Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lend/src/nf_angularMomentumCoupling.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/lend/src/nf_angularMomentumCoupling.cc (Version 11.3.0) and /processes/hadronic/models/lend/src/nf_angularMomentumCoupling.cc (Version 10.7.p1)


  1 /*                                                  1 /*
  2 *   calculate coupling coefficients of angular      2 *   calculate coupling coefficients of angular momenta
  3 *                                                   3 *
  4 *   Author:                                         4 *   Author:
  5 *                 Kawano, T <kawano@mailaps.or      5 *                 Kawano, T <kawano@mailaps.org>
  6 *                                                   6 *
  7 *   Modified by David Brown <dbrown@bnl.gov>        7 *   Modified by David Brown <dbrown@bnl.gov>
  8 *       No longer must precompute the logarith      8 *       No longer must precompute the logarithm of the factorials.  
  9 *       Also renamed things to make more Pytho      9 *       Also renamed things to make more Python friendly.
 10 *       Finally, fixed a bunch of bugs & confu     10 *       Finally, fixed a bunch of bugs & confusing conventions
 11 *                                                  11 *
 12 *   Functions:                                     12 *   Functions:
 13 *                                                  13 *
 14 *   Note that arguments of those functions mus     14 *   Note that arguments of those functions must be doubled, namely 1/2 is 1, etc.
 15 *                                                  15 *
 16 *   wigner_3j(j1,j2,j3,j4,j5,j6)                   16 *   wigner_3j(j1,j2,j3,j4,j5,j6)
 17 *       Wigner's 3J symbol (similar to Clebsh-     17 *       Wigner's 3J symbol (similar to Clebsh-Gordan)
 18 *               = / j1 j2 j3 \                     18 *               = / j1 j2 j3 \
 19 *                 \ j4 j5 j6 /                     19 *                 \ j4 j5 j6 /
 20 *                                                  20 *
 21 *   wigner_6j(j1,j2,j3,j4,j5,j6)                   21 *   wigner_6j(j1,j2,j3,j4,j5,j6)
 22 *       Wigner's 6J symbol (similar to Racah)      22 *       Wigner's 6J symbol (similar to Racah)
 23 *               = { j1 j2 j3 }                     23 *               = { j1 j2 j3 }
 24 *                 { j4 j5 j6 }                     24 *                 { j4 j5 j6 }
 25 *                                                  25 *
 26 *   wigner_9j(j1,j2,j3,j4,j5,j6,j7,j8,j9)          26 *   wigner_9j(j1,j2,j3,j4,j5,j6,j7,j8,j9)
 27 *       Wigner's 9J symbol                         27 *       Wigner's 9J symbol
 28 *                 / j1 j2 j3 \                     28 *                 / j1 j2 j3 \
 29 *               = | j4 j5 j6 |                     29 *               = | j4 j5 j6 |
 30 *                 \ j7 j8 j9 /                     30 *                 \ j7 j8 j9 /
 31 *                                                  31 *
 32 *   racah(j1, j2, l2, l1, j3, l3)                  32 *   racah(j1, j2, l2, l1, j3, l3)
 33 *               = W(j1, j2, l2, l1 ; j3, l3)       33 *               = W(j1, j2, l2, l1 ; j3, l3)
 34 *               = (-1)^(j1+j2+l1+l2) * { j1 j2     34 *               = (-1)^(j1+j2+l1+l2) * { j1 j2 j3 }
 35 *                                      { l1 l2     35 *                                      { l1 l2 l3 }
 36 *                                                  36 *
 37 *   clebsh_gordan(j1,j2,m1,m2,j3)                  37 *   clebsh_gordan(j1,j2,m1,m2,j3)
 38 *       Clebsh-Gordan coefficient                  38 *       Clebsh-Gordan coefficient 
 39 *               = <j1,j2,m1,m2|j3,m1+m2>           39 *               = <j1,j2,m1,m2|j3,m1+m2>
 40 *               = (-)^(j1-j2+m1+m2) * std::sqr     40 *               = (-)^(j1-j2+m1+m2) * std::sqrt(2*j3+1) * / j1 j2   j3   \
 41 *                                                  41 *                                                    \ m1 m2 -m1-m2 /
 42 *                                                  42 *
 43 *   z_coefficient(l1,j1,l2,j2,S,L)                 43 *   z_coefficient(l1,j1,l2,j2,S,L)
 44 *       Biedenharn's Z-coefficient coefficient     44 *       Biedenharn's Z-coefficient coefficient
 45 *               =  Z(l1  j1  l2  j2 | S L )        45 *               =  Z(l1  j1  l2  j2 | S L )
 46 *                                                  46 *
 47 *   reduced_matrix_element(L,S,J,l0,j0,l1,j1)      47 *   reduced_matrix_element(L,S,J,l0,j0,l1,j1)
 48 *       Reduced Matrix Element for Tensor Oper     48 *       Reduced Matrix Element for Tensor Operator
 49 *               = < l1j1 || T(YL,sigma_S)J ||      49 *               = < l1j1 || T(YL,sigma_S)J || l0j0 >
 50 *                                                  50 *
 51 * References:                                      51 * References:
 52 *   A. R. Edmonds, Angular Momentum in Quantum     52 *   A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press 1974.
