Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // 27 // Author: D.H. Wright 28 // Date: 1 May 2012 29 // 30 // Description: model for electron and positro 31 // using the equivalent photon sp 32 // produced from the virtual phot 33 // interacted hadronically by the 34 // energies. At high energies th 35 // pi0 and interacted with the nu 36 // The electro- and photo-nuclear 37 // M. Kossov are used to generate 38 // spectrum. 39 // 40 41 #include "G4ElectroVDNuclearModel.hh" 42 43 #include "G4PhysicalConstants.hh" 44 #include "G4SystemOfUnits.hh" 45 46 #include "G4ElectroNuclearCrossSection.hh" 47 #include "G4PhotoNuclearCrossSection.hh" 48 #include "G4CrossSectionDataSetRegistry.hh" 49 50 #include "G4CascadeInterface.hh" 51 #include "G4TheoFSGenerator.hh" 52 #include "G4GeneratorPrecompoundInterface.hh" 53 #include "G4ExcitationHandler.hh" 54 #include "G4PreCompoundModel.hh" 55 #include "G4LundStringFragmentation.hh" 56 #include "G4ExcitedStringDecay.hh" 57 #include "G4FTFModel.hh" 58 59 #include "G4HadFinalState.hh" 60 #include "G4HadronicInteractionRegistry.hh" 61 #include "G4PhysicsModelCatalog.hh" 62 63 #include "G4ElectroNuclearCrossSection.hh" 64 #include "G4PhotoNuclearCrossSection.hh" 65 #include "G4GammaNuclearXS.hh" 66 67 68 G4ElectroVDNuclearModel::G4ElectroVDNuclearMod 69 : G4HadronicInteraction("G4ElectroVDNuclearMo 70 leptonKE(0.0), photonEnergy(0.0), photonQ2( 71 { 72 SetMinEnergy(0.0); 73 SetMaxEnergy(1*PeV); 74 75 electroXS = 76 (G4ElectroNuclearCrossSection*)G4CrossSect 77 GetCrossSectionDataSet(G4ElectroNuclearCro 78 if ( electroXS == nullptr ) { 79 electroXS = new G4ElectroNuclearCrossSecti 80 } 81 82 gammaXS = 83 (G4PhotoNuclearCrossSection*)G4CrossSectio 84 GetCrossSectionDataSet(G4PhotoNuclearCross 85 if ( gammaXS == nullptr ) { 86 gammaXS = 87 (G4GammaNuclearXS*)G4CrossSectionDataSet 88 GetCrossSectionDataSet(G4GammaNuclearXS: 89 if ( gammaXS == nullptr ) { 90 gammaXS = new G4PhotoNuclearCrossSection 91 } 92 } 93 94 // reuse existing pre-compound model 95 G4GeneratorPrecompoundInterface* precoInterf 96 = new G4GeneratorPrecompoundInterface(); 97 G4HadronicInteraction* p = 98 G4HadronicInteractionRegistry::Instance()- 99 G4VPreCompoundModel* pre = static_cast<G4VPr 100 if(!pre) { pre = new G4PreCompoundModel(); } 101 precoInterface->SetDeExcitation(pre); 102 103 // string model 104 ftfp = new G4TheoFSGenerator(); 105 ftfp->SetTransport(precoInterface); 106 theFragmentation = new G4LundStringFragmenta 107 theStringDecay = new G4ExcitedStringDecay(th 108 G4FTFModel* theStringModel = new G4FTFModel( 109 theStringModel->SetFragmentationModel(theStr 110 ftfp->SetHighEnergyGenerator(theStringModel) 111 112 // Build Bertini model 113 bert = new G4CascadeInterface(); 114 115 // Creator model ID 116 secID = G4PhysicsModelCatalog::GetModelID( " 117 } 118 119 G4ElectroVDNuclearModel::~G4ElectroVDNuclearMo 120 { 121 delete theFragmentation; 122 delete theStringDecay; 123 } 124 125 void G4ElectroVDNuclearModel::ModelDescription 126 { 127 outFile << "G4ElectroVDNuclearModel handles 128 << "of e- and e+ from nuclei using t 129 << "approximation in which the incom 130 << "virtual photon at the electromag 131 << "virtual photon is converted to a 132 << "energies, the photon interacts d 133 << "using the Bertini cascade. At h 134 << "is converted to a pi0 which inte 135 << "model. The electro- and gamma-n 136 << "M. Kossov are used to generate t 137 } 138 139 140 G4HadFinalState* 141 G4ElectroVDNuclearModel::ApplyYourself(const G 142 G4Nucle 143 { 144 // Set up default particle change (just re 145 theParticleChange.Clear(); 146 theParticleChange.SetStatusChange(isAlive) 