::IsFragmentable(const G4FragmentingString * const string) 872 LeftHadron =hadronizer->Build(FindPartic << 684 { 873 FindParticle(RightQuark1)); << 685 SetMinimalStringMass(string); 874 RightHadron= (LeftHadron == nullptr) ? n << 686 // return sqr(MinimalStringMass + WminLUND) < string->Get4Momentum().mag2(); 875 << 687 return MinimalStringMass < string->Get4Momentum().mag(); // 21.07.2010 876 FindParticle(RightQuark2)); << 688 } 877 } else << 878 { << 879 LeftHadron =hadronizer->Build(FindPartic << 880 FindParticle(RightQuark2)); << 881 RightHadron=(LeftHadron == nullptr) ? nu << 882 hadronizer << 883 FindParticle(RightQuark1)); << 884 } << 885 689 886 isOK = (LeftHadron != nullptr) && (RightHa << 690 //---------------------------------------------------------------------------------------- >> 691 G4bool G4LundStringFragmentation::StopFragmenting(const G4FragmentingString * const string) >> 692 { >> 693 SetMinimalStringMass(string); 887 694 888 if(isOK) { isOK = (StringMass > LeftHadron << 695 /* 889 ++cClusterInterrupt; << 696 G4cout<<"StopFragm MinMass "<<MinimalStringMass<<" String Mass "<<string->Get4Momentum().mag()<<G4endl; 890 //... repeat procedure, if mass of cluster << 697 G4cout<<"WminLUND "<<WminLUND<<" SmoothParam "<<SmoothParam<<" "<<string->Mass()<<G4endl; 891 //... ClusterMassCut = 0.15*GeV model para << 698 //G4cout<<std::exp(-(string->Mass()*string->Mass()-MinimalStringMass2)/WminLUND/WminLUND)<<G4endl; 892 } << 699 //G4int Uzhi; G4cin>>Uzhi; 893 while (isOK == false && cClusterInterrupt < << 700 */ 894 /* Loop checking, 07.08.2015, A.Ribon */ << 701 // 895 return isOK; << 702 return (MinimalStringMass + WminLUND)* >> 703 (1 + SmoothParam * (1.-2*G4UniformRand())) > >> 704 string->Mass(); >> 705 // >> 706 // return G4UniformRand() < std::exp(-(string->Mass()*string->Mass()-MinimalStringMass2)/WminLUND/WminLUND); 896 } 707 } 897 708 898 //-------------------------------------------- 709 //---------------------------------------------------------------------------------------- 899 << 710 G4bool G4LundStringFragmentation::SplitLast(G4FragmentingString * string, 900 G4bool G4LundStringFragmentation:: << 711 G4KineticTrackVector * LeftVector, 901 Diquark_AntiDiquark_aboveThreshold_lastSplitti << 712 G4KineticTrackVector * RightVector) 902 << 903 << 904 { 713 { 905 // StringMass-MinimalStringMass > 0. Creatio << 714 //... perform last cluster decay >> 715 //G4cout<<"Split last-----------------------------------------"<<G4endl; >> 716 G4LorentzVector Str4Mom=string->Get4Momentum(); 906 717 907 G4double StringMass = string->Mass(); << 718 G4ThreeVector ClusterVel =string->Get4Momentum().boostVector(); 908 G4double StringMassSqr= sqr(StringMass); << 909 G4ParticleDefinition * Di_Quark; << 910 G4ParticleDefinition * Anti_Di_Quark; << 911 719 912 if (string->GetLeftParton()->GetPDGEncoding( << 720 G4double StringMass = string->Mass(); 913 { << 721 G4double StringMassSqr= sqr(StringMass); 914 Anti_Di_Quark =string->GetLeftParton(); << 915 Di_Quark=string->GetRightParton(); << 916 } else << 917 { << 918 Anti_Di_Quark =string->GetRightParton(); << 919 Di_Quark=string->GetLeftParton(); << 920 } << 921 722 922 G4int IDAnti_di_quark =Anti_Di_Quark->Get << 723 G4ParticleDefinition * LeftHadron(0), * RightHadron(0); 923 G4int AbsIDAnti_di_quark =std::abs(IDAnti_di << 724 G4double LeftHadronMass(0.), RightHadronMass(0.); 924 G4int IDdi_quark =Di_Quark->GetPDGEn << 925 G4int AbsIDdi_quark =std::abs(IDdi_quar << 926 725 927 G4int ADi_q1=AbsIDAnti_di_quark/1000; << 726 G4ParticleDefinition * FS_LeftHadron[25], * FS_RightHadron[25]; 928 G4int ADi_q2=(AbsIDAnti_di_quark-ADi_q1*1000 << 727 G4double FS_Weight[25]; >> 728 G4int NumberOf_FS=0; 929 729 930 G4int Di_q1=AbsIDdi_quark/1000; << 730 for(G4int i=0; i<25; i++) {FS_Weight[i]=0.;} 931 G4int Di_q2=(AbsIDdi_quark-Di_q1*1000)/100; << 731 //*********************************************** >> 732 //G4cout<<"StrMass "<<StringMass<<" q "<<string->GetLeftParton()->GetParticleName()<<" "<<string->GetRightParton()->GetParticleName()<<" StringMassSqr "<<StringMassSqr<<G4endl; 932 733 933 NumberOf_FS=0; << 934 for (G4int ProdQ=1; ProdQ < 6; ProdQ++) << 935 { << 936 G4int StateADiQ=0; << 937 const G4int maxNumberOfLoops = << 938 G4int loopCounter = 0; << 939 do // while(Meson[AbsIDquark-1][ProdQ-1][ << 940 { << 941 LeftHadron=G4ParticleTable::GetParticleT << 942 -Baryon[ADi_q1-1][ADi_q2-1][Prod << 943 734 944 if (LeftHadron == NULL) continue; << 735 string->SetLeftPartonStable(); // to query quark contents.. 