 53 *   E. Condon, and G. Shortley, The Theory of      53 *   E. Condon, and G. Shortley, The Theory of Atomic Spectra, Cambridge, 1935.
 54 */                                                 54 */
 55                                                    55 
 56 #include <stdlib.h>                                56 #include <stdlib.h>
 57 #define _USE_MATH_DEFINES                      << 
 58 #include <cmath>                                   57 #include <cmath>
 59                                                    58 
 60 #include "nf_specialFunctions.h"                   59 #include "nf_specialFunctions.h"
 61                                                    60 
 62 #if defined __cplusplus                            61 #if defined __cplusplus
 63 #include <cmath>                                   62 #include <cmath>
 64 #include "G4Exp.hh"                                63 #include "G4Exp.hh"
 65 namespace GIDI {                                   64 namespace GIDI {
 66 using namespace GIDI;                              65 using namespace GIDI;
 67 #endif                                             66 #endif
 68                                                    67 
 69 static const int    MAX_FACTORIAL    = 200;        68 static const int    MAX_FACTORIAL    = 200;   // maximal factorial n!  (2 x Lmax)
 70 /*static const double ARRAY_OVER  = 1.0e+300;      69 /*static const double ARRAY_OVER  = 1.0e+300;   // force overflow */
 71 static const double nf_amc_log_fact[] = {0.0,      70 static const double nf_amc_log_fact[] = {0.0, 0.0, 0.69314718056, 1.79175946923, 3.17805383035, 4.78749174278, 6.57925121201, 8.52516136107, 10.6046029027, 12.8018274801, 15.1044125731, 17.5023078459, 19.9872144957, 22.5521638531, 25.1912211827, 27.8992713838, 30.6718601061, 33.5050734501, 36.395445208, 39.3398841872, 42.3356164608, 45.3801388985, 48.4711813518, 51.6066755678, 54.7847293981, 58.003605223, 61.261701761, 64.557538627, 67.8897431372, 71.2570389672, 74.6582363488, 78.0922235533, 81.5579594561, 85.0544670176, 88.5808275422, 92.1361756037, 95.7196945421, 99.3306124548, 102.968198615, 106.631760261, 110.320639715, 114.034211781, 117.7718814, 121.533081515, 125.317271149, 129.123933639, 132.952575036, 136.802722637, 140.673923648, 144.565743946, 148.477766952, 152.409592584, 156.360836303, 160.331128217, 164.320112263, 168.327445448, 172.352797139, 176.395848407, 180.456291418, 184.533828861, 188.628173424, 192.739047288, 196.866181673, 201.009316399, 205.168199483, 209.342586753, 213.532241495, 217.736934114, 221.956441819, 226.190548324, 230.439043566, 234.701723443, 238.978389562, 243.268849003, 247.572914096, 251.89040221, 256.22113555, 260.564940972, 264.921649799, 269.291097651, 273.673124286, 278.06757344, 282.474292688, 286.893133295, 291.323950094, 295.766601351, 300.220948647, 304.686856766, 309.16419358, 313.65282995, 318.15263962, 322.663499127, 327.185287704, 331.717887197, 336.261181979, 340.815058871, 345.379407062, 349.954118041, 354.539085519, 359.13420537, 363.739375556, 368.354496072, 372.979468886, 377.614197874, 382.258588773, 386.912549123, 391.575988217, 396.248817052, 400.930948279, 405.622296161, 410.322776527, 415.032306728, 419.7508056, 424.478193418, 429.214391867, 433.959323995, 438.712914186, 443.475088121, 448.245772745, 453.024896238, 457.812387981, 462.608178527, 467.412199572, 472.224383927, 477.044665493, 481.87297923, 486.709261137, 491.553448223, 496.405478487, 501.265290892, 506.132825342, 511.008022665, 515.890824588, 520.781173716, 525.679013516, 530.584288294, 535.49694318, 540.416924106, 545.344177791, 550.278651724, 555.220294147, 560.169054037, 565.124881095, 570.087725725, 575.057539025, 580.034272767, 585.017879389, 590.008311976, 595.005524249, 600.009470555, 605.020105849, 610.037385686, 615.061266207, 620.091704128, 625.128656731, 630.172081848, 635.221937855, 640.27818366, 645.340778693, 650.409682896, 655.484856711, 660.566261076, 665.653857411, 670.747607612, 675.84747404, 680.953419514, 686.065407302, 691.183401114, 696.307365094, 701.437263809, 706.573062246, 711.714725802, 716.862220279, 722.015511874, 727.174567173, 732.339353147, 737.509837142, 742.685986874, 747.867770425, 753.05515623, 758.248113081, 763.446610113, 768.6506168, 773.860102953, 779.07503871, 784.295394535, 789.521141209, 794.752249826, 799.988691789, 805.230438804, 810.477462876, 815.729736304, 820.987231676, 826.249921865, 831.517780024, 836.790779582, 842.068894242, 847.35209797, 852.640365001, 857.933669826, 863.231987192};
 72                                                    71 
 73 static int parity( int x );                        72 static int parity( int x );
 74 static int max3( int a, int b, int c );            73 static int max3( int a, int b, int c );
 75 static int max4( int a, int b, int c, int d );     74 static int max4( int a, int b, int c, int d );
 76 static int min3( int a, int b, int c );            75 static int min3( int a, int b, int c );
 77 static double w6j0( int, int * );                  76 static double w6j0( int, int * );
