Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lepto_nuclear/src/G4ElectroVDNuclearModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/lepto_nuclear/src/G4ElectroVDNuclearModel.cc (Version 11.3.0) and /processes/hadronic/models/lepto_nuclear/src/G4ElectroVDNuclearModel.cc (Version 11.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 // Author:  D.H. Wright                            27 // Author:  D.H. Wright
 28 // Date:    1 May 2012                             28 // Date:    1 May 2012
 29 //                                                 29 //
 30 // Description: model for electron and positro     30 // Description: model for electron and positron interaction with nuclei
 31 //              using the equivalent photon sp     31 //              using the equivalent photon spectrum.  A real gamma is 
 32 //              produced from the virtual phot     32 //              produced from the virtual photon spectrum and is then 
 33 //              interacted hadronically by the     33 //              interacted hadronically by the Bertini cascade at low
 34 //              energies.  At high energies th     34 //              energies.  At high energies the gamma is treated as a 
 35 //              pi0 and interacted with the nu     35 //              pi0 and interacted with the nucleus using the FTFP model.
 36 //              The electro- and photo-nuclear     36 //              The electro- and photo-nuclear cross sections of
 37 //              M. Kossov are used to generate     37 //              M. Kossov are used to generate the virtual photon
 38 //              spectrum.                          38 //              spectrum.
 39 //                                                 39 //
 40                                                    40 
 41 #include "G4ElectroVDNuclearModel.hh"              41 #include "G4ElectroVDNuclearModel.hh"
 42                                                    42 
 43 #include "G4PhysicalConstants.hh"                  43 #include "G4PhysicalConstants.hh"
 44 #include "G4SystemOfUnits.hh"                      44 #include "G4SystemOfUnits.hh"
 45                                                    45 
 46 #include "G4ElectroNuclearCrossSection.hh"         46 #include "G4ElectroNuclearCrossSection.hh"
 47 #include "G4PhotoNuclearCrossSection.hh"           47 #include "G4PhotoNuclearCrossSection.hh"
 48 #include "G4CrossSectionDataSetRegistry.hh"        48 #include "G4CrossSectionDataSetRegistry.hh"
 49                                                    49 
 50 #include "G4CascadeInterface.hh"                   50 #include "G4CascadeInterface.hh"
 51 #include "G4TheoFSGenerator.hh"                    51 #include "G4TheoFSGenerator.hh"
 52 #include "G4GeneratorPrecompoundInterface.hh"      52 #include "G4GeneratorPrecompoundInterface.hh"
 53 #include "G4ExcitationHandler.hh"                  53 #include "G4ExcitationHandler.hh"
 54 #include "G4PreCompoundModel.hh"                   54 #include "G4PreCompoundModel.hh"
 55 #include "G4LundStringFragmentation.hh"            55 #include "G4LundStringFragmentation.hh"
 56 #include "G4ExcitedStringDecay.hh"                 56 #include "G4ExcitedStringDecay.hh"
 57 #include "G4FTFModel.hh"                           57 #include "G4FTFModel.hh"
 58                                                    58 
 59 #include "G4HadFinalState.hh"                      59 #include "G4HadFinalState.hh"
 60 #include "G4HadronicInteractionRegistry.hh"        60 #include "G4HadronicInteractionRegistry.hh"
 61 #include "G4PhysicsModelCatalog.hh"                61 #include "G4PhysicsModelCatalog.hh"
 62                                                    62 
 63 #include "G4ElectroNuclearCrossSection.hh"         63 #include "G4ElectroNuclearCrossSection.hh"
 64 #include "G4PhotoNuclearCrossSection.hh"           64 #include "G4PhotoNuclearCrossSection.hh"
 65 #include "G4GammaNuclearXS.hh"                     65 #include "G4GammaNuclearXS.hh"
 66                                                    66 
 67                                                    67 
 68 G4ElectroVDNuclearModel::G4ElectroVDNuclearMod     68 G4ElectroVDNuclearModel::G4ElectroVDNuclearModel()
 69  : G4HadronicInteraction("G4ElectroVDNuclearMo     69  : G4HadronicInteraction("G4ElectroVDNuclearModel"),
 70    leptonKE(0.0), photonEnergy(0.0), photonQ2(     70    leptonKE(0.0), photonEnergy(0.0), photonQ2(0.0), secID(-1)
 71 {                                                  71 {
 72   SetMinEnergy(0.0);                               72   SetMinEnergy(0.0);
 73   SetMaxEnergy(1*PeV);                             73   SetMaxEnergy(1*PeV);