945 G4double LeftHadronMass=LeftHadron->GetP << 946 736 947 G4int StateDiQ=0; << 737 if (string->FourQuarkString() ) 948 const G4int maxNumberO << 738 { 949 G4int internalLoopCoun << 739 // The string is qq-qqbar type. Diquarks are on the string ends 950 do // while(Baryon[Di_q1-1][Di_q2-1][Pro << 740 G4int cClusterInterrupt = 0; 951 { << 741 do 952 RightHadron=G4ParticleTable::GetPartic << 742 { 953 +Baryon[Di_q1-1][Di_q2-1][Prod << 743 //G4cout<<"cClusterInterrupt "<<cClusterInterrupt<<G4endl; >> 744 if (cClusterInterrupt++ >= ClusterLoopInterrupt) >> 745 { >> 746 return false; >> 747 } 954 748 955 if (RightHadron == NULL) continue; << 749 G4int LeftQuark1= string->GetLeftParton()->GetPDGEncoding()/1000; 956 G4double RightHadronMass=RightHadron-> << 750 G4int LeftQuark2=(string->GetLeftParton()->GetPDGEncoding()/100)%10; 957 751 958 if (StringMass > LeftHadronMass + Righ << 752 G4int RightQuark1= string->GetRightParton()->GetPDGEncoding()/1000; 959 { << 753 G4int RightQuark2=(string->GetRightParton()->GetPDGEncoding()/100)%10; 960 if ( N << 961 G4Ex << 962 ed < << 963 G4Ex << 964 << 965 Numb << 966 } << 967 << 968 G4double FS_Psqr=lambda(StringMassSq << 969 sqr(RightHadronMass)); << 970 //FS_Psqr=1.; << 971 FS_Weight[NumberOf_FS]=std::sqrt(FS_ << 972 BaryonWeight[ADi_q1-1][AD << 973 BaryonWeight[Di_q1-1][Di_ << 974 Prob_QQbar[ProdQ-1]; << 975 << 976 FS_LeftHadron[NumberOf_FS] = LeftHad << 977 FS_RightHadron[NumberOf_FS]= RightHa << 978 NumberOf_FS++; << 979 } // End of if (StringMass > LeftHadro << 980 << 981 StateDiQ++; << 982 << 983 } while( (Baryon[Di_q1-1][Di_q2-1][ProdQ << 984 ++internalLoo << 985 if ( internalLoopCount << 986 return false; << 987 } << 988 << 989 StateADiQ++; << 990 } while( (Baryon[ADi_q1-1][ADi_q2-1][ProdQ << 991 ++loopCounter < maxNu << 992 if ( loopCounter >= maxNumberO << 993 return false; << 994 } << 995 } // End of for (G4int ProdQ=1; ProdQ < 4; P << 996 754 997 return true; << 755 if(G4UniformRand()<0.5) 998 } << 756 { >> 757 LeftHadron =hadronizer->Build(FindParticle( LeftQuark1), >> 758 FindParticle(RightQuark1)); >> 759 RightHadron=hadronizer->Build(FindParticle( LeftQuark2), >> 760 FindParticle(RightQuark2)); >> 761 } else >> 762 { >> 763 LeftHadron =hadronizer->Build(FindParticle( LeftQuark1), >> 764 FindParticle(RightQuark2)); >> 765 RightHadron=hadronizer->Build(FindParticle( LeftQuark2), >> 766 FindParticle(RightQuark1)); >> 767 } >> 768 >> 769 //... repeat procedure, if mass of cluster is too low to produce hadrons >> 770 //... ClusterMassCut = 0.15*GeV model parameter >> 771 } >> 772 while ((StringMass <= LeftHadron->GetPDGMass() + RightHadron->GetPDGMass())); >> 773 >> 774 } // End of if (string->FourQuarkString() ) >> 775 >> 776 //*********************************************** >> 777 >> 778 if (!string->FourQuarkString()) >> 779 { >> 780 if (string->DecayIsQuark() && string->StableIsQuark() ) >> 781 {//... there are quarks on cluster ends >> 782 //G4cout<<"Q Q string"<<G4endl; >> 783 G4ParticleDefinition * Quark; >> 784 G4ParticleDefinition * Anti_Quark; >> 785 >> 786 if(string->GetLeftParton()->GetPDGEncoding()>0) >> 787 { >> 788 Quark =string->GetLeftParton(); >> 789 Anti_Quark=string->GetRightParton(); >> 790 } else >> 791 { >> 792 Quark =string->GetRightParton(); >> 793 Anti_Quark=string->GetLeftParton(); >> 794 } 999 795 1000 //------------------------------------------- << 796 G4int IDquark =Quark->GetPDGEncoding(); >> 797 G4int AbsIDquark =std::abs(IDquark); >> 798 G4int IDanti_quark =Anti_Quark->GetPDGEncoding(); >> 799 G4int AbsIDanti_quark=std::abs(IDanti_quark); 1001 800 1002 G4bool G4LundStringFragmentation::Quark_Diqua << 801 NumberOf_FS=0; 1003 << 802 for(G4int ProdQ=1; ProdQ < 4; ProdQ++) 1004 << 803 { 1005 { << 804 G4int SignQ=-1; 1006 G4double StringMass = string->Mass(); << 805 if(IDquark == 2) SignQ= 1; 1007 G4double StringMassSqr= sqr(StringMass); << 806 if((IDquark == 1) && (ProdQ == 3)) SignQ= 1; // K0 >> 807 if((IDquark == 3) && (ProdQ == 1)) SignQ=-1; // K0bar >> 808 if(IDquark == ProdQ) SignQ= 1; >> 809 >> 810 G4int SignAQ= 1; >> 811 if(IDanti_quark == -2) SignAQ=-1; >> 812 if((IDanti_quark ==-1) && (ProdQ == 3)) SignAQ=-1; // K0bar >> 813 if((IDanti_quark ==-3) && (ProdQ == 1)) SignAQ= 1; // K0 >> 814 if(AbsIDanti_quark == ProdQ) SignAQ= 1; >> 815 >> 816 G4int StateQ=0; >> 817 do // while(Meson[AbsIDquark-1][ProdQ-1][StateQ]<>0); >> 818 { >> 819 LeftHadron=G4ParticleTable::GetParticleTable()->FindParticle(SignQ* >> 820 Meson[AbsIDquark-1][ProdQ-1][StateQ]); >> 821 LeftHadronMass=LeftHadron->GetPDGMass(); >> 822 StateQ++; >> 823 >> 824 G4int StateAQ=0; >> 825 do // while(Meson[AbsIDanti_quark-1][ProdQ-1][StateAQ]<>0); >> 826 { >> 827 RightHadron=G4ParticleTable::GetParticleTable()->FindParticle(SignAQ* >> 828 Meson[AbsIDanti_quark-1][ProdQ-1][StateAQ]); >> 829 RightHadronMass=RightHadron->GetPDGMass(); >> 830 StateAQ++; >> 831 >> 832 if(StringMass >= LeftHadronMass + RightHadronMass) >> 833 { >> 834 G4double FS_Psqr=lambda(StringMassSqr,sqr(LeftHadronMass), >> 835 sqr(RightHadronMass)); >> 836 FS_Weight[NumberOf_FS]=std::sqrt(FS_Psqr)* >> 837 MesonWeight[AbsIDquark-1][ProdQ-1][StateQ]* >> 838 MesonWeight[AbsIDanti_quark-1][ProdQ-1][StateAQ]* >> 839 Prob_QQbar[ProdQ-1]; >> 840 >> 841 FS_LeftHadron[NumberOf_FS] = LeftHadron; >> 842 FS_RightHadron[NumberOf_FS]= RightHadron; >> 843 NumberOf_FS++; >> 844 if(NumberOf_FS > 24) >> 845 {G4int Uzhi; G4cout<<"QQbar string #_FS "<<NumberOf_FS<<G4endl; G4cin>>Uzhi;} >> 846 } // End of if(StringMass >= LeftHadronMass + RightHadronMass) >> 847 } while(Meson[AbsIDanti_quark-1][ProdQ-1][StateAQ]!=0); >> 848 } while(Meson[AbsIDquark-1][ProdQ-1][StateQ]!=0); >> 849 } // End of for(G4int ProdQ=1; ProdQ < 4; ProdQ++) >> 850 // >> 851 } else //--------------------------------------------- >> 852 { //... there is a Diquark on one of the cluster ends >> 853 //G4cout<<"DiQ Q string"<<G4endl; >> 854 G4ParticleDefinition * Di_Quark; >> 855 G4ParticleDefinition * Quark; >> 856 >> 857 if(string->GetLeftParton()->GetParticleSubType()== "quark") >> 858 { >> 859 Quark =string->GetLeftParton(); >> 860 Di_Quark=string->GetRightParton(); >> 861 } else >> 862 { >> 863 Quark =string->GetRightParton(); >> 864 Di_Quark=string->GetLeftParton(); >> 865 } 1008 866 1009 G4ParticleDefinition * Di_Quark; << 867 G4int IDquark =Quark->GetPDGEncoding(); 1010 G4ParticleDefinition * Quark; << 868 G4int AbsIDquark =std::abs(IDquark); >> 869 G4int IDdi_quark =Di_Quark->GetPDGEncoding(); >> 870 G4int AbsIDdi_quark=std::abs(IDdi_quark); >> 871 G4int Di_q1=AbsIDdi_quark/1000; >> 872 G4int Di_q2=(AbsIDdi_quark-Di_q1*1000)/100; >> 873 //G4cout<<"IDs "<<IDdi_quark<<" "<<IDquark<<G4endl; 1011 874 1012 if (string->GetLeftParton()->GetParticleSub << 875 G4int SignDiQ= 1; 1013 { << 876 if(IDdi_quark < 0) SignDiQ=-1; 1014 Quark =string->GetLeftParton(); << 1015 Di_Quark=string->GetRightParton(); << 1016 } else << 1017 { << 1018 Quark =string->GetRightParton(); << 1019 Di_Quark=string->GetLeftParton(); << 1020 } << 1021 877 1022 G4int IDquark =Quark->GetPDGEncoding << 878 NumberOf_FS=0; 1023 G4int AbsIDquark =std::abs(IDquark); << 879 for(G4int ProdQ=1; ProdQ < 4; ProdQ++) 1024 G4int IDdi_quark =Di_Quark->GetPDGEncodin << 880 { 1025 G4int AbsIDdi_quark=std::abs(IDdi_quark); << 881 G4int SignQ; 1026 G4int Di_q1=AbsIDdi_quark/1000; << 882 if(IDquark > 0) 1027 G4int Di_q2=(AbsIDdi_quark-Di_q1*1000)/100; << 883 { SignQ=-1; 1028 G4int SignDiQ= 1; << 884 if(IDquark == 2) SignQ= 1; 1029 if (IDdi_quark < 0) SignDiQ=-1; << 885 if((IDquark == 1) && (ProdQ == 3)) SignQ= 1; // K0 1030 << 886 if((IDquark == 3) && (ProdQ == 1)) SignQ=-1; // K0bar 1031 NumberOf_FS=0; << 887 } else 1032 for (G4int ProdQ=1; ProdQ < 4; ProdQ++) // << 888 { 1033 { // << 889 SignQ= 1; 1034 G4int SignQ; << 890 if(IDquark == -2) SignQ=-1; 1035 if (IDquark > 0) << 891 if((IDquark ==-1) && (ProdQ == 3)) SignQ=-1; // K0bar 1036 { << 892 if((IDquark ==-3) && (ProdQ == 1)) SignQ= 1; // K0 