 78 static double w6j1( int * );                       77 static double w6j1( int * );
 79 static double cg1( int, int, int );                78 static double cg1( int, int, int );
 80 static double cg2( int, int, int, int, int, in     79 static double cg2( int, int, int, int, int, int, int, int );
 81 static double cg3( int, int, int, int, int, in     80 static double cg3( int, int, int, int, int, int );
 82 /*static double triangle( int, int, int );*/       81 /*static double triangle( int, int, int );*/
 83 /*                                                 82 /*
 84 ==============================================     83 ============================================================
 85 */                                                 84 */
 86 double  nf_amc_log_factorial( int n ) {            85 double  nf_amc_log_factorial( int n ) {
 87 /*                                                 86 /*
 88 *       returns ln( n! ).                          87 *       returns ln( n! ).
 89 */                                                 88 */
 90     if( n > MAX_FACTORIAL ) return( INFINITY )     89     if( n > MAX_FACTORIAL ) return( INFINITY );
 91     if( n < 0 ) return( INFINITY );                90     if( n < 0 ) return( INFINITY );
 92     return nf_amc_log_fact[n];                     91     return nf_amc_log_fact[n];
 93 }                                                  92 }
 94 /*                                                 93 /*
 95 ==============================================     94 ============================================================
 96 */                                                 95 */
 97 double  nf_amc_factorial( int n ) {                96 double  nf_amc_factorial( int n ) {
 98 /*                                                 97 /*
 99 *       returns n! for pre-computed table. INF     98 *       returns n! for pre-computed table. INFINITY is return if n is negative or too large.
100 */                                                 99 */
101     return G4Exp( nf_amc_log_factorial( n ) );    100     return G4Exp( nf_amc_log_factorial( n ) );
102 }                                                 101 }
103 /*                                                102 /*
104 ==============================================    103 ============================================================
105 */                                                104 */
106 double nf_amc_wigner_3j( int j1, int j2, int j    105 double nf_amc_wigner_3j( int j1, int j2, int j3, int j4, int j5, int j6 ) {
107 /*                                                106 /*
108 *       Wigner's 3J symbol (similar to Clebsh-    107 *       Wigner's 3J symbol (similar to Clebsh-Gordan)
109 *           = / j1 j2 j3 \                        108 *           = / j1 j2 j3 \
110 *             \ j4 j5 j6 /                        109 *             \ j4 j5 j6 /
111 */                                                110 */
112     double cg;                                    111     double cg;
113                                                   112 
114     if( ( j4 + j5 + j6 ) != 0 ) return( 0.0 );    113     if( ( j4 + j5 + j6 ) != 0 ) return( 0.0 );
115     if( ( cg = nf_amc_clebsh_gordan( j1, j2, j    114     if( ( cg = nf_amc_clebsh_gordan( j1, j2, j4, j5, j3 ) ) == 0.0 ) return ( 0.0 );
116     if( cg == INFINITY ) return( cg );            115     if( cg == INFINITY ) return( cg );
117     return( ( ( ( j1 - j2 - j6 ) % 4 == 0 ) ?     116     return( ( ( ( j1 - j2 - j6 ) % 4 == 0 ) ?  1.0 : -1.0 ) * cg / std::sqrt( j3 + 1.0 ) );          /* BRB j3 + 1 <= 0? */
118 }                                                 117 }
119 /*                                                118 /*
120 ==============================================    119 ============================================================
121 */                                                120 */
122 double nf_amc_wigner_6j( int j1, int j2, int j    121 double nf_amc_wigner_6j( int j1, int j2, int j3, int j4, int j5, int j6 ) {
123 /*                                                122 /*
124 *       Wigner's 6J symbol (similar to Racah)     123 *       Wigner's 6J symbol (similar to Racah)
125 *               = { j1 j2 j3 }                    124 *               = { j1 j2 j3 }
126 *                 { j4 j5 j6 }                    125 *                 { j4 j5 j6 }
127 */                                                126 */
128     int i, x[6];                                  127     int i, x[6];
129                                                   128 
130     x[0] = j1; x[1] = j2; x[2] = j3; x[3] = j4    129     x[0] = j1; x[1] = j2; x[2] = j3; x[3] = j4; x[4] = j5; x[5] = j6;
131     for( i = 0; i < 6; i++ ) if ( x[i] == 0 )     130     for( i = 0; i < 6; i++ ) if ( x[i] == 0 ) return( w6j0( i, x ) );
132                                                   131 
133     return( w6j1( x ) );                          132     return( w6j1( x ) );
134 }                                                 133 }
135 /*                                                134 /*