 74                                                    74 
 75   electroXS =                                      75   electroXS = 
 76     (G4ElectroNuclearCrossSection*)G4CrossSect     76     (G4ElectroNuclearCrossSection*)G4CrossSectionDataSetRegistry::Instance()->
 77     GetCrossSectionDataSet(G4ElectroNuclearCro     77     GetCrossSectionDataSet(G4ElectroNuclearCrossSection::Default_Name());
 78   if ( electroXS == nullptr ) {                    78   if ( electroXS == nullptr ) {
 79     electroXS = new G4ElectroNuclearCrossSecti     79     electroXS = new G4ElectroNuclearCrossSection;
 80   }                                                80   }
 81                                                    81 
 82   gammaXS =                                        82   gammaXS = 
 83     (G4PhotoNuclearCrossSection*)G4CrossSectio     83     (G4PhotoNuclearCrossSection*)G4CrossSectionDataSetRegistry::Instance()->
 84     GetCrossSectionDataSet(G4PhotoNuclearCross     84     GetCrossSectionDataSet(G4PhotoNuclearCrossSection::Default_Name());
 85   if ( gammaXS == nullptr ) {                      85   if ( gammaXS == nullptr ) {
 86     gammaXS =                                      86     gammaXS = 
 87       (G4GammaNuclearXS*)G4CrossSectionDataSet     87       (G4GammaNuclearXS*)G4CrossSectionDataSetRegistry::Instance()->
 88       GetCrossSectionDataSet(G4GammaNuclearXS:     88       GetCrossSectionDataSet(G4GammaNuclearXS::Default_Name());
 89     if ( gammaXS == nullptr ) {                    89     if ( gammaXS == nullptr ) {
 90       gammaXS = new G4PhotoNuclearCrossSection     90       gammaXS = new G4PhotoNuclearCrossSection;
 91     }                                              91     }
 92   }                                                92   } 
 93                                                    93 
 94   // reuse existing pre-compound model             94   // reuse existing pre-compound model
 95   G4GeneratorPrecompoundInterface* precoInterf     95   G4GeneratorPrecompoundInterface* precoInterface 
 96     = new G4GeneratorPrecompoundInterface();       96     = new G4GeneratorPrecompoundInterface();
 97   G4HadronicInteraction* p =                       97   G4HadronicInteraction* p =
 98     G4HadronicInteractionRegistry::Instance()-     98     G4HadronicInteractionRegistry::Instance()->FindModel("PRECO");
 99   G4VPreCompoundModel* pre = static_cast<G4VPr     99   G4VPreCompoundModel* pre = static_cast<G4VPreCompoundModel*>(p);
100   if(!pre) { pre = new G4PreCompoundModel(); }    100   if(!pre) { pre = new G4PreCompoundModel(); }
101   precoInterface->SetDeExcitation(pre);           101   precoInterface->SetDeExcitation(pre);
102                                                   102 
103   // string model                                 103   // string model
104   ftfp = new G4TheoFSGenerator();                 104   ftfp = new G4TheoFSGenerator();
105   ftfp->SetTransport(precoInterface);             105   ftfp->SetTransport(precoInterface);
106   theFragmentation = new G4LundStringFragmenta    106   theFragmentation = new G4LundStringFragmentation();
107   theStringDecay = new G4ExcitedStringDecay(th    107   theStringDecay = new G4ExcitedStringDecay(theFragmentation);
108   G4FTFModel* theStringModel = new G4FTFModel(    108   G4FTFModel* theStringModel = new G4FTFModel();
109   theStringModel->SetFragmentationModel(theStr    109   theStringModel->SetFragmentationModel(theStringDecay);
110   ftfp->SetHighEnergyGenerator(theStringModel)    110   ftfp->SetHighEnergyGenerator(theStringModel);
111                                                   111     
112   // Build Bertini model                          112   // Build Bertini model
113   bert = new G4CascadeInterface();                113   bert = new G4CascadeInterface();
114                                                   114 
115   // Creator model ID                             115   // Creator model ID
116   secID = G4PhysicsModelCatalog::GetModelID( "    116   secID = G4PhysicsModelCatalog::GetModelID( "model_" + GetModelName() );
117 }                                                 117 }
118                                                   118 
119 G4ElectroVDNuclearModel::~G4ElectroVDNuclearMo    119 G4ElectroVDNuclearModel::~G4ElectroVDNuclearModel()
120 {                                                 120 {
121   delete theFragmentation;                        121   delete theFragmentation;
122   delete theStringDecay;                          122   delete theStringDecay;
123 }                                                 123 }