1037 SignQ=-1; << 893 } 1038 if (IDquark == 2) << 894 1039 if ((IDquark == 1) && (ProdQ == 3)) Sig << 895 if(AbsIDquark == ProdQ) SignQ= 1; 1040 if ((IDquark == 3) && (ProdQ == 1)) Sig << 896 1041 if (IDquark == 4) << 897 //G4cout<<G4endl; 1042 if (IDquark == 5) Sig << 898 //G4cout<<"-------------------------------------------"<<G4endl; 1043 } else << 899 //G4cout<<"Insert QQbar "<<ProdQ<<" Sign "<<SignQ<<G4endl; 1044 { << 900 1045 SignQ= 1; << 901 G4int StateQ=0; 1046 if (IDquark == -2) Sig << 902 do // while(Meson[AbsIDquark-1][ProdQ-1][StateQ]<>0); 1047 if ((IDquark ==-1) && (ProdQ == 3)) Sig << 903 { 1048 if ((IDquark ==-3) && (ProdQ == 1)) Sig << 904 //G4cout<<G4endl<<"AbsIDquark ProdQ StateQ "<<MesonWeight[AbsIDquark-1][ProdQ-1][StateQ]<<" "<<AbsIDquark<<" "<<ProdQ<<" "<<StateQ<<G4endl; 1049 if (IDquark == -4) Sig << 905 //G4cout<<G4endl<<"AbsIDquark ProdQ StateQ "<<SignQ*Meson[AbsIDquark-1][ProdQ-1][StateQ]<<" "<<AbsIDquark<<" "<<ProdQ<<" "<<StateQ<<G4endl; 1050 if (IDquark == -5) Sig << 906 LeftHadron=G4ParticleTable::GetParticleTable()->FindParticle(SignQ* 1051 } << 907 Meson[AbsIDquark-1][ProdQ-1][StateQ]); >> 908 LeftHadronMass=LeftHadron->GetPDGMass(); >> 909 >> 910 //G4cout<<"Meson "<<LeftHadron->GetParticleName()<<G4endl; >> 911 >> 912 G4int StateDiQ=0; >> 913 do // while(Baryon[Di_q1-1][Di_q2-1][ProdQ-1][StateDiQ]<>0); >> 914 { >> 915 //G4cout<<G4endl<<"Di_q1 Di_q2 ProdQ StateDiQ "<<BaryonWeight[Di_q1-1][Di_q2-1][ProdQ-1][StateDiQ]<<" "<<Di_q1-1<<" "<<Di_q2-1<<" "<<ProdQ-1<<" "<<StateDiQ<<G4endl; >> 916 RightHadron=G4ParticleTable::GetParticleTable()->FindParticle(SignDiQ* >> 917 Baryon[Di_q1-1][Di_q2-1][ProdQ-1][StateDiQ]); >> 918 RightHadronMass=RightHadron->GetPDGMass(); >> 919 >> 920 //G4cout<<"Baryon "<<RightHadron->GetParticleName()<<G4endl; >> 921 >> 922 //G4cout<<"StringMass LeftHadronMass RightHadronMass "<<StringMass<<" "<<LeftHadronMass<<" "<< RightHadronMass<<G4endl; >> 923 >> 924 if(StringMass >= LeftHadronMass + RightHadronMass) >> 925 { >> 926 G4double FS_Psqr=lambda(StringMassSqr,sqr(LeftHadronMass), >> 927 sqr(RightHadronMass)); >> 928 FS_Weight[NumberOf_FS]=std::sqrt(FS_Psqr)* >> 929 MesonWeight[AbsIDquark-1][ProdQ-1][StateQ]* >> 930 BaryonWeight[Di_q1-1][Di_q2-1][ProdQ-1][StateDiQ]* >> 931 Prob_QQbar[ProdQ-1]; >> 932 >> 933 FS_LeftHadron[NumberOf_FS] = LeftHadron; >> 934 FS_RightHadron[NumberOf_FS]= RightHadron; >> 935 >> 936 //G4cout<<"State "<<NumberOf_FS<<" "<<std::sqrt(FS_Psqr/4./StringMassSqr)<<" "<<std::sqrt(FS_Psqr)<<" "<<FS_Weight[NumberOf_FS]<<G4endl; >> 937 //G4cout<<"++++++++++++++++++++++++++++++++"<<G4endl; >> 938 NumberOf_FS++; >> 939 >> 940 if(NumberOf_FS > 24) >> 941 {G4int Uzhi; G4cout<<"QQbar string #_FS "<<NumberOf_FS<<G4endl; G4cin>>Uzhi;} >> 942 } // End of if(StringMass >= LeftHadronMass + RightHadronMass) >> 943 >> 944 StateDiQ++; >> 945 //G4cout<<Baryon[Di_q1-1][Di_q2-1][ProdQ-1][StateDiQ]<<" "<<Di_q1-1<<" "<<Di_q2-1<<" "<<ProdQ-1<<" "<<StateDiQ<<G4endl; >> 946 } while(Baryon[Di_q1-1][Di_q2-1][ProdQ-1][StateDiQ]!=0); >> 947 >> 948 StateQ++; >> 949 } while(Meson[AbsIDquark-1][ProdQ-1][StateQ]!=0); >> 950 } // End of for(G4int ProdQ=1; ProdQ < 4; ProdQ++) >> 951 } >> 952 //==================================== >> 953 >> 954 if(NumberOf_FS == 0) return false; >> 955 //G4cout<<"NumberOf_FS "<<NumberOf_FS<<G4endl; >> 956 G4double SumWeights=0.; >> 957 for(G4int i=0; i<NumberOf_FS; i++) {SumWeights+=FS_Weight[i];} >> 958 >> 959 G4double ksi=G4UniformRand(); >> 960 G4double Sum=0.; >> 961 G4int SampledState(0); >> 962 >> 963 for(G4int i=0; i<NumberOf_FS; i++) >> 964 { >> 965 Sum+=(FS_Weight[i]/SumWeights); >> 966 SampledState=i; >> 967 if(Sum >= ksi) break; >> 968 } >> 969 >> 970 LeftHadron =FS_LeftHadron[SampledState]; >> 971 RightHadron=FS_RightHadron[SampledState]; >> 972 >> 973 //G4cout<<"Selected "<<SampledState<<" "<<LeftHadron->GetParticleName()<<" "<<RightHadron->GetParticleName()<<G4endl; >> 974 >> 975 } // End of if(!string->FourQuarkString()) >> 976 >> 977 G4LorentzVector LeftMom, RightMom; >> 978 G4ThreeVector Pos; >> 979 >> 980 Sample4Momentum(&LeftMom, LeftHadron->GetPDGMass(), >> 981 &RightMom, RightHadron->GetPDGMass(), >> 