136 ==============================================    135 ============================================================
137 */                                                136 */
138 static double w6j0( int i, int *x ) {             137 static double w6j0( int i, int *x ) {
139                                                   138 
140     switch( i ){                                  139     switch( i ){
141        case 0: if ( ( x[1] != x[2] ) || ( x[4]    140        case 0: if ( ( x[1] != x[2] ) || ( x[4] != x[5] ) ) return( 0.0 );
142                x[5] = x[3]; x[0] = x[1]; x[3]     141                x[5] = x[3]; x[0] = x[1]; x[3] = x[4];      break;
143        case 1: if ( ( x[0] != x[2] ) || ( x[3]    142        case 1: if ( ( x[0] != x[2] ) || ( x[3] != x[5] ) ) return( 0.0 );
144                x[5] = x[4];                       143                x[5] = x[4];                                break;
145        case 2: if ( ( x[0] != x[1] ) || ( x[3]    144        case 2: if ( ( x[0] != x[1] ) || ( x[3] != x[4] ) ) return( 0.0 );
146                break;                             145                break;
147          //TK fix bug and add comment on 17-05    146          //TK fix bug and add comment on 17-05-23
148                //This is the case of 6.3.2 of     147                //This is the case of 6.3.2 of A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press 1974.
149        case 3: if ( ( x[1] != x[5] ) || ( x[2]    148        case 3: if ( ( x[1] != x[5] ) || ( x[2] != x[4] ) ) return( 0.0 );
150                x[5] = x[0]; x[0] = x[4]; x[3]     149                x[5] = x[0]; x[0] = x[4]; x[3] = x[1];      break;
151        case 4: if ( ( x[0] != x[5] ) || ( x[2]    150        case 4: if ( ( x[0] != x[5] ) || ( x[2] != x[3] ) ) return( 0.0 );
152                x[5] = x[1];                       151                x[5] = x[1];                                break;
153        case 5: if ( ( x[0] != x[4] ) || ( x[1]    152        case 5: if ( ( x[0] != x[4] ) || ( x[1] != x[3] ) ) return( 0.0 );
154                x[5] = x[2];                       153                x[5] = x[2];                                break;
155     }                                             154     }
156                                                   155 
157     if( ( x[5] > ( x[0] + x[3] ) ) || ( x[5] <    156     if( ( x[5] > ( x[0] + x[3] ) ) || ( x[5] < std::abs( x[0] - x[3] ) ) ) return( 0.0 );
158     if( x[0] > MAX_FACTORIAL || x[3] > MAX_FAC    157     if( x[0] > MAX_FACTORIAL || x[3] > MAX_FACTORIAL ) {        /* BRB Why this test? Why not x[5]? */
159         return( INFINITY );                       158         return( INFINITY );
160     }                                             159     }
161                                                   160 
162     return( 1.0 / std::sqrt( (double) ( ( x[0]    161     return( 1.0 / std::sqrt( (double) ( ( x[0] + 1 ) * ( x[3] + 1 ) ) ) * ( ( ( x[0] + x[3] + x[5] ) / 2 ) % 2 != 0 ? -1 : 1 ) );
163 }                                                 162 }
164 /*                                                163 /*
165 ==============================================    164 ============================================================
166 */                                                165 */
167 static double w6j1( int *x ) {                    166 static double w6j1( int *x ) {
168                                                   167 
169     double w6j, w;                                168     double w6j, w;
170     int i, k, k1, k2, n, l1, l2, l3, l4, n1, n    169     int i, k, k1, k2, n, l1, l2, l3, l4, n1, n2, n3, m1, m2, m3, x1, x2, x3, y[4];
171     static int a[3][4] = { { 0, 0, 3, 3},         170     static int a[3][4] = { { 0, 0, 3, 3},
172                            { 1, 4, 1, 4},         171                            { 1, 4, 1, 4},
173                            { 2, 5, 5, 2} };       172                            { 2, 5, 5, 2} };
174                                                   173 
175     w6j = 0.0;                                    174     w6j = 0.0;
176                                                   175 
177     for ( k = 0; k < 4; k++ ){                    176     for ( k = 0; k < 4; k++ ){
178         x1 = x[ ( a[0][k] ) ];                    177         x1 = x[ ( a[0][k] ) ];
179         x2 = x[ ( a[1][k] ) ];                    178         x2 = x[ ( a[1][k] ) ];
180         x3 = x[ ( a[2][k] ) ];                    179         x3 = x[ ( a[2][k] ) ];
181                                                   180 
182         n = ( x1 + x2 + x3 ) / 2;                 181         n = ( x1 + x2 + x3 ) / 2;
183         if( n > MAX_FACTORIAL ) {                 182         if( n > MAX_FACTORIAL ) {
184             return( INFINITY ); }                 183             return( INFINITY ); }
185         else if( n < 0 ) {                        184         else if( n < 0 ) {
186             return( 0.0 );                        185             return( 0.0 );
187         }                                         186         }