124                                                   124     
125 void G4ElectroVDNuclearModel::ModelDescription    125 void G4ElectroVDNuclearModel::ModelDescription(std::ostream& outFile) const 
126 {                                                 126 {
127   outFile << "G4ElectroVDNuclearModel handles     127   outFile << "G4ElectroVDNuclearModel handles the inelastic scattering\n"
128           << "of e- and e+ from nuclei using t    128           << "of e- and e+ from nuclei using the equivalent photon\n"
129           << "approximation in which the incom    129           << "approximation in which the incoming lepton generates a\n"
130           << "virtual photon at the electromag    130           << "virtual photon at the electromagnetic vertex, and the\n"
131           << "virtual photon is converted to a    131           << "virtual photon is converted to a real photon.  At low\n"
132           << "energies, the photon interacts d    132           << "energies, the photon interacts directly with the nucleus\n"
133           << "using the Bertini cascade.  At h    133           << "using the Bertini cascade.  At high energies the photon\n"
134           << "is converted to a pi0 which inte    134           << "is converted to a pi0 which interacts using the FTFP\n"
135           << "model.  The electro- and gamma-n    135           << "model.  The electro- and gamma-nuclear cross sections of\n"
136           << "M. Kossov are used to generate t    136           << "M. Kossov are used to generate the virtual photon spectrum\n";
137 }                                                 137 }
138                                                   138 
139                                                   139 
140 G4HadFinalState*                                  140 G4HadFinalState*
141 G4ElectroVDNuclearModel::ApplyYourself(const G    141 G4ElectroVDNuclearModel::ApplyYourself(const G4HadProjectile& aTrack,
142                                        G4Nucle    142                                        G4Nucleus& targetNucleus)
143 {                                                 143 {
144     // Set up default particle change (just re    144     // Set up default particle change (just returns initial state)
145     theParticleChange.Clear();                    145     theParticleChange.Clear();
146     theParticleChange.SetStatusChange(isAlive)    146     theParticleChange.SetStatusChange(isAlive);
147     leptonKE = aTrack.GetKineticEnergy();         147     leptonKE = aTrack.GetKineticEnergy();
148     theParticleChange.SetEnergyChange(leptonKE    148     theParticleChange.SetEnergyChange(leptonKE);
149     theParticleChange.SetMomentumChange(aTrack    149     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit() );
150                                                   150     
151     // Set up sanity checks for real photon pr    151     // Set up sanity checks for real photon production
152     G4DynamicParticle lepton(aTrack.GetDefinit    152     G4DynamicParticle lepton(aTrack.GetDefinition(), aTrack.Get4Momentum() );
153                                                   153     
154     // Need to call GetElementCrossSection bef    154     // Need to call GetElementCrossSection before calling GetEquivalentPhotonEnergy.
155     const G4Material* mat = aTrack.GetMaterial    155     const G4Material* mat = aTrack.GetMaterial();
156     G4int targZ = targetNucleus.GetZ_asInt();     156     G4int targZ = targetNucleus.GetZ_asInt();
157     electroXS->GetElementCrossSection(&lepton,    157     electroXS->GetElementCrossSection(&lepton, targZ, mat);
158                                                   158     
159     photonEnergy = electroXS->GetEquivalentPho    159     photonEnergy = electroXS->GetEquivalentPhotonEnergy();
160     // Photon energy cannot exceed lepton ener    160     // Photon energy cannot exceed lepton energy
161     if (photonEnergy < leptonKE) {                161     if (photonEnergy < leptonKE) {
162         photonQ2 = electroXS->GetEquivalentPho    162         photonQ2 = electroXS->GetEquivalentPhotonQ2(photonEnergy);
163         G4double dM = G4Proton::Proton()->GetP    163         G4double dM = G4Proton::Proton()->GetPDGMass() + G4Neutron::Neutron()->GetPDGMass();
164         // Photon                                 164         // Photon
165         if (photonEnergy > photonQ2/dM) {         165         if (photonEnergy > photonQ2/dM) {
166             // Produce recoil lepton and trans    166             // Produce recoil lepton and transferred photon
