Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // 27 // 28 // Class Description 28 // Class Description 29 // Final state production code for hadron inel 29 // Final state production code for hadron inelastic scattering above 3 GeV 30 // based on the modeling ansatz used in FRITIO 30 // based on the modeling ansatz used in FRITIOF. 31 // To be used in your physics list in case you 31 // To be used in your physics list in case you need this physics. 32 // In this case you want to register an object 32 // In this case you want to register an object of this class with an object 33 // of G4TheoFSGenerator. 33 // of G4TheoFSGenerator. 34 // Class Description - End 34 // Class Description - End 35 35 36 #ifndef G4FTFModel_h 36 #ifndef G4FTFModel_h 37 #define G4FTFModel_h 1 37 #define G4FTFModel_h 1 38 38 39 // ------------------------------------------- 39 // ------------------------------------------------------------ 40 // GEANT 4 class header file 40 // GEANT 4 class header file 41 // 41 // 42 // ---------------- G4FTFModel ---------- 42 // ---------------- G4FTFModel ---------------- 43 // by Gunter Folger, May 1998. 43 // by Gunter Folger, May 1998. 44 // class implementing the excitation in 44 // class implementing the excitation in the FTF Parton String Model 45 // ------------------------------------------- 45 // ------------------------------------------------------------ 46 46 47 #include "G4VPartonStringModel.hh" 47 #include "G4VPartonStringModel.hh" 48 #include "G4FTFParameters.hh" 48 #include "G4FTFParameters.hh" 49 #include "G4FTFParticipants.hh" 49 #include "G4FTFParticipants.hh" 50 #include "G4ExcitedStringVector.hh" 50 #include "G4ExcitedStringVector.hh" 51 #include "G4DiffractiveExcitation.hh" 51 #include "G4DiffractiveExcitation.hh" 52 #include "G4ElasticHNScattering.hh" 52 #include "G4ElasticHNScattering.hh" 53 #include "G4FTFAnnihilation.hh" 53 #include "G4FTFAnnihilation.hh" 54 #include "G4Proton.hh" 54 #include "G4Proton.hh" 55 #include "G4Neutron.hh" 55 #include "G4Neutron.hh" 56 56 57 class G4VSplitableHadron; 57 class G4VSplitableHadron; 58 class G4ExcitedString; 58 class G4ExcitedString; 59 59 60 60 61 class G4FTFModel : public G4VPartonStringModel 61 class G4FTFModel : public G4VPartonStringModel { 62 public: 62 public: 63 G4FTFModel( const G4String& modelName = "F 63 G4FTFModel( const G4String& modelName = "FTF" ); 64 ~G4FTFModel() override; << 64 ~G4FTFModel(); 65 65 >> 66 void Init( const G4Nucleus& aNucleus, const G4DynamicParticle& aProjectile ); >> 67 G4ExcitedStringVector* GetStrings(); >> 68 G4V3DNucleus* GetWoundedNucleus() const; 66 G4V3DNucleus* GetTargetNucleus() const; 69 G4V3DNucleus* GetTargetNucleus() const; 67 G4V3DNucleus* GetWoundedNucleus() const ov << 70 G4V3DNucleus* GetProjectileNucleus() const; 68 G4V3DNucleus* GetProjectileNucleus() const << 69 71 70 void ModelDescription( std::ostream& ) con << 72 virtual void ModelDescription( std::ostream& ) const; 71 << 72 G4FTFModel( const G4FTFModel& right ) = de << 73 const G4FTFModel& operator=( const G4FTFMo << 74 G4bool operator==( const G4FTFModel& right << 75 G4bool operator!