Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // 27 // 28 // P. Arce, June-2014 Conversion neutron_hp to 28 // P. Arce, June-2014 Conversion neutron_hp to particle_hp 29 // 29 // 30 #include "G4ParticleHPNBodyPhaseSpace.hh" 30 #include "G4ParticleHPNBodyPhaseSpace.hh" 31 << 32 #include "G4Alpha.hh" << 33 #include "G4Deuteron.hh" << 34 #include "G4Electron.hh" << 35 #include "G4Gamma.hh" << 36 #include "G4He3.hh" << 37 #include "G4Neutron.hh" << 38 #include "G4PhysicalConstants.hh" 31 #include "G4PhysicalConstants.hh" >> 32 #include "Randomize.hh" >> 33 #include "G4ThreeVector.hh" >> 34 #include "G4Gamma.hh" >> 35 #include "G4Electron.hh" 39 #include "G4Positron.hh" 36 #include "G4Positron.hh" >> 37 #include "G4Neutron.hh" 40 #include "G4Proton.hh" 38 #include "G4Proton.hh" 41 #include "G4ThreeVector.hh" << 39 #include "G4Deuteron.hh" 42 #include "G4Triton.hh" 40 #include "G4Triton.hh" 43 #include "Randomize.hh" << 41 #include "G4He3.hh" >> 42 #include "G4Alpha.hh" 44 43 45 G4ReactionProduct* G4ParticleHPNBodyPhaseSpace << 44 G4ReactionProduct * G4ParticleHPNBodyPhaseSpace::Sample(G4double anEnergy, G4double massCode, G4double ) 46 << 47 { 45 { 48 auto result = new G4ReactionProduct; << 46 G4ReactionProduct * result = new G4ReactionProduct; 49 auto Z = static_cast<G4int>(massCode / 1000) << 47 G4int Z = static_cast<G4int>(massCode/1000); 50 auto A = static_cast<G4int>(massCode - 1000 << 48 G4int A = static_cast<G4int>(massCode-1000*Z); 51 << 49 52 if (massCode == 0) { << 50 if(massCode==0) 53 result->SetDefinition(G4Gamma::Gamma()); << 51 { 54 } << 52 result->SetDefinition(G4Gamma::Gamma()); 55 else if (A == 0) { << 53 } 56 result->SetDefinition(G4Electron::Electron << 54 else if(A==0) 57 if (Z == 1) result->SetDefinition(G4Positr << 55 { 58 } << 56 result->SetDefinition(G4Electron::Electron()); 59 else if (A == 1) { << 57 if(Z==1) result->SetDefinition(G4Positron::Positron()); 60 result->SetDefinition(G4Neutron::Neutron() << 58 } 61 if (Z == 1) result->SetDefinition(G4Proton << 59 else if(A==1) 62 } << 60 { 63 else if (A == 2) { << 61 result->SetDefinition(G4Neutron::Neutron()); 64 result->SetDefinition(G4Deuteron::Deuteron << 62 if(Z==1) result->SetDefinition(G4Proton::Proton()); 65 } << 63 } 66 else if (A == 3) { << 64 else if(A==2) 67 result->SetDefinition(G4Triton::Triton()); << 65 { 68 if (Z == 2) result->SetDefinition(G4He3::H << 66 result->SetDefinition(G4Deuteron::Deuteron()); 69 } << 67 } 70 else if (A == 4) { << 68 else if(A==3) 71 result->SetDefinition(G4Alpha::Alpha()); << 69 { 72 if (Z != 2) throw G4HadronicException(__FI << 70 result->SetDefinition(G4Triton::Triton()); 73 } << 71 if(Z==2) result->SetDefinition(G4He3::He3()); 74 else { << 72 } 75 throw G4HadronicException(__FILE__, __LINE << 73 else if(A==4) 76 "G4ParticleHPNBo << 74 { 77 } << 75 result->SetDefinition(G4Alpha::Alpha()); 78 << 76 if(Z!