982 StringMass); 1052 983 1053 if (AbsIDquark == ProdQ) SignQ << 984 LeftMom.boost(ClusterVel); >> 985 RightMom.boost(ClusterVel); 1054 986 1055 G4int StateQ=0; << 987 LeftVector->push_back(new G4KineticTrack(LeftHadron, 0, Pos, LeftMom)); 1056 const G4int maxNumberOfLoops << 988 RightVector->push_back(new G4KineticTrack(RightHadron, 0, Pos, RightMom)); 1057 G4int loopCounter = 0; << 989 1058 do // while(Meson[AbsIDquark-1][ProdQ-1] << 990 return true; 1059 { << 1060 LeftHadron=G4ParticleTable::GetParticle << 1061 Meson[AbsIDquark-1][ProdQ-1][St << 1062 if (LeftHadron == NULL) continue; << 1063 G4double LeftHadronMass=LeftHadron->Get << 1064 << 1065 G4int StateDiQ=0; << 1066 const G4int maxNumber << 1067 G4int internalLoopCou << 1068 do // while(Baryon[Di_q1-1][Di_q2-1][Pr << 1069 { << 1070 RightHadron=G4ParticleTable::GetParti << 1071 Baryon[Di_q1-1][Di_q2-1][Prod << 1072 if (RightHadron == NULL) continue; << 1073 G4double RightHadronMass=RightHadron- << 1074 << 1075 if (StringMass > LeftHadronMass + Rig << 1076 { << 1077 if ( << 1078 G4E << 1079 ed << 1080 G4E << 1081 << 1082 Num << 1083 } << 1084 << 1085 G4double FS_Psqr=lambda(StringMassS << 1086 sqr(RightHadronMass)); << 1087 FS_Weight[NumberOf_FS]=std::sqrt(FS << 1088 MesonWeight[AbsIDquark-1 << 1089 BaryonWeight[Di_q1-1][Di << 1090 Prob_QQbar[ProdQ-1]; << 1091 << 1092 FS_LeftHadron[NumberOf_FS] = LeftHa << 1093 FS_RightHadron[NumberOf_FS]= RightH << 1094 << 1095 NumberOf_FS++; << 1096 } // End of if (StringMass > LeftHadr << 1097 << 1098 StateDiQ++; << 1099 << 1100 } while( (Baryon[Di_q1-1][Di_q2-1][Prod << 1101 ++internalLo << 1102 if ( internalLoopCoun << 1103 return false; << 1104 } << 1105 << 1106 StateQ++; << 1107 } while( (Meson[AbsIDquark-1][ProdQ-1][St << 1108 ++loopCounter < maxN << 1109 << 1110 if ( loopCounter >= maxNumb << 1111 return false; << 1112 } << 1113 } << 1114 991 1115 return true; << 1116 } 992 } 1117 993 1118 //------------------------------------------- << 994 //---------------------------------------------------------------------------------------------------------- 1119 995 1120 G4bool G4LundStringFragmentation::Quark_AntiQ << 996 void G4LundStringFragmentation::Sample4Momentum(G4LorentzVector* Mom, G4double Mass, G4LorentzVector* AntiMom, G4double AntiMass, G4double InitialMass) 1121 << 997 { 1122 << 998 // ------ Sampling of momenta of 2 last produced hadrons -------------------- 1123 { << 999 G4ThreeVector Pt; 1124 G4double StringMass = string->Mass(); << 1000 G4double MassMt2, AntiMassMt2; 1125 G4double StringMassSqr= sqr(StringMass); << 1001 G4double AvailablePz, AvailablePz2; >> 1002 >> 1003 //G4cout<<"Masses "<<InitialMass<<" "<<Mass<<" "<<AntiMass<<G4endl; >> 1004 // >> 1005 >> 1006 if((Mass > 930. || AntiMass > 930.)) //If there is a baryon >> 1007 { >> 1008 // ----------------- Isotropic decay ------------------------------------ >> 1009 G4double r_val = sqr(InitialMass*InitialMass - Mass*Mass - AntiMass*AntiMass) - >> 1010 sqr(2.*Mass*AntiMass); >> 1011 G4double Pabs = (r_val > 0.)? std::sqrt(r_val)/(2.*InitialMass) : 0; >> 1012 //G4cout<<"P for isotr decay "<<Pabs<<G4endl; >> 1013 >> 1014 //... sample unit vector >> 1015 G4double pz =1. - 2.*G4UniformRand(); >> 1016 G4double st = std::sqrt(1. - pz * pz)*Pabs; >> 1017 G4double phi = 2.*pi*G4UniformRand(); >> 1018 G4double px = st*std::cos(phi); >> 1019 G4double py = st*std::sin(phi); >> 1020 pz *= Pabs; >> 1021 >> 1022 Mom->setPx(px); Mom->setPy(py); Mom->setPz(pz); >> 1023 Mom->setE(std::sqrt(Pabs*Pabs + Mass*Mass)); 1126 1024 1127 G4ParticleDefinition * Quark; << 1025 AntiMom->setPx(-px); AntiMom->setPy(-py); AntiMom->setPz(-pz); 1128 G4ParticleDefinition * Anti_Quark; << 1026 AntiMom->setE (std::sqrt(Pabs*Pabs + AntiMass*AntiMass)); >> 1027 //G4int Uzhi; G4cin>>Uzhi; >> 1028 } >> 1029 else >> 1030 // >> 1031 { >> 1032 do >> 1033 { >> 1034 // GF 22-May-09, limit sampled pt to allowed range >> 1035 >> 1036 G4double termD = InitialMass*InitialMass -Mass*Mass - AntiMass*AntiMass; >> 1037 G4double termab = 4*sqr(Mass*AntiMass); >> 1038 G4double termN = 2*termD + 4*Mass*Mass + 4*AntiMass*AntiMass; >> 1039 G4double pt2max=(termD*termD - termab )/ termN ; >> 1040 //G4cout<<"Anis "<<pt2max<<" "<<(termD*termD-termab)/(4.