167             G4DynamicParticle* transferredPhot    167             G4DynamicParticle* transferredPhoton = CalculateEMVertex(aTrack, targetNucleus);
168             // Interact gamma with nucleus        168             // Interact gamma with nucleus
169             if (transferredPhoton) CalculateHa    169             if (transferredPhoton) CalculateHadronicVertex(transferredPhoton, targetNucleus);
170         }                                         170         }
171     }                                             171     }
172     return &theParticleChange;                    172     return &theParticleChange;
173 }                                                 173 }
174                                                   174 
175                                                   175 
176 G4DynamicParticle*                                176 G4DynamicParticle*
177 G4ElectroVDNuclearModel::CalculateEMVertex(con    177 G4ElectroVDNuclearModel::CalculateEMVertex(const G4HadProjectile& aTrack,
178                                            G4N    178                                            G4Nucleus& targetNucleus)
179 {                                                 179 {
180   G4DynamicParticle photon(G4Gamma::Gamma(), p    180   G4DynamicParticle photon(G4Gamma::Gamma(), photonEnergy,
181                            G4ThreeVector(0.,0.    181                            G4ThreeVector(0.,0.,1.) );
182                                                   182 
183   // Get gamma cross section at Q**2 = 0 (real    183   // Get gamma cross section at Q**2 = 0 (real gamma)
184   G4int targZ = targetNucleus.GetZ_asInt();       184   G4int targZ = targetNucleus.GetZ_asInt();
185   const G4Material* mat = aTrack.GetMaterial()    185   const G4Material* mat = aTrack.GetMaterial();
186   G4double sigNu =                                186   G4double sigNu =
187     gammaXS->GetElementCrossSection(&photon, t    187     gammaXS->GetElementCrossSection(&photon, targZ, mat);
188                                                   188 
189   // Change real gamma energy to equivalent en    189   // Change real gamma energy to equivalent energy and get cross section at that energy 
190   G4double dM = G4Proton::Proton()->GetPDGMass    190   G4double dM = G4Proton::Proton()->GetPDGMass() + G4Neutron::Neutron()->GetPDGMass();
191   photon.SetKineticEnergy(photonEnergy - photo    191   photon.SetKineticEnergy(photonEnergy - photonQ2/dM);      
192   G4double sigK =                                 192   G4double sigK =
193     gammaXS->GetElementCrossSection(&photon, t    193     gammaXS->GetElementCrossSection(&photon, targZ, mat);
194   G4double rndFraction = electroXS->GetVirtual    194   G4double rndFraction = electroXS->GetVirtualFactor(photonEnergy, photonQ2);
195                                                   195 
196   // No gamma produced, return null ptr           196   // No gamma produced, return null ptr
197   if (sigNu*G4UniformRand() > sigK*rndFraction    197   if (sigNu*G4UniformRand() > sigK*rndFraction) return 0;
198                                                   198 
199   // Scatter the lepton                           199   // Scatter the lepton
200   G4double mProj = aTrack.GetDefinition()->Get    200   G4double mProj = aTrack.GetDefinition()->GetPDGMass();
201   G4double mProj2 = mProj*mProj;                  201   G4double mProj2 = mProj*mProj;
202   G4double iniE = leptonKE + mProj;               202   G4double iniE = leptonKE + mProj;               // Total energy of incident lepton
203   G4double finE = iniE - photonEnergy;            203   G4double finE = iniE - photonEnergy;            // Total energy of scattered lepton
204   theParticleChange.SetEnergyChange(finE-mProj    204   theParticleChange.SetEnergyChange(finE-mProj);
205   G4double iniP = std::sqrt(iniE*iniE-mProj2);    205   G4double iniP = std::sqrt(iniE*iniE-mProj2);    // Incident lepton momentum
206   G4double finP = std::sqrt(finE*finE-mProj2);    206   G4double finP = std::sqrt(finE*finE-mProj2);    // Scattered lepton momentum
207   G4double cost = (iniE*finE - mProj2 - photon    207   G4double cost = (iniE*finE - mProj2 - photonQ2/2.)/iniP/finP;  // cos(theta) from Q**2
208   if (cost > 1.) cost= 1.;                        208   if (cost > 1.) cost= 1.;
209   if (cost < -1.) cost=-1.;                       209   if (cost < -1.) cost=-1.;
210   G4double sint = std::sqrt(1.-cost*cost);        210   G4double sint = std::sqrt(1.-cost*cost);
211                                                   211 
212   G4ThreeVector dir = aTrack.Get4Momentum().ve    212   G4ThreeVector dir = aTrack.Get4Momentum().vect().unit();