=( const G4FTFModel& right << 76 << 77 void SetImpactParameter( const G4double b_ << 78 G4double GetImpactParameter() const; << 79 void SetBminBmax( const G4double bmin_valu << 80 G4bool SampleBinInterval() const; << 81 G4double GetBmin() const; << 82 G4double GetBmax() const; << 83 G4int GetNumberOfProjectileSpectatorNucleo << 84 G4int GetNumberOfTargetSpectatorNucleons() << 85 G4int GetNumberOfNNcollisions() const; << 86 << 87 protected: << 88 void Init( const G4Nucleus& aNucleus, << 89 const G4DynamicParticle& aProje << 90 G4ExcitedStringVector* GetStrings() overri << 91 73 92 private: 74 private: >> 75 G4FTFModel( const G4FTFModel& right ); >> 76 const G4FTFModel& operator=( const G4FTFModel& right ); >> 77 G4bool operator==( const G4FTFModel& right ) const; >> 78 G4bool operator!=( const G4FTFModel& right ) const; >> 79 93 void StoreInvolvedNucleon(); 80 void StoreInvolvedNucleon(); 94 void ReggeonCascade(); 81 void ReggeonCascade(); 95 G4bool PutOnMassShell(); 82 G4bool PutOnMassShell(); 96 G4bool ExciteParticipants(); 83 G4bool ExciteParticipants(); 97 void BuildStrings( G4ExcitedStringVector* 84 void BuildStrings( G4ExcitedStringVector* strings ); 98 void GetResiduals(); 85 void GetResiduals(); 99 86 100 G4bool AdjustNucleons( G4VSplitableHadron* 87 G4bool AdjustNucleons( G4VSplitableHadron* SelectedAntiBaryon, 101 G4Nucleon* 88 G4Nucleon* ProjectileNucleon, 102 G4VSplitableHadron* 89 G4VSplitableHadron* SelectedTargetNucleon, 103 G4Nucleon* 90 G4Nucleon* TargetNucleon, 104 G4bool 91 G4bool Annihilation ); 105 // The "AdjustNucleons" method uses the fo 92 // The "AdjustNucleons" method uses the following struct and 3 new utility methods: 106 struct CommonVariables { 93 struct CommonVariables { 107 G4int TResidualMassNumber = 0, TResidual 94 G4int TResidualMassNumber = 0, TResidualCharge = 0, PResidualMassNumber = 0, 108 PResidualCharge = 0, PResidualLambdaNu << 95 PResidualCharge = 0; 109 G4double SqrtS = 0.0, S = 0.0, SumMasses 96 G4double SqrtS = 0.0, S = 0.0, SumMasses = 0.0, 110 TResidualExcitationEnergy = 0.0, TResi 97 TResidualExcitationEnergy = 0.0, TResidualMass = 0.0, TNucleonMass = 0.0, 111 PResidualExcitationEnergy = 0.0, PResi 98 PResidualExcitationEnergy = 0.0, PResidualMass = 0.0, PNucleonMass = 0.0, 112 Mprojectile = 0.0, M2projectile = 0.0, 99 Mprojectile = 0.0, M2projectile = 0.0, Pzprojectile = 0.0, Eprojectile = 0.0, 113 WplusProjectile = 0.0, 100 WplusProjectile = 0.0, 114 Mtarget = 0.0, M2target = 0.0, Pztarge 101 Mtarget = 0.0, M2target = 0.0, Pztarget = 0.0, Etarget = 0.0, WminusTarget = 0.0, 115 Mt2targetNucleon = 0.0, PztargetNucleo 102 Mt2targetNucleon = 0.0, PztargetNucleon = 0.0, EtargetNucleon = 0.0, 116 Mt2projectileNucleon = 0.0, Pzprojecti 103 Mt2projectileNucleon = 0.0, PzprojectileNucleon = 0.0, EprojectileNucleon = 0.0, 117 YtargetNucleus = 0.0, YprojectileNucle 104 YtargetNucleus = 0.0, YprojectileNucleus = 0.0, 118 XminusNucleon = 0.0, XplusNucleon = 0. 105 XminusNucleon = 0.0, XplusNucleon = 0.0, XminusResidual = 0.0, XplusResidual = 0.0; 119 G4ThreeVector PtNucleon, PtResidual, PtN 106 G4ThreeVector PtNucleon, PtResidual, PtNucleonP, PtResidualP, PtNucleonT, PtResidualT; 120 G4LorentzVector Psum, Pprojectile, Ptmp, 107 G4LorentzVector Psum, Pprojectile, Ptmp, Ptarget, TResidual4Momentum, PResidual4Momentum; 121 G4LorentzRotation toCms, toLab; 108 G4LorentzRotation toCms, toLab; 122 }; 109 }; 123 G4int AdjustNucleonsAlgorithm_beforeSampli 110 G4int AdjustNucleonsAlgorithm_beforeSampling( G4int interactionCase, 124 111 G4VSplitableHadron* SelectedAntiBaryon, 125 112 G4Nucleon* ProjectileNucleon, 126 113 G4VSplitableHadron* SelectedTargetNucleon, 127 114 G4Nucleon* TargetNucleon, 128 115 G4bool Annihilation, 129 116 CommonVariables& common ); 130 G4bool AdjustNucleonsAlgorithm_Sampling( 117 G4bool AdjustNucleonsAlgorithm_Sampling( G4int interactionCase, 131 118 CommonVariables& common ); 132 void AdjustNucleonsAlgorithm_afterSampling 119 void AdjustNucleonsAlgorithm_afterSampling( G4int interactionCase, 133 120 G4VSplitableHadron* SelectedAntiBaryon, 134 121 G4VSplitableHadron* SelectedTargetNucleon, 135 122 CommonVariables& common ); 136 123 137 G4ThreeVector GaussianPt( G4double Average 124 G4ThreeVector GaussianPt( G4double AveragePt2, G4double maxPtSquare ) const; 138 125 139 G4bool ComputeNucleusProperties( G4V3DNucl 126 G4bool ComputeNucleusProperties( G4V3DNucleus* nucleus, G4LorentzVector& nucleusMomentum, 140 G4Lorentz 127 G4LorentzVector& residualMomentum, G4double& sumMasses, 141 G4double& 128 G4double& residualExcitationEnergy, G4double& residualMass, 142 G4int& re 129 G4int& residualMassNumber, G4int& residualCharge ); 143 // Utility method used by PutOnMassShell. 130 // Utility method used by PutOnMassShell. 144 131 145 G4bool GenerateDeltaIsobar( const G4double 132 G4bool GenerateDeltaIsobar( const G4double sqrtS, const G4int numberOfInvolvedNucleons, 146 G4Nucleon* inv 133 G4Nucleon* involvedNucleons[], G4double& sumMasses ); 147 // Utility method used by PutOnMassShell. 134 // Utility method used by PutOnMassShell. 148 135 149 G4bool SamplingNucleonKinematics( G4double 136 G4bool SamplingNucleonKinematics( G4double averagePt2, const G4double maxPt2, 150 G4double 137 G4double dCor, G4V3DNucleus* nucleus, 151 const G4 138 const G4LorentzVector& pResidual, 152 const G4 139 const G4double residualMass, const G4int residualMassNumber, 153 const G4 140 const G4int numberOfInvolvedNucleons, 154 G4Nucleo 141 G4Nucleon* involvedNucleons[], G4double& mass2 ); 155 142 156 // Utility method used by PutOnMassShell. 143 // Utility method used by PutOnMassShell. 157 144 158 G4bool CheckKinematics( const G4double sVa 145 G4bool CheckKinematics( const G4double sValue, const G4double sqrtS, 159 const G4double pro 146 const G4double projectileMass2, const G4double targetMass2, 160 const G4double nuc 147 const G4double nucleusY, const G4bool isProjectileNucleus, 161 const G4int number 148 const G4int numberOfInvolvedNucleons, G4Nucleon* involvedNucleons[], 162 G4double& targetWm 149 G4double& targetWminus, G4double& projectileWplus, G4bool& success ); 163 // Utility method used by PutOnMassShell. 150 // Utility method used by PutOnMassShell. 164 151 165 G4bool FinalizeKinematics( const G4double 152 G4bool FinalizeKinematics( const G4double w, const G4bool isProjectileNucleus, 166 const G4Lorentz 153 const G4LorentzRotation& boostFromCmsToLab, 167 const G4double 154 const G4double residualMass, const G4int residualMassNumber, 168 const G4int num 155 const G4int numberOfInvolvedNucleons, 169 G4Nucleon* invo 156 G4Nucleon* involvedNucleons[], 170 G4LorentzVector& resi 157 G4LorentzVector& residual4Momentum ); 171 // Utility method used by PutOnMassShell. 158 // Utility method used by PutOnMassShell. 