188                                                   187 
189         if ( ( n1 = n - x3 ) < 0 ) return( 0.0    188         if ( ( n1 = n - x3 ) < 0 ) return( 0.0 );
190         if ( ( n2 = n - x2 ) < 0 ) return( 0.0    189         if ( ( n2 = n - x2 ) < 0 ) return( 0.0 );
191         if ( ( n3 = n - x1 ) < 0 ) return( 0.0    190         if ( ( n3 = n - x1 ) < 0 ) return( 0.0 );
192                                                   191 
193         y[k] = n + 2;                             192         y[k] = n + 2;
194         w6j += nf_amc_log_fact[n1] + nf_amc_lo    193         w6j += nf_amc_log_fact[n1] + nf_amc_log_fact[n2] + nf_amc_log_fact[n3] - nf_amc_log_fact[n+1];
195     }                                             194     }
196                                                   195 
197     n1 = ( x[0] + x[1] + x[3] + x[4] ) / 2;       196     n1 = ( x[0] + x[1] + x[3] + x[4] ) / 2;
198     n2 = ( x[0] + x[2] + x[3] + x[5] ) / 2;       197     n2 = ( x[0] + x[2] + x[3] + x[5] ) / 2;
199     n3 = ( x[1] + x[2] + x[4] + x[5] ) / 2;       198     n3 = ( x[1] + x[2] + x[4] + x[5] ) / 2;
200                                                   199 
201     k1 = max4( y[0], y[1], y[2], y[3] ) - 1;      200     k1 = max4( y[0], y[1], y[2], y[3] ) - 1;
202     k2 = min3( n1, n2, n3 ) + 1;                  201     k2 = min3( n1, n2, n3 ) + 1;
203                                                   202 
204     l1 = k1 - y[0] + 1;  m1 = n1 - k1 + 1;        203     l1 = k1 - y[0] + 1;  m1 = n1 - k1 + 1;
205     l2 = k1 - y[1] + 1;  m2 = n2 - k1 + 1;        204     l2 = k1 - y[1] + 1;  m2 = n2 - k1 + 1;
206     l3 = k1 - y[2] + 1;  m3 = n3 - k1 + 1;        205     l3 = k1 - y[2] + 1;  m3 = n3 - k1 + 1;
207     l4 = k1 - y[3] + 1;                           206     l4 = k1 - y[3] + 1;
208                                                   207 
209     w6j = w = G4Exp( 0.5 * w6j + nf_amc_log_fa    208     w6j = w = G4Exp( 0.5 * w6j + nf_amc_log_fact[k1] - nf_amc_log_fact[l1] - nf_amc_log_fact[l2] - nf_amc_log_fact[l3] - nf_amc_log_fact[l4]
210                              - nf_amc_log_fact    209                              - nf_amc_log_fact[m1] - nf_amc_log_fact[m2] - nf_amc_log_fact[m3] ) * ( ( k1 % 2 ) == 0 ? -1: 1 );
211     if( w6j == INFINITY ) return( INFINITY );     210     if( w6j == INFINITY ) return( INFINITY );
212                                                   211 
213     if( k1 != k2 ){                               212     if( k1 != k2 ){
214         k = k2 - k1;                              213         k = k2 - k1;
215         m1 -= k-1; m2 -= k-1; m3 -= k-1;          214         m1 -= k-1; m2 -= k-1; m3 -= k-1;
216         l1 += k  ; l2 += k  ; l3 += k  ; l4 +=    215         l1 += k  ; l2 += k  ; l3 += k  ; l4 += k;
217                                                   216 
218         for ( i = 0; i < k; i++ )                 217         for ( i = 0; i < k; i++ )
219             w6j = w - w6j * ( ( k2 - i ) * ( m    218             w6j = w - w6j * ( ( k2 - i ) * ( m1 + i ) * ( m2 + i ) * ( m3 + i ) )
220                     / ( ( l1 - i ) * ( l2 - i     219                     / ( ( l1 - i ) * ( l2 - i ) * ( l3 - i ) * ( l4 - i ) );
221     }                                             220     }
222     return( w6j );                                221     return( w6j );
223 }                                                 222 }
224 /*                                                223 /*
225 ==============================================    224 ============================================================
226 */                                                225 */
227 double nf_amc_wigner_9j( int j1, int j2, int j    226 double nf_amc_wigner_9j( int j1, int j2, int j3, int j4, int j5, int j6, int j7, int j8, int j9 ) {
228 /*                                                227 /*
229 *       Wigner's 9J symbol                        228 *       Wigner's 9J symbol
230 *             / j1 j2 j3 \                        229 *             / j1 j2 j3 \
231 *           = | j4 j5 j6 |                        230 *           = | j4 j5 j6 |
232 *             \ j7 j8 j9 /                        231 *             \ j7 j8 j9 /
233 *                                                 232 *
234 */                                                233 */
235     int i, i0, i1;                                234     int i, i0, i1;
236     double rac;                                   235     double rac;
237                                                   236 
238     i0 = max3( std::abs( j1 - j9 ), std::abs(     237     i0 = max3( std::abs( j1 - j9 ), std::abs( j2 - j6 ), std::abs( j4 - j8 ) );
239     i1 = min3(     ( j1 + j9 ),     ( j2 + j6     238     i1 = min3(     ( j1 + j9 ),     ( j2 + j6 ),     ( j4 + j8 ) );
240                                                   239 
241     rac = 0.0;                                    240     rac = 0.0;
242     for ( i = i0; i <= i1; i += 2 ){              241     for ( i = i0; i <= i1; i += 2 ){ 