*InitialMass*InitialMass)<<G4endl; >> 1041 >> 1042 Pt=SampleQuarkPt(std::sqrt(pt2max)); Pt.setZ(0); G4double Pt2=Pt.mag2(); >> 1043 //G4cout<<"Sampl pt2 "<<Pt2<<G4endl; >> 1044 MassMt2 = Mass * Mass + Pt2; >> 1045 AntiMassMt2= AntiMass * AntiMass + Pt2; >> 1046 >> 1047 AvailablePz2= sqr(InitialMass*InitialMass - MassMt2 - AntiMassMt2) - >> 1048 4.*MassMt2*AntiMassMt2; >> 1049 } >> 1050 while(AvailablePz2 < 0.); // GF will occur only for numerical precision problem with limit in sampled pt >> 1051 >> 1052 AvailablePz2 /=(4.*InitialMass*InitialMass); >> 1053 AvailablePz = std::sqrt(AvailablePz2); >> 1054 >> 1055 G4double Px=Pt.getX(); >> 1056 G4double Py=Pt.getY(); 1129 1057 1130 if (string->GetLeftParton()->GetPDGEncoding << 1058 Mom->setPx(Px); Mom->setPy(Py); Mom->setPz(AvailablePz); 1131 { << 1059 Mom->setE(std::sqrt(MassMt2+AvailablePz2)); 1132 Quark =string->GetLeftParton(); << 1133 Anti_Quark=string->GetRightParton(); << 1134 } else << 1135 { << 1136 Quark =string->GetRightParton(); << 1137 Anti_Quark=string->GetLeftParton(); << 1138 } << 1139 1060 1140 G4int IDquark =Quark->GetPDGEncodin << 1061 AntiMom->setPx(-Px); AntiMom->setPy(-Py); AntiMom->setPz(-AvailablePz); 1141 G4int AbsIDquark =std::abs(IDquark); << 1062 AntiMom->setE (std::sqrt(AntiMassMt2+AvailablePz2)); 1142 G4int QuarkCharge =Qcharge[IDquar << 1063 } 1143 << 1064 } 1144 G4int IDanti_quark =Anti_Quark->GetPDGEn << 1145 G4int AbsIDanti_quark =std::abs(IDanti_quar << 1146 G4int AntiQuarkCharge =-Qcharge[AbsID << 1147 << 1148 G4int LeftHadronCharge(0), RightHadro << 1149 << 1150 //G4cout<<"Q Qbar "<<IDquark<<" "<<ID << 1151 << 1152 NumberOf_FS=0; << 1153 for (G4int ProdQ=1; ProdQ < 4; ProdQ++) // << 1154 { // << 1155 //G4cout<<"NumberOf_FS ProdQ << 1156 LeftHadronCharge = QuarkCharge - Qcharge[ << 1157 G4int SignQ = LeftHadronCharge/3; if (Sig << 1158 << 1159 if ((IDquark == 1) && (ProdQ == 3)) SignQ << 1160 if ((IDquark == 3) && (ProdQ == 1)) SignQ << 1161 if ((IDquark == 4) && (ProdQ << 1162 if ((IDquark == 5) && (ProdQ << 1163 if ((IDquark == 5) && (ProdQ << 1164 << 1165 RightHadronCharge = AntiQuark << 1166 G4int SignAQ = RightHadronCharge/3; if (S << 1167 1065 1168 if ((IDanti_quark ==-1) && (ProdQ == 3)) << 1066 //----------------------------------------------------------------------------- 1169 if ((IDanti_quark ==-3) && (ProdQ == 1)) << 1170 if ((IDanti_quark ==-4) && (ProdQ == 2)) << 1171 if ((IDanti_quark ==-5) && (ProdQ == 1)) << 1172 if ((IDanti_quark ==-5) && (ProdQ == 3)) << 1173 << 1174 //G4cout<<"ProQ signs "<<Prod << 1175 << 1176 G4int StateQ=0; << 1177 const G4int maxNumberOfLoops << 1178 G4int loopCounter = 0; << 1179 do << 1180 { << 1181 //G4cout<<"[AbsIDquar << 1182 //<<ProdQ-1<<" "<<Sta << 1183 LeftHadron=G4ParticleTable::GetParticle << 1184 Meson[AbsIDquark-1][ProdQ- << 1185 //G4cout<<"LeftHadron << 1186 if (LeftHadron == NULL) { StateQ++; con << 1187 //G4cout<<"LeftHadron << 1188 G4double LeftHadronMass=LeftHadron->Get << 1189 << 1190 G4int StateAQ=0; << 1191 const G4int maxNumber << 1192 G4int internalLoopCou << 1193 do << 1194 { << 1195 //G4cout<<" << 1196 // <<Pro << 1197 RightHadron=G4ParticleTable::GetParti << 1198 Meson[AbsIDanti_quark-1][Prod << 1199 //G4cout<<"Ri << 1200 if(RightHadron == NULL) { StateAQ++; << 1201 //G4cout<<"Ri << 1202 G4double RightHadronMass=RightHadron- << 1203 << 1204 if (StringMass > LeftHadronMass + Rig << 1205 { << 1206 if ( << 1207 G4E << 1208 ed << 1209 G4E << 1210 << 1211 Num << 1212 } << 1213 << 1214 G4dou << 1215 sqr(RightHadronMass)); << 1216 //FS_Psqr=1.; << 1217 FS_Weight[NumberOf_FS]=std::sqrt(FS << 1218 MesonWeight[AbsIDquark-1 << 1219 MesonWeight[AbsIDanti_qu << 1220 Prob_QQbar[ProdQ-1]; << 1221 if (string->GetLeftParton()->GetPDG << 1222 { << 1223 FS_LeftHadron[NumberOf_FS] = Righ << 1224 FS_RightHadron[NumberOf_FS]= Left << 1225 } else << 1226 { << 1227 FS_LeftHadron[NumberOf_FS] = Left << 1228 FS_RightHadron[NumberOf_FS]= Righ << 1229 } << 1230 << 1231 NumberOf_FS++; << 1232 << 1233 } << 1234 << 1235 StateAQ++; << 1236 //G4cout<<" << 1237 // <<Mes << 1238 } while ( (Meson[AbsIDanti_quark-1][Pro << 1239 ++internalL << 1240 if ( internalLoopCo << 1241 return false; << 1242 } << 1243 << 1244 StateQ++; << 1245 //G4cout<<"StateQ Mes << 1246 // <<Meson[AbsID << 1247 << 1248 } while ( (Meson[AbsIDquark-1][ProdQ-1][S << 1249 ++loopCounter < maxN << 1250 if ( loopCounter >= maxNumb << 1251 return false; << 1252 } << 1253 } // End of for (G4int ProdQ=1; ProdQ < 4; << 1254 1067 1255 return true; << 1068 G4LorentzVector * G4LundStringFragmentation::SplitEandP(G4ParticleDefinition * pHadron, 1256 } << 1069 G4FragmentingString * string, G4FragmentingString * newString) >> 1070 { >> 1071 //G4cout<<"Start SplitEandP "<<G4endl; >> 1072 G4LorentzVector String4Momentum=string->Get4Momentum(); >> 1073 G4double StringMT2=string->Get4Momentum().mt2(); 1257 1074 1258 //------------------------------------------- << 1075 G4double HadronMass = pHadron->GetPDGMass(); 1259 1076 1260 G4int G4LundStringFragmentation::SampleState( << 1077 SetMinimalStringMass(newString); 1261 { << 1078 //G4cout<<"HadM MinimalStringMassLeft StringM "<<HadronMass<<" "<<MinimalStringMass<<" "<<String4Momentum.mag()<<G4endl; 1262 if ( NumberOf_FS > 349 ) { << 1079 1263 G4ExceptionDescription ed; << 1080 if(HadronMass + MinimalStringMass > String4Momentum.mag()) {return 0;}// have to start all over! 1264 ed << " NumberOf_FS exceeds its lim << 1081 String4Momentum.setPz(0.); 1265 G4Exception( "G4LundStringFragmenta << 1082 G4ThreeVector StringPt=String4Momentum.vect(); 1266 NumberOf_FS = 349; << 1267 } << 1268 1083 1269 G4double SumWeights=0.; << 1084 // calculate and assign hadron transverse momentum component HadronPx and HadronPy 1270 for (G4int i=0; i<NumberOf_FS; i++) {SumWei << 1085 G4ThreeVector thePt; >> 1086 thePt=SampleQuarkPt(); 1271 1087 1272 G4double ksi=G4UniformRand(); << 1088 G4ThreeVector HadronPt = thePt +string->DecayPt(); 1273 G4double Sum=0.; << 1089 HadronPt.setZ(0); 1274 G4int indexPosition = 0; << 1275 1090 1276 for (G4int i=0; i<NumberOf_FS; i++) << 1091 G4ThreeVector RemSysPt = StringPt - HadronPt; 1277 { << 1278 Sum+=(FS_Weight[i]/SumWeights); << 1279 indexPosition=i; << 1280 if (Sum >= ksi) break; << 1281 } << 1282 return indexPosition; << 1283 } << 1284 1092 1285 //------------------------------------------- << 1093 //... sample z to define hadron longitudinal momentum and energy >> 1094 //... but first check the available phase space 1286 1095 1287 void G4LundStringFragmentation::Sample4Moment << 1096 G4double HadronMassT2 = sqr(HadronMass) + HadronPt.mag2(); 1288 << 1097 G4double ResidualMassT2=sqr(MinimalStringMass) + RemSysPt.mag2(); 1289 << 1290 { << 1291 // ------ Sampling of momenta of 2 last pro << 1292 G4ThreeVector Pt; << 1293 G4double MassMt, AntiMassMt; << 1294 G4double AvailablePz, AvailablePz2; << 1295 #ifdef debug_LUNDfragmentation << 1296 G4cout<<"Sampling of momenta of 2 las << 1297 G4cout<<"Init Mass "<<InitialMass<<" << 1298 #endif << 1299 << 1300 G4double r_val = sqr(InitialMass*InitialMas << 1301 sqr(2.*Mass*AntiMass); << 1302 G4double Pabs = (r_val > 0.)? std::sqrt(r_v << 1303 << 1304 const G4int maxNumberOfLoops = 1000; << 1305 G4double SigmaQTw = SigmaQT; << 1306 if ( Mass > 930. || AntiMass > 930. ) { << 1307 SigmaQT *= ( 1.0 - 0.55*sqr( (Mass+AntiMa << 1308 } << 1309 if ( Mass < 930. && AntiMass < 930. ) << 1310 if ( ( Mass < 930. && AntiMass > 930. << 1311 ( Mass > 930. && AntiMass < 930. ) ) { << 1312 //SigmaQT = -1.; // isotropical de << 1313 } << 1314 if ( Mass > 930. && AntiMass > 930. ) << 1315 SigmaQT *= ( 1.0 - 0.55*sqr( (Mass+ << 1316 } << 1317 1098 1318 G4int loopCounter = 0; << 1099 G4double Pz2 = (sqr(StringMT2 - HadronMassT2 - ResidualMassT2) - 1319 do << 1100 4*HadronMassT2 * ResidualMassT2)/4./StringMT2; 1320 { << 1101 //G4cout<<"Pz2 "<<Pz2<<G4endl; 1321 Pt=SampleQuarkPt(Pabs); Pt.setZ(0); G4dou << 1102 if(Pz2 < 0 ) {return 0;} // have to start all over! 1322 MassMt = std::sqrt( Mass * Mass << 1323 AntiMassMt= std::sqrt(AntiMass * AntiMass << 1324 } << 1325 while ( (InitialMass < MassMt + AntiMassMt) << 1326 1103 1327 SigmaQT = SigmaQTw; << 1104 //... then compute allowed z region z_min <= z <= z_max >> 1105 >> 1106 G4double Pz = std::sqrt(Pz2); >> 1107 G4double zMin = (std::sqrt(HadronMassT2+Pz2) - Pz)/std::sqrt(StringMT2); >> 1108 G4double zMax = (std::sqrt(HadronMassT2+Pz2) + Pz)/std::sqrt(StringMT2); 1328 1109 1329 AvailablePz2= sqr(InitialMass*InitialMass - << 1110 //G4cout<<"if (zMin >= zMax) return 0 "<<zMin<<" "<<zMax<<G4endl; 1330 4.