=2) throw G4HadronicException(__FILE__, __LINE__, "Unknown ion case 1"); 79 // Get the energy from phase-space distribut << 77 } 80 // in CMS << 78 else 81 // P = Cn*std::sqrt(E')*(Emax-E')**(3*n/2-4) << 79 { 82 G4double maxE = GetEmax(anEnergy, result->Ge << 80 throw G4HadronicException(__FILE__, __LINE__, "G4ParticleHPNBodyPhaseSpace: Unknown ion case 2"); 83 if (maxE <= 0) { << 81 } 84 maxE = 1. * CLHEP::eV; << 82 85 } << 83 // Get the energy from phase-space distribution 86 G4double energy = 0.; << 84 // in CMS 87 G4double max(0); << 85 // P = Cn*std::sqrt(E')*(Emax-E')**(3*n/2-4) 88 if (theTotalCount <= 3) { << 86 G4double maxE = GetEmax(anEnergy, result->GetMass()); 89 max = maxE / 2.; << 87 G4double energy; 90 } << 88 G4double max(0); 91 else if (theTotalCount == 4) { << 89 if(theTotalCount<=3) 92 max = maxE / 5.; << 90 { 93 } << 91 max = maxE/2.; 94 else if (theTotalCount == 5) { << 92 } 95 max = maxE / 8.; << 93 else if(theTotalCount==4) 96 } << 94 { 97 else { << 95 max = maxE/5.; 98 throw G4HadronicException( << 96 } 99 __FILE__, __LINE__, << 97 else if(theTotalCount==5) 100 "NeutronHP Phase-space distribution cann << 98 { 101 } << 99 max = maxE/8.; 102 G4double testit; << 100 } 103 G4double rand0 = Prob(max, maxE, theTotalCou << 101 else 104 G4double rand; << 102 { 105 << 103 throw G4HadronicException(__FILE__, __LINE__, "NeutronHP Phase-space distribution cannot cope with this number of particles"); 106 G4int icounter = 0; << 104 } 107 G4int icounter_max = 1024; << 105 G4double testit; 108 do { << 106 G4double rand0 = Prob(max, maxE, theTotalCount); 109 icounter++; << 107 G4double rand; 110 if (icounter > icounter_max) { << 108 111 G4cout << "Loop-counter exceeded the thr << 109 G4int icounter=0; 112 << __FILE__ << "." << G4endl; << 110 G4int icounter_max=1024; 113 break; << 111 do 114 } << 112 { 115 rand = rand0 * G4UniformRand(); << 113 icounter++; 116 energy = maxE * G4UniformRand(); << 114 if ( icounter > icounter_max ) { 117 testit = Prob(energy, maxE, theTotalCount) << 115 G4cout << "Loop-counter exceeded the threshold value at " << __LINE__ << "th line of " << __FILE__ << "." << G4endl; 118 } while (rand > testit); // Loop checking, << 116 break; 119 result->SetKineticEnergy(energy); << 117 } 120 << 118 rand = rand0*G4UniformRand(); 121 // now do random direction << 119 energy = maxE*G4UniformRand(); 122 G4double cosTh = 2. * G4UniformRand() - 1.; << 120 testit = Prob(energy, maxE, theTotalCount); 123 G4double phi = twopi * G4UniformRand(); << 121 } 124 G4double theta = std::acos(cosTh); << 122 while(rand > testit); // Loop checking, 11.05.2015, T. Koi 125 G4double sinth = std::sin(theta); << 123 result->SetKineticEnergy(energy); 126 G4double mtot = result->GetTotalMomentum(); << 124 127 G4ThreeVector tempVector(mtot * sinth * std: << 125 // now do random direction 128 mtot * std::cos(the << 126 G4double cosTh = 2.*G4UniformRand()-1.; 129 result->SetMomentum(tempVector); << 127 G4double phi = twopi*G4UniformRand(); 130 G4ReactionProduct aCMS = *GetTarget() + *Get << 128 G4double theta = std::acos(cosTh); 131 result->Lorentz(*result, -1. * aCMS); << 129 G4double sinth = std::sin(theta); 132 return result; << 130 G4double mtot = result->GetTotalMomentum(); >> 131 G4ThreeVector tempVector(mtot*sinth*std::cos(phi), mtot*sinth*std::sin(phi), mtot*std::cos(theta) ); >> 132 result->SetMomentum(tempVector); >> 133 G4ReactionProduct aCMS = *GetTarget()+*GetProjectileRP(); >> 134 result->Lorentz(*result, -1.*aCMS); >> 135 return result; 133 } 136 } 134 137