243         rac += nf_amc_racah( j1, j4, j9, j8, j    242         rac += nf_amc_racah( j1, j4, j9, j8, j7,  i )
244             *  nf_amc_racah( j2, j5,  i, j4, j    243             *  nf_amc_racah( j2, j5,  i, j4, j8, j6 )
245             *  nf_amc_racah( j9,  i, j3, j2, j    244             *  nf_amc_racah( j9,  i, j3, j2, j1, j6 ) * ( i + 1 );
246         if( rac == INFINITY ) return( INFINITY    245         if( rac == INFINITY ) return( INFINITY );
247     }                                             246     }
248                                                   247 
249     return( ( ( (int)( ( j1 + j3 + j5 + j8 ) /    248     return( ( ( (int)( ( j1 + j3 + j5 + j8 ) / 2 + j2 + j4 + j9 ) % 4 == 0 ) ?  1.0 : -1.0 ) * rac );
250 }                                                 249 }
251 /*                                                250 /*
252 ==============================================    251 ============================================================
253 */                                                252 */
254 double nf_amc_racah( int j1, int j2, int l2, i    253 double nf_amc_racah( int j1, int j2, int l2, int l1, int j3, int l3 ) {
255 /*                                                254 /*
256 *       Racah coefficient definition in Edmond    255 *       Racah coefficient definition in Edmonds (AR Edmonds, "Angular Momentum in Quantum Mechanics", Princeton (1980) is
257 *       W(j1, j2, l2, l1 ; j3, l3) = (-1)^(j1+    256 *       W(j1, j2, l2, l1 ; j3, l3) = (-1)^(j1+j2+l1+l2) * { j1 j2 j3 }
258 *                                                 257 *                                                         { l1 l2 l3 }
259 *       The call signature of W(...) appears j    258 *       The call signature of W(...) appears jumbled, but hey, that's the convention.
260 *                                                 259 *
261 *       This convention is exactly that used b    260 *       This convention is exactly that used by Blatt-Biedenharn (Rev. Mod. Phys. 24, 258 (1952)) too
262 */                                                261 */
263                                                   262 
264     double sig;                                   263     double sig;
265                                                   264 
266     sig = ( ( ( j1 + j2 + l1 + l2 ) % 4 == 0 )    265     sig = ( ( ( j1 + j2 + l1 + l2 ) % 4 == 0 ) ?  1.0 : -1.0 );
267     return sig * nf_amc_wigner_6j( j1, j2, j3,    266     return sig * nf_amc_wigner_6j( j1, j2, j3, l1, l2, l3 );
268 }                                                 267 }
269                                                   268 
270 /*                                                269 /*
271 ==============================================    270 ============================================================
272 */                                                271 */
273 /*                                                272 /*
274 static double triangle( int a, int b, int c )     273 static double triangle( int a, int b, int c ) {
275                                                   274 
276    int j1, j2, j3, j4;                            275    int j1, j2, j3, j4;
277                                                   276 
278    if ( ( j1 = (  a + b - c ) / 2 ) < 0 ) retu    277    if ( ( j1 = (  a + b - c ) / 2 ) < 0 ) return( 0.0 );
279    if ( ( j2 = (  a - b + c ) / 2 ) < 0 ) retu    278    if ( ( j2 = (  a - b + c ) / 2 ) < 0 ) return( 0.0 );
280    if ( ( j3 = ( -a + b + c ) / 2 ) < 0 ) retu    279    if ( ( j3 = ( -a + b + c ) / 2 ) < 0 ) return( 0.0 );
281    j4 = ( a + b + c ) / 2 + 1;                    280    j4 = ( a + b + c ) / 2 + 1;
282                                                   281 
283    return( std::exp( 0.5 * ( nf_amc_log_fact[j    282    return( std::exp( 0.5 * ( nf_amc_log_fact[j1] + nf_amc_log_fact[j2] + nf_amc_log_fact[j3] - nf_amc_log_fact[j4] ) ) );
284 }                                                 283 }
285 */                                                284 */
286 /*                                                285 /*
287 ==============================================    286 ============================================================
288 */                                                287 */
289 double nf_amc_clebsh_gordan( int j1, int j2, i    288 double nf_amc_clebsh_gordan( int j1, int j2, int m1, int m2, int j3 ) {
290 /*                                                289 /*
291 *       Clebsh-Gordan coefficient                 290 *       Clebsh-Gordan coefficient 
292 *           = <j1,j2,m1,m2|j3,m1+m2>              291 *           = <j1,j2,m1,m2|j3,m1+m2>
293 *           = (-)^(j1-j2+m1+m2) * std::sqrt(2*    292 *           = (-)^(j1-j2+m1+m2) * std::sqrt(2*j3+1) * / j1 j2   j3   \
294 *                                                 293 *                                                \ m1 m2 -m1-m2 /
295 *                                                 294 *
296 *   Note: Last value m3 is preset to m1+m2.  A    295 *   Note: Last value m3 is preset to m1+m2.  Any other value will evaluate to 0.0.