147 leptonKE = aTrack.GetKineticEnergy(); 148 theParticleChange.SetEnergyChange(leptonKE 149 theParticleChange.SetMomentumChange(aTrack 150 151 // Set up sanity checks for real photon pr 152 G4DynamicParticle lepton(aTrack.GetDefinit 153 154 // Need to call GetElementCrossSection bef 155 const G4Material* mat = aTrack.GetMaterial 156 G4int targZ = targetNucleus.GetZ_asInt(); 157 electroXS->GetElementCrossSection(&lepton, 158 159 photonEnergy = electroXS->GetEquivalentPho 160 // Photon energy cannot exceed lepton ener 161 if (photonEnergy < leptonKE) { 162 photonQ2 = electroXS->GetEquivalentPho 163 G4double dM = G4Proton::Proton()->GetP 164 // Photon 165 if (photonEnergy > photonQ2/dM) { 166 // Produce recoil lepton and trans 167 G4DynamicParticle* transferredPhot 168 // Interact gamma with nucleus 169 if (transferredPhoton) CalculateHa 170 } 171 } 172 return &theParticleChange; 173 } 174 175 176 G4DynamicParticle* 177 G4ElectroVDNuclearModel::CalculateEMVertex(con 178 G4N 179 { 180 G4DynamicParticle photon(G4Gamma::Gamma(), p 181 G4ThreeVector(0.,0. 182 183 // Get gamma cross section at Q**2 = 0 (real 184 G4int targZ = targetNucleus.GetZ_asInt(); 185 const G4Material* mat = aTrack.GetMaterial() 186 G4double sigNu = 187 gammaXS->GetElementCrossSection(&photon, t 188 189 // Change real gamma energy to equivalent en 190 G4double dM = G4Proton::Proton()->GetPDGMass 191 photon.SetKineticEnergy(photonEnergy - photo 192 G4double sigK = 193 gammaXS->GetElementCrossSection(&photon, t 194 G4double rndFraction = electroXS->GetVirtual 195 196 // No gamma produced, return null ptr 197 if (sigNu*G4UniformRand() > sigK*rndFraction 198 199 // Scatter the lepton 200 G4double mProj = aTrack.GetDefinition()->Get 201 G4double mProj2 = mProj*mProj; 202 G4double iniE = leptonKE + mProj; 203 G4double finE = iniE - photonEnergy; 204 theParticleChange.SetEnergyChange(finE-mProj 205 G4double iniP = std::sqrt(iniE*iniE-mProj2); 206 G4double finP = std::sqrt(finE*finE-mProj2); 207 G4double cost = (iniE*finE - mProj2 - photon 208 if (cost > 1.) cost= 1.; 209 if (cost < -1.) cost=-1.; 210 G4double sint = std::sqrt(1.-cost*cost); 211 212 G4ThreeVector dir = aTrack.Get4Momentum().ve 213 G4ThreeVector ortx = dir.orthogonal().unit() 214 G4ThreeVector orty = dir.cross(ortx); 215 G4double phi = twopi*G4UniformRand(); 216 G4double sinx = sint*std::sin(phi); 217 G4double siny = sint*std::cos(phi); 218 G4ThreeVector findir = cost*dir+sinx*ortx+si 219 theParticleChange.SetMomentumChange(findir); 220 221 // Create a gamma with momentum equal to mom 222 G4ThreeVector photonMomentum = iniP*dir - fi 223 G4DynamicParticle* gamma = new G4DynamicPart 224 225 return gamma; 226 } 227 228 229 void 230 G4ElectroVDNuclearModel::CalculateHadronicVert 231 232 { 233 G4HadFinalState* hfs = 0; 234 G4double gammaE = incident->GetTotalEnergy() 235 236 if (gammaE < 10*GeV) { 237 G4HadProjectile projectile(*incident); 238 hfs = bert->ApplyYourself(projectile, targ 239 } else { 240 // At high energies convert incident gamma 241 G4double piMass = G4PionZero::PionZero()-> 242 G4double piMom = std::sqrt(gammaE*gammaE - 243 G4ThreeVector piMomentum(incident->GetMome 244 piMomentum *= piMom; 245 G4DynamicParticle theHadron(G4PionZero::Pi 246 G4HadProjectile projectile(theHadron); 247 hfs = ftfp->ApplyYourself(projectile, targ 248 } 249 250 delete incident; 251 252 // Assign the creator model ID to the second 253 for ( size_t i = 0; i < hfs->GetNumberOfSeco 254 hfs->GetSecondary( i )->SetCreatorModelID( 255 } 256 257 // Copy secondaries from sub-model to model 258 theParticleChange.AddSecondaries(hfs); 259 } 260 261