213   G4ThreeVector ortx = dir.orthogonal().unit()    213   G4ThreeVector ortx = dir.orthogonal().unit();   // Ortho-normal to scattering plane
214   G4ThreeVector orty = dir.cross(ortx);           214   G4ThreeVector orty = dir.cross(ortx);           // Third unit vector
215   G4double phi = twopi*G4UniformRand();           215   G4double phi = twopi*G4UniformRand();
216   G4double sinx = sint*std::sin(phi);             216   G4double sinx = sint*std::sin(phi);
217   G4double siny = sint*std::cos(phi);             217   G4double siny = sint*std::cos(phi);
218   G4ThreeVector findir = cost*dir+sinx*ortx+si    218   G4ThreeVector findir = cost*dir+sinx*ortx+siny*orty;
219   theParticleChange.SetMomentumChange(findir);    219   theParticleChange.SetMomentumChange(findir);    // change lepton direction
220                                                   220 
221   // Create a gamma with momentum equal to mom    221   // Create a gamma with momentum equal to momentum transfer
222   G4ThreeVector photonMomentum = iniP*dir - fi    222   G4ThreeVector photonMomentum = iniP*dir - finP*findir;
223   G4DynamicParticle* gamma = new G4DynamicPart    223   G4DynamicParticle* gamma = new G4DynamicParticle(G4Gamma::Gamma(),
224                                                   224                                                    photonEnergy, photonMomentum);
225   return gamma;                                   225   return gamma;
226 }                                                 226 }
227                                                   227 
228                                                   228 
229 void                                              229 void
230 G4ElectroVDNuclearModel::CalculateHadronicVert    230 G4ElectroVDNuclearModel::CalculateHadronicVertex(G4DynamicParticle* incident,
231                                                   231                                                  G4Nucleus& target)
232 {                                                 232 {
233   G4HadFinalState* hfs = 0;                       233   G4HadFinalState* hfs = 0;
234   G4double gammaE = incident->GetTotalEnergy()    234   G4double gammaE = incident->GetTotalEnergy();
235                                                   235 
236   if (gammaE < 10*GeV) {                          236   if (gammaE < 10*GeV) {
237     G4HadProjectile projectile(*incident);        237     G4HadProjectile projectile(*incident);
238     hfs = bert->ApplyYourself(projectile, targ    238     hfs = bert->ApplyYourself(projectile, target);
239   } else {                                        239   } else {
240     // At high energies convert incident gamma    240     // At high energies convert incident gamma to a pion
241     G4double piMass = G4PionZero::PionZero()->    241     G4double piMass = G4PionZero::PionZero()->GetPDGMass();
242     G4double piMom = std::sqrt(gammaE*gammaE -    242     G4double piMom = std::sqrt(gammaE*gammaE - piMass*piMass);
243     G4ThreeVector piMomentum(incident->GetMome    243     G4ThreeVector piMomentum(incident->GetMomentumDirection() );
244     piMomentum *= piMom;                          244     piMomentum *= piMom;
245     G4DynamicParticle theHadron(G4PionZero::Pi    245     G4DynamicParticle theHadron(G4PionZero::PionZero(), piMomentum);
246     G4HadProjectile projectile(theHadron);        246     G4HadProjectile projectile(theHadron);
247     hfs = ftfp->ApplyYourself(projectile, targ    247     hfs = ftfp->ApplyYourself(projectile, target);
248   }                                               248   }
249                                                   249 
250   delete incident;                                250   delete incident;
251                                                   251 
252   // Assign the creator model ID to the second    252   // Assign the creator model ID to the secondaries
253   for ( size_t i = 0; i < hfs->GetNumberOfSeco    253   for ( size_t i = 0; i < hfs->GetNumberOfSecondaries(); ++i ) {
254     hfs->GetSecondary( i )->SetCreatorModelID(    254     hfs->GetSecondary( i )->SetCreatorModelID( secID );
255   }                                               255   }
256                                                   256   
257   // Copy secondaries from sub-model to model     257   // Copy secondaries from sub-model to model
258   theParticleChange.AddSecondaries(hfs);          258   theParticleChange.AddSecondaries(hfs);
259 }                                                 259 }
260                                                   260 
261                                                   261