297 */                                                296 */
298                                                   297 
299     int m3, x1, x2, x3, y1, y2, y3;               298     int m3, x1, x2, x3, y1, y2, y3;
300     double cg = 0.0;                              299     double cg = 0.0;
301                                                   300 
302     if ( j1 < 0 || j2 < 0 || j3 < 0) return( 0    301     if ( j1 < 0 || j2 < 0 || j3 < 0) return( 0.0 );
303     if ( j1 + j2 + j3 > 2 * MAX_FACTORIAL ) re    302     if ( j1 + j2 + j3 > 2 * MAX_FACTORIAL ) return( INFINITY );
304                                                   303 
305     m3 = m1 + m2;                                 304     m3 = m1 + m2;
306                                                   305 
307     if ( ( x1 = ( j1 + m1 ) / 2 + 1 ) <= 0 ) r    306     if ( ( x1 = ( j1 + m1 ) / 2 + 1 ) <= 0 ) return( 0.0 );
308     if ( ( x2 = ( j2 + m2 ) / 2 + 1 ) <= 0 ) r    307     if ( ( x2 = ( j2 + m2 ) / 2 + 1 ) <= 0 ) return( 0.0 );
309     if ( ( x3 = ( j3 - m3 ) / 2 + 1 ) <= 0 ) r    308     if ( ( x3 = ( j3 - m3 ) / 2 + 1 ) <= 0 ) return( 0.0 );
310                                                   309 
311     if ( ( y1 = x1 - m1 ) <= 0 ) return( 0.0 )    310     if ( ( y1 = x1 - m1 ) <= 0 ) return( 0.0 );
312     if ( ( y2 = x2 - m2 ) <= 0 ) return( 0.0 )    311     if ( ( y2 = x2 - m2 ) <= 0 ) return( 0.0 );
313     if ( ( y3 = x3 + m3 ) <= 0 ) return( 0.0 )    312     if ( ( y3 = x3 + m3 ) <= 0 ) return( 0.0 );
314                                                   313 
315     if ( j3 == 0 ){                               314     if ( j3 == 0 ){
316         if ( j1 == j2 ) cg = ( 1.0 / std::sqrt    315         if ( j1 == j2 ) cg = ( 1.0 / std::sqrt( (double)j1 + 1.0 ) * ( ( y1 % 2 == 0 ) ? -1:1 ) );
317     }                                             316     }
318     else if ( (j1 == 0 || j2 == 0 ) ){            317     else if ( (j1 == 0 || j2 == 0 ) ){
319         if ( ( j1 + j2 ) == j3 ) cg = 1.0;        318         if ( ( j1 + j2 ) == j3 ) cg = 1.0;
320     }                                             319     }
321     else {                                        320     else {
322         if( m3 == 0 && std::abs( m1 ) <= 1 ){     321         if( m3 == 0 && std::abs( m1 ) <= 1 ){
323             if( m1 == 0 ) cg = cg1( x1, x2, x3    322             if( m1 == 0 ) cg = cg1( x1, x2, x3 );
324             else          cg = cg2( x1 + y1 -     323             else          cg = cg2( x1 + y1 - y2, x3 - 1, x1 + x2 - 2, x1 - y2, j1, j2, j3, m2 );
325         }                                         324         }
326         else if ( m2 == 0 && std::abs( m1 ) <=    325         else if ( m2 == 0 && std::abs( m1 ) <=1 ){
327                           cg = cg2( x1 - y2 +     326                           cg = cg2( x1 - y2 + y3, x2 - 1, x1 + x3 - 2, x3 - y1, j1, j3, j3, m1 );
328         }                                         327         }
329         else if ( m1 == 0 && std::abs( m3 ) <=    328         else if ( m1 == 0 && std::abs( m3 ) <= 1 ){
330                           cg = cg2( x1, x1 - 1    329                           cg = cg2( x1, x1 - 1, x2 + x3 - 2, x2 - y3, j2, j3, j3, -m3 );
331         }                                         330         }
332         else              cg = cg3( x1, x2, x3    331         else              cg = cg3( x1, x2, x3, y1, y2, y3 );
333     }                                             332     }
334                                                   333 
335     return( cg );                                 334     return( cg );
336 }                                                 335 }
337 /*                                                336 /*
