Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // neutron_hp -- source file 27 // J.P. Wellisch, Nov-1996 28 // A prototype of the low energy neutron trans 29 // 30 // P. Arce, June-2014 Conversion neutron_hp to 31 // 32 #include "G4ParticleHPFFFissionFS.hh" 33 34 #include "G4ParticleHPManager.hh" 35 #include "G4SystemOfUnits.hh" 36 37 G4ParticleHPFFFissionFS::~G4ParticleHPFFFissio 38 { 39 auto it = FissionProductYieldData.begin(); 40 while (it != FissionProductYieldData.end()) 41 std::map<G4double, std::map<G4int, G4doubl 42 if (firstLevel != nullptr) { 43 auto it2 = firstLevel->begin(); 44 while (it2 != firstLevel->end()) { // L 45 delete it2->second; 46 it2->second = 0; 47 firstLevel->erase(it2); 48 it2 = firstLevel->begin(); 49 } 50 } 51 delete firstLevel; 52 it->second = 0; 53 FissionProductYieldData.erase(it); 54 it = FissionProductYieldData.begin(); 55 } 56 57 auto ii = mMTInterpolation.begin(); 58 while (ii != mMTInterpolation.end()) { // L 59 delete ii->second; 60 mMTInterpolation.erase(ii); 61 ii = mMTInterpolation.begin(); 62 } 63 } 64 65 void G4ParticleHPFFFissionFS::Init(G4double A, 66 const G4Str 67 { 68 // G4cout << "G4ParticleHPFFFissionFS::Init" 69 G4String aString = "FF"; 70 71 G4String tString = dirName; 72 G4bool dbool; 73 G4ParticleHPDataUsed aFile = 74 theNames.GetName(static_cast<G4int>(A), st 75 G4String filename = aFile.GetName(); 76 theBaseA = aFile.GetA(); 77 theBaseZ = aFile.GetZ(); 78 79 // 3456 80 if (!dbool || (Z < 2.5 && (std::abs(theBaseZ 81 hasAnyData = false; 82 hasFSData = false; 83 hasXsec = false; 84 return; // no data for exactly this isoto 85 } 86 // std::ifstream theData(filename, std::ios: 87 std::istringstream theData(std::ios::in); 88 G4ParticleHPManager::GetInstance()->GetDataS 89 G4double dummy; 90 if (!theData) { 91 // theData.close(); 92 hasFSData = false; 93 hasXsec = false; 94 hasAnyData = false; 95 return; // no data for this FS for this i 96 } 97 98 hasFSData = true; 99 // MT Energy 100 // std::map< int , std::map< double , std::m 101 while (theData.good()) // Loop checking, 11 102 { 103 G4int iMT, iMF; 104 G4int imax; 105 // Reading the data 106 // MT MF AWR 107 theData >> iMT >> iMF >> dummy; 108 // nBlock 109 theData >> imax; 110 // if ( !theData.good() ) continue; 111 // Ei FPS Yi 112 auto mEnergyFSPData = new std::map<G4doubl 113 114 auto mInterporation = new std::map<G4doubl 115 for (G4int i = 0; i <= imax; i++) { 116 G4double YY = 0.0; 117 G4double Ei; 118 G4int jmax; 119 G4int ip; 120 // energy of incidence neutron 121 theData >> Ei; 122 // Number of data set followings 123 theData >> jmax; 124 // interpolation scheme 125 theData >> ip; 126 mInterporation->insert(std::pair<G4doubl 127 // nNumber nIP 128 auto mFSPYieldData = new std::map<G4int, 129 for (G4int j = 0; j < jmax; j++) { 130 G4int FSP; 131 G4int mFSP; 132 G4double Y; 133 theData >> FSP >> mFSP >> Y; 134 G4int k = FSP * 100 + mFSP; 135 YY = YY + Y; 136 // if ( iMT == 454 )G4cout << iMT << " 137 // YY << G4endl; 138 mFSPYieldData->insert(std::pair<G4int, 139 } 140 mEnergyFSPData->insert( 141 std::pair<G4double, std::map<G4int, G4 142 } 143 144 FissionProductYieldData.insert( 145 std::pair<G4int, std::map<G4double, std: 146 mMTInterpolation.insert(std::pair<G4int, s 147 } 148 // theData.close(); 149 } 150 151 G4DynamicParticleVector* G4ParticleHPFFFission 152 { 153 G4DynamicParticleVector* aResult; 154 // G4cout <<"G4ParticleHPFFFissionFS::App 155 aResult = G4ParticleHPFissionBaseFS::ApplyYo 156 return aResult; 157 } 158 159 void G4ParticleHPFFFissionFS::GetAFissionFragm 160 161 { 162 // G4cout << "G4ParticleHPFFFissionFS::GetAF 163 164 G4double rand = G4UniformRand(); 165 // G4cout << rand << G4endl; 166 167 auto ptr = FissionProductYieldData.find(454) 168 if (ptr == FissionProductYieldData.end()) 169 return; 170 171 auto mEnergyFSPData = ptr->second; 172 173 // It is not clear that the treatment of the 174 // So, here just use the closest energy poin 175 // TK120531 176 G4double key_energy = DBL_MAX; 177 if (mEnergyFSPData->size() == 1) { 178 key_energy = mEnergyFSPData->cbegin()->fir 179 } 180 else { 181 // Find closest energy point 182 G4double Dmin = DBL_MAX; 183 for (auto it = mEnergyFSPData->cbegin(); i 184 G4double e = (it->first); 185 G4double d = std::fabs(energy - e); 186 if (d < Dmin) { 187 Dmin = d; 188 key_energy = e; 189 } 190 } 191 } 192 193 std::map<G4int, G4double>* mFSPYieldData = ( 194 195 G4int ifrag = 0; 196 G4double ceilling = 197 mFSPYieldData->rbegin()->second; // Becau 198 for (auto it = mFSPYieldData->cbegin(); it ! 199 // if ( ( rand - it->second/ceilling ) < 1 200 // std::endl; 201 if (rand <= it->second / ceilling) { 202 // G4cout << it->first << " " << it->sec 203 ifrag = it->first; 204 break; 205 } 206 } 207 208 fragZ = ifrag / 100000; 209 fragA = (ifrag % 100000) / 100; 210 fragM = (ifrag % 100); 211 212 // G4cout << fragZ << " " << fragA << " " << 213 } 214