Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // neutron_hp -- source file 26 // neutron_hp -- source file 27 // J.P. Wellisch, Nov-1996 27 // J.P. Wellisch, Nov-1996 28 // A prototype of the low energy neutron trans 28 // A prototype of the low energy neutron transport model. 29 // 29 // 30 // 070523 bug fix for G4FPE_DEBUG on by A. How 30 // 070523 bug fix for G4FPE_DEBUG on by A. Howard ( and T. Koi) 31 // 08-08-06 delete unnecessary and harmed decl 31 // 08-08-06 delete unnecessary and harmed declaration; Bug Report[857] 32 // 32 // 33 // P. Arce, June-2014 Conversion neutron_hp to 33 // P. Arce, June-2014 Conversion neutron_hp to particle_hp 34 // 34 // 35 #include "G4ParticleHPFission.hh" 35 #include "G4ParticleHPFission.hh" 36 << 37 #include "G4ParticleHPFissionFS.hh" 36 #include "G4ParticleHPFissionFS.hh" >> 37 #include "G4SystemOfUnits.hh" 38 #include "G4ParticleHPManager.hh" 38 #include "G4ParticleHPManager.hh" 39 #include "G4ParticleHPThermalBoost.hh" 39 #include "G4ParticleHPThermalBoost.hh" 40 #include "G4SystemOfUnits.hh" << 41 #include "G4Threading.hh" 40 #include "G4Threading.hh" 42 41 43 G4ParticleHPFission::G4ParticleHPFission() : G << 42 G4ParticleHPFission::G4ParticleHPFission() 44 { << 43 : G4HadronicInteraction("NeutronHPFission"), theFission(nullptr), numEle(0) 45 SetMinEnergy(0.0); << 44 { 46 SetMaxEnergy(20. * MeV); << 45 SetMinEnergy( 0.0 ); 47 } << 46 SetMaxEnergy( 20.*MeV ); 48 << 47 } 49 G4ParticleHPFission::~G4ParticleHPFission() << 48 50 { << 49 G4ParticleHPFission::~G4ParticleHPFission() 51 // Vector is shared, only master deletes it << 50 { 52 // delete [] theFission; << 51 // Vector is shared, only master deletes it 53 if (!G4Threading::IsMasterThread()) { << 52 // delete [] theFission; 54 if (theFission != nullptr) { << 53 if ( ! G4Threading::IsMasterThread() ) { 55 for (auto it = theFission->cbegin(); it << 54 if ( theFission != nullptr ) { 56 delete *it; << 55 for ( auto it=theFission->cbegin(); it!=theFission->cend(); ++it ) { 57 } << 56 delete *it; 58 theFission->clear(); << 57 } >> 58 theFission->clear(); >> 59 } 59 } 60 } 60 } 61 } 61 } << 62 62 << 63 G4HadFinalState * G4ParticleHPFission::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& aNucleus ) 63 G4HadFinalState* G4ParticleHPFission::ApplyYou << 64 { 64 << 65 65 { << 66 G4ParticleHPManager::GetInstance()->OpenReactionWhiteBoard(); 66 G4ParticleHPManager::GetInstance()->OpenReac << 67 const G4Material * theMaterial = aTrack.GetMaterial(); 67 const G4Material* theMaterial = aTrack.GetMa << 68 G4int n = (G4int)theMaterial->GetNumberOfElements(); 68 auto n = (G4int)theMaterial->GetNumberOfElem << 69 std::size_t index = theMaterial->GetElement(0)->GetIndex(); 69 std::size_t index = theMaterial->GetElement( << 70 if(n!=1) 70 if (n != 1) { << 71 { 71 auto xSec = new G4double[n]; << 72 G4double* xSec = new G4double[n]; 72 G4double sum = 0; << 73 G4double sum=0; 73 G4int i; << 74 G4int i; 74 const G4double* NumAtomsPerVolume = theMat << 75 const G4double * NumAtomsPerVolume = theMaterial->GetVecNbOfAtomsPerVolume(); 75 G4double rWeight; << 76 G4double rWeight; 76 G4ParticleHPThermalBoost aThermalE; << 77 G4ParticleHPThermalBoost aThermalE; 77 for (i = 0; i < n; ++i) { << 78 for (i=0; i<n; ++i) 78 index = theMaterial->GetElement(i)->GetI << 79 { 79 rWeight = NumAtomsPerVolume[i]; << 80 index = theMaterial->GetElement(i)->GetIndex(); 80 xSec[i] = ((*theFission)[index]) << 81 rWeight = NumAtomsPerVolume[i]; 81 ->GetXsec(aThermalE.GetTherm << 82 xSec[i] = ((*theFission)[index]) 82 << 83 ->GetXsec(aThermalE.GetThermalEnergy(aTrack, 83 xSec[i] *= rWeight; << 84 theMaterial->GetElement(i), 84 sum += xSec[i]; << 85 theMaterial->GetTemperature())); >> 86 xSec[i] *= rWeight; >> 87 sum+=xSec[i]; >> 88 } >> 89 G4double random = G4UniformRand(); >> 90 G4double running = 0; >> 91 for (i=0; i<n; ++i) >> 92 { >> 93 running += xSec[i]; >> 94 index = theMaterial->GetElement(i)->GetIndex(); >> 95 //if(random<=running/sum) break; >> 96 if( sum == 0 || random <= running/sum ) break; >> 97 } >> 98 delete [] xSec; 85 } 99 } 86 G4double random = G4UniformRand(); << 100 //return theFission[index].ApplyYourself(aTrack); //-2:Marker for Fission 87 G4double running = 0; << 101 G4HadFinalState* result = ((*theFission)[index])->ApplyYourself(aTrack,-2); 88 for (i = 0; i < n; ++i) { << 102 89 running += xSec[i]; << 103 //Overwrite target parameters 90 index = theMaterial->GetElement(i)->GetI << 104 aNucleus.SetParameters(G4ParticleHPManager::GetInstance()->GetReactionWhiteBoard()->GetTargA(),G4ParticleHPManager::GetInstance()->GetReactionWhiteBoard()->GetTargZ()); 91 // if(random<=running/sum) break; << 105 const G4Element* target_element = (*G4Element::GetElementTable())[index]; 92 if (sum == 0 || random <= running / sum) << 106 const G4Isotope* target_isotope=NULL; >> 107 G4int iele = (G4int)target_element->GetNumberOfIsotopes(); >> 108 for ( G4int j = 0 ; j != iele ; ++j ) { >> 109 target_isotope=target_element->GetIsotope( j ); >> 110 if ( target_isotope->GetN() == G4ParticleHPManager::GetInstance()->GetReactionWhiteBoard()->GetTargA() ) break; 93 } 111 } 94 delete[] xSec; << 112 aNucleus.SetIsotope( target_isotope ); 95 } << 96 // return theFission[index].ApplyYourself(aT << 97 G4HadFinalState* result = ((*theFission)[ind << 98 113 99 // Overwrite target parameters << 114 G4ParticleHPManager::GetInstance()->CloseReactionWhiteBoard(); 100 aNucleus.SetParameters(G4ParticleHPManager:: << 115 return result; 101 G4ParticleHPManager:: << 102 const G4Element* target_element = (*G4Elemen << 103 const G4Isotope* target_isotope = nullptr; << 104 auto iele = (G4int)target_element->GetNumber << 105 for (G4int j = 0; j != iele; ++j) { << 106 target_isotope = target_element->GetIsotop << 107 if (target_isotope->GetN() << 108 == G4ParticleHPManager::GetInstance()- << 109 break; << 110 } 116 } 111 aNucleus.SetIsotope(target_isotope); << 112 << 113 G4ParticleHPManager::GetInstance()->CloseRea << 114 return result; << 115 } << 116 117 117 const std::pair<G4double, G4double> G4Particle 118 const std::pair<G4double, G4double> G4ParticleHPFission::GetFatalEnergyCheckLevels() const 118 { 119 { 119 // max energy non-conservation is mass of he << 120 // max energy non-conservation is mass of heavy nucleus 120 return std::pair<G4double, G4double>(10.0 * << 121 return std::pair<G4double, G4double>(10.0*perCent, 350.0*CLHEP::GeV); 121 } 122 } 122 123 123 G4int G4ParticleHPFission::GetVerboseLevel() c 124 G4int G4ParticleHPFission::GetVerboseLevel() const 124 { 125 { 125 return G4ParticleHPManager::GetInstance()->G << 126 return G4ParticleHPManager::GetInstance()->GetVerboseLevel(); 126 } 127 } 127 128 128 void G4ParticleHPFission::SetVerboseLevel(G4in << 129 void G4ParticleHPFission::SetVerboseLevel( G4int newValue ) 129 { 130 { 130 G4ParticleHPManager::GetInstance()->SetVerbo << 131 G4ParticleHPManager::GetInstance()->SetVerboseLevel(newValue); 131 } 132 } 132 133 133 void G4ParticleHPFission::BuildPhysicsTable(co 134 void G4ParticleHPFission::BuildPhysicsTable(const G4ParticleDefinition&) 134 { 135 { 135 G4ParticleHPManager* hpmanager = G4ParticleH << 136 136 137 theFission = hpmanager->GetFissionFinalState << 137 G4ParticleHPManager* hpmanager = G4ParticleHPManager::GetInstance(); 138 138 139 if (G4Threading::IsMasterThread()) { << 139 theFission = hpmanager->GetFissionFinalStates(); 140 if (theFission == nullptr) theFission = ne << 141 140 142 if (numEle == (G4int)G4Element::GetNumberO << 141 if ( G4Threading::IsMasterThread() ) { 143 142 144 if (theFission->size() == G4Element::GetNu << 143 if ( theFission == nullptr ) theFission = new std::vector<G4ParticleHPChannel*>; 145 numEle = (G4int)G4Element::GetNumberOfEl << 144 146 return; << 145 if ( numEle == (G4int)G4Element::GetNumberOfElements() ) return; 147 } << 148 146 149 if (G4FindDataDir("G4NEUTRONHPDATA") == nu << 147 if ( theFission->size() == G4Element::GetNumberOfElements() ) { 150 throw G4HadronicException( << 148 numEle = (G4int)G4Element::GetNumberOfElements(); 151 __FILE__, __LINE__, << 149 return; 152 "Please setenv G4NEUTRONHPDATA to poin << 153 dirName = G4FindDataDir("G4NEUTRONHPDATA") << 154 G4String tString = "/Fission"; << 155 dirName = dirName + tString; << 156 << 157 for (G4int i = numEle; i < (G4int)G4Elemen << 158 theFission->push_back(new G4ParticleHPCh << 159 if ((*(G4Element::GetElementTable()))[i] << 160 ((*theFission)[i])->Init((*(G4Element: << 161 ((*theFission)[i])->Register(new G4Par << 162 } 150 } 163 } << 151 164 hpmanager->RegisterFissionFinalStates(theF << 152 if ( !G4FindDataDir("G4NEUTRONHPDATA") ) 165 } << 153 throw G4HadronicException(__FILE__, __LINE__, "Please setenv G4NEUTRONHPDATA to point to the neutron cross-section files."); 166 numEle = (G4int)G4Element::GetNumberOfElemen << 154 dirName = G4FindDataDir("G4NEUTRONHPDATA"); >> 155 G4String tString = "/Fission"; >> 156 dirName = dirName + tString; >> 157 >> 158 for ( G4int i = numEle ; i < (G4int)G4Element::GetNumberOfElements() ; ++i ) { >> 159 theFission->push_back( new G4ParticleHPChannel ); >> 160 if ((*(G4Element::GetElementTable()))[i]->GetZ()>87) { //TK modified for ENDF-VII >> 161 ((*theFission)[i])->Init((*(G4Element::GetElementTable()))[i], dirName); >> 162 ((*theFission)[i])->Register( new G4ParticleHPFissionFS ); >> 163 } >> 164 } >> 165 hpmanager->RegisterFissionFinalStates( theFission ); >> 166 } >> 167 numEle = (G4int)G4Element::GetNumberOfElements(); 167 } 168 } 168 169 169 void G4ParticleHPFission::ModelDescription(std 170 void G4ParticleHPFission::ModelDescription(std::ostream& outFile) const 170 { 171 { 171 outFile << "High Precision model based on Ev << 172 outFile << "High Precision model based on Evaluated Nuclear Data Files (ENDF)\n" 172 << "for induced fission reaction of << 173 << "for induced fission reaction of neutrons below 20MeV\n"; 173 } 174 } 174 175