*sqr(MassMt*AntiMassMt); << 1111 if (zMin >= zMax) return 0; // have to start all over! >> 1112 >> 1113 G4double z = GetLightConeZ(zMin, zMax, >> 1114 string->GetDecayParton()->GetPDGEncoding(), pHadron, >> 1115 HadronPt.x(), HadronPt.y()); >> 1116 //G4cout<<"z "<<z<<G4endl; >> 1117 //... now compute hadron longitudinal momentum and energy >> 1118 // longitudinal hadron momentum component HadronPz >> 1119 >> 1120 HadronPt.setZ(0.5* string->GetDecayDirection() * >> 1121 (z * string->LightConeDecay() - >> 1122 HadronMassT2/(z * string->LightConeDecay()))); >> 1123 >> 1124 G4double HadronE = 0.5* (z * string->LightConeDecay() + >> 1125 HadronMassT2/(z * string->LightConeDecay())); >> 1126 >> 1127 G4LorentzVector * a4Momentum= new G4LorentzVector(HadronPt,HadronE); >> 1128 //G4cout<<"Out SplitEandP "<<G4endl; >> 1129 return a4Momentum; >> 1130 } 1331 1131 1332 AvailablePz2 /=(4.*InitialMass*InitialMass) << 1132 //----------------------------------------------------------------------------------------- 1333 AvailablePz = std::sqrt(AvailablePz2); << 1133 G4double G4LundStringFragmentation::GetLightConeZ(G4double zmin, G4double zmax, >> 1134 G4int PDGEncodingOfDecayParton, >> 1135 G4ParticleDefinition* pHadron, >> 1136 G4double Px, G4double Py) >> 1137 { >> 1138 G4double alund; 1334 1139 1335 G4double Px=Pt.getX(); << 1140 // If blund get restored, you MUST adapt the calculation of zOfMaxyf. 1336 G4double Py=Pt.getY(); << 1141 // const G4double blund = 1; 1337 1142 1338 Mom->setPx(Px); Mom->setPy(Py); Mom->setPz( << 1143 G4double z, yf; 1339 Mom->setE(std::sqrt(sqr(MassMt)+AvailablePz << 1144 G4double Mass = pHadron->GetPDGMass(); >> 1145 // G4int HadronEncoding=pHadron->GetPDGEncoding(); >> 1146 >> 1147 G4double Mt2 = Px*Px + Py*Py + Mass*Mass; 1340 1148 1341 AntiMom->setPx(-Px); AntiMom->setPy(-Py); A << 1149 if(std::abs(PDGEncodingOfDecayParton) < 1000) 1342 AntiMom->setE (std::sqrt(sqr(AntiMassMt)+Av << 1150 { >> 1151 // ---------------- Quark fragmentation ---------------------- >> 1152 alund=0.35/GeV/GeV; // Instead of 0.7 because kinks are not considered >> 1153 G4double zOfMaxyf=alund*Mt2/(alund*Mt2 + 1.); >> 1154 G4double maxYf=(1-zOfMaxyf)/zOfMaxyf * std::exp(-alund*Mt2/zOfMaxyf); >> 1155 >> 1156 do >> 1157 { >> 1158 z = zmin + G4UniformRand()*(zmax-zmin); >> 1159 // yf = std::pow(1. - z, blund)/z*std::exp(-alund*Mt2/z); >> 1160 yf = (1-z)/z * std::exp(-alund*Mt2/z); >> 1161 } >> 1162 while (G4UniformRand()*maxYf > yf); >> 1163 } >> 1164 else >> 1165 { >> 1166 // ---------------- Di-quark fragmentation ---------------------- >> 1167 alund=0.7/GeV/GeV; // 0.7 2.0 >> 1168 G4double zOfMaxyf=alund*Mt2/(alund*Mt2 + 1.); >> 1169 G4double maxYf=(1-zOfMaxyf)/zOfMaxyf * std::exp(-alund*Mt2/zOfMaxyf); >> 1170 do >> 1171 { >> 1172 z = zmin + G4UniformRand()*(zmax-zmin); >> 1173 // yf = std::pow(1. - z, blund)/z*std::exp(-alund*Mt2/z); >> 1174 yf = (1-z)/z * std::exp(-alund*Mt2/z); >> 1175 } >> 1176 while (G4UniformRand()*maxYf > yf); >> 1177 }; 1343 1178 1344 #ifdef debug_LUNDfragmentation << 1179 return z; 1345 G4cout<<"Fmass Mom "<<Mom->getX()<<" << 1180 } 1346 G4cout<<"Smass Mom "<<AntiMom->getX() << 1347 <<" "<<AntiMom->getT()<<G4endl; << 1348 #endif << 1349 } << 1350 1181 1351 //------------------------------------------- 1182 //------------------------------------------------------------------------ 1352 << 1183 G4double G4LundStringFragmentation::lambda(G4double s, G4double m1_Sqr, G4double m2_Sqr) 1353 G4double G4LundStringFragmentation::lambda(G4 << 1354 { 1184 { 1355 G4double lam = sqr(S - m1_Sqr - m2_Sqr) - 4 << 1185 G4double lam = sqr(s - m1_Sqr - m2_Sqr) - 4.*m1_Sqr*m2_Sqr; 1356 return lam; << 1186 return lam; 1357 } 1187 } 1358 << 1359 // ------------------------------------------ << 1360 G4LundStringFragmentation::~G4LundStringFragm << 1361 {} << 1362 1188 1363 1189