172 159 173 G4ReactionProduct theProjectile; 160 G4ReactionProduct theProjectile; 174 G4FTFParticipants theParticipants; 161 G4FTFParticipants theParticipants; 175 162 176 G4Nucleon* TheInvolvedNucleonsOfTarget[250 163 G4Nucleon* TheInvolvedNucleonsOfTarget[250]; 177 G4int NumberOfInvolvedNucleonsOfTarget; 164 G4int NumberOfInvolvedNucleonsOfTarget; 178 165 179 G4Nucleon* TheInvolvedNucleonsOfProjectile 166 G4Nucleon* TheInvolvedNucleonsOfProjectile[250]; 180 G4int NumberOfInvolvedNucleonsOfProjectile 167 G4int NumberOfInvolvedNucleonsOfProjectile; 181 168 182 G4FTFParameters* theParameters; 169 G4FTFParameters* theParameters; 183 G4DiffractiveExcitation* theExcitation; 170 G4DiffractiveExcitation* theExcitation; 184 G4ElasticHNScattering* theElastic; 171 G4ElasticHNScattering* theElastic; 185 G4FTFAnnihilation* theAnnihilation; 172 G4FTFAnnihilation* theAnnihilation; 186 173 187 std::vector< G4VSplitableHadron* > theAddi 174 std::vector< G4VSplitableHadron* > theAdditionalString; 188 175 189 G4double LowEnergyLimit; 176 G4double LowEnergyLimit; 190 G4bool HighEnergyInter; 177 G4bool HighEnergyInter; 191 178 192 G4LorentzVector ProjectileResidual4Momentu 179 G4LorentzVector ProjectileResidual4Momentum; 193 G4int ProjectileResidualMassNumb 180 G4int ProjectileResidualMassNumber; 194 G4int ProjectileResidualCharge; 181 G4int ProjectileResidualCharge; 195 G4int ProjectileResidualLambdaNu << 196 G4double ProjectileResidualExcitati 182 G4double ProjectileResidualExcitationEnergy; 197 183 198 G4LorentzVector TargetResidual4Momentum; 184 G4LorentzVector TargetResidual4Momentum; 199 G4int TargetResidualMassNumber; 185 G4int TargetResidualMassNumber; 200 G4int TargetResidualCharge; 186 G4int TargetResidualCharge; 201 G4double TargetResidualExcitationEn 187 G4double TargetResidualExcitationEnergy; 202 << 203 G4double Bimpact; << 204 G4bool BinInterval; << 205 G4double Bmin; << 206 G4double Bmax; << 207 G4int NumberOfProjectileSpectatorNucleons; << 208 G4int NumberOfTargetSpectatorNucleons; << 209 G4int NumberOfNNcollisions; << 210 }; 188 }; 211 189 >> 190 212 inline G4V3DNucleus* G4FTFModel::GetWoundedNuc 191 inline G4V3DNucleus* G4FTFModel::GetWoundedNucleus() const { 213 return theParticipants.GetWoundedNucleus(); 192 return theParticipants.GetWoundedNucleus(); 214 } 193 } 215 194 >> 195 216 inline G4V3DNucleus* G4FTFModel::GetTargetNucl 196 inline G4V3DNucleus* G4FTFModel::GetTargetNucleus() const { 217 return theParticipants.GetWoundedNucleus(); 197 return theParticipants.GetWoundedNucleus(); 218 } 198 } 219 199 >> 200 220 inline G4V3DNucleus* G4FTFModel::GetProjectile 201 inline G4V3DNucleus* G4FTFModel::GetProjectileNucleus() const { 221 return theParticipants.GetProjectileNucleus( 202 return theParticipants.GetProjectileNucleus(); 222 } 203 } 223 204 224 inline void G4FTFModel::SetImpactParameter( co << 225 Bimpact = b_value; << 226 } << 227 << 228 inline G4double G4FTFModel::GetImpactParameter << 229 return Bimpact; << 230 } << 231 << 232 inline void G4FTFModel::SetBminBmax( const G4d << 233 BinInterval = false; << 234 if ( bmin_value < 0.0 || bmax_value < 0.0 || << 235 BinInterval = true; << 236 Bmin = bmin_value; << 237 Bmax = bmax_value; << 238 } << 239 << 240 inline G4bool G4FTFModel::SampleBinInterval() << 241 return BinInterval; << 242 } << 243 << 244 inline G4double G4FTFModel::GetBmin() const { << 245 return Bmin; << 246 } << 247 << 248 inline G4double G4FTFModel::GetBmax() const { << 249 return Bmax; << 250 } << 251 << 252 inline G4int G4FTFModel::GetNumberOfProjectile << 253 return NumberOfProjectileSpectatorNucleons; << 254 } << 255 << 256 inline G4int G4FTFModel::GetNumberOfTargetSpec << 257 return NumberOfTargetSpectatorNucleons; << 258 } << 259 << 260 inline G4int G4FTFModel::GetNumberOfNNcollisio << 261 return NumberOfNNcollisions; << 262 } << 263 << 264 #endif 205 #endif >> 206 265 207