338 ==============================================    337 ============================================================
339 */                                                338 */
340 static double cg1( int x1, int x2, int x3 ) {     339 static double cg1( int x1, int x2, int x3 ) {
341                                                   340 
342     int p1, p2, p3, p4, q1, q2, q3, q4;           341     int p1, p2, p3, p4, q1, q2, q3, q4;
343     double a;                                     342     double a;
344                                                   343 
345     p1 = x1 + x2 + x3 - 1; if ( ( p1 % 2 ) !=     344     p1 = x1 + x2 + x3 - 1; if ( ( p1 % 2 ) != 0 ) return( 0.0 );
346     p2 = x1 + x2 - x3;                            345     p2 = x1 + x2 - x3;
347     p3 =-x1 + x2 + x3;                            346     p3 =-x1 + x2 + x3;
348     p4 = x1 - x2 + x3;                            347     p4 = x1 - x2 + x3;
349     if ( p2 <= 0 || p3 <= 0 || p4 <= 0 ) retur    348     if ( p2 <= 0 || p3 <= 0 || p4 <= 0 ) return( 0.0 );
350     if ( p1 >= MAX_FACTORIAL ) return( INFINIT    349     if ( p1 >= MAX_FACTORIAL ) return( INFINITY );
351                                                   350 
352     q1 = ( p1 + 1 ) / 2 - 1; p1--;                351     q1 = ( p1 + 1 ) / 2 - 1; p1--;
353     q2 = ( p2 + 1 ) / 2 - 1; p2--;                352     q2 = ( p2 + 1 ) / 2 - 1; p2--;
354     q3 = ( p3 + 1 ) / 2 - 1; p3--;                353     q3 = ( p3 + 1 ) / 2 - 1; p3--;
355     q4 = ( p4 + 1 ) / 2 - 1; p4--;                354     q4 = ( p4 + 1 ) / 2 - 1; p4--;
356                                                   355 
357     a = nf_amc_log_fact[q1]-( nf_amc_log_fact[    356     a = nf_amc_log_fact[q1]-( nf_amc_log_fact[q2] + nf_amc_log_fact[q3] + nf_amc_log_fact[q4] )
358         + 0.5 * ( nf_amc_log_fact[ 2 * x3 - 1     357         + 0.5 * ( nf_amc_log_fact[ 2 * x3 - 1 ] - nf_amc_log_fact[ 2 * x3 - 2 ]
359         + nf_amc_log_fact[p2] + nf_amc_log_fac    358         + nf_amc_log_fact[p2] + nf_amc_log_fact[p3] + nf_amc_log_fact[p4] - nf_amc_log_fact[p1] );
360                                                   359 
361     return( ( ( ( q1 + x1 - x2 ) % 2 == 0 ) ?     360     return( ( ( ( q1 + x1 - x2 ) % 2 == 0 ) ? 1.0 : -1.0 ) * G4Exp( a ) );
362 }                                                 361 }
363 /*                                                362 /*
364 ==============================================    363 ============================================================
365 */                                                364 */
366 static double cg2( int k, int q0, int z1, int     365 static double cg2( int k, int q0, int z1, int z2, int w1, int w2, int w3, int mm ) {
367                                                   366 
368     int q1, q2, q3, q4, p1, p2, p3, p4;           367     int q1, q2, q3, q4, p1, p2, p3, p4;
369     double a;                                     368     double a;
370                                                   369 
371     p1 =  z1 + q0 + 2;                            370     p1 =  z1 + q0 + 2;
372     p2 =  z1 - q0 + 1;                            371     p2 =  z1 - q0 + 1;
373     p3 =  z2 + q0 + 1;                            372     p3 =  z2 + q0 + 1;
374     p4 = -z2 + q0 + 1;                            373     p4 = -z2 + q0 + 1;
375     if ( p2 <= 0 || p3 <= 0 || p4 <= 0) return    374     if ( p2 <= 0 || p3 <= 0 || p4 <= 0) return( 0.0 );
376     if ( p1 >= MAX_FACTORIAL ) return( INFINIT    375     if ( p1 >= MAX_FACTORIAL ) return( INFINITY );
377                                                   376 
378     q1 = ( p1 + 1 ) / 2 - 1; p1--;                377     q1 = ( p1 + 1 ) / 2 - 1; p1--;
379     q2 = ( p2 + 1 ) / 2 - 1; p2--;                378     q2 = ( p2 + 1 ) / 2 - 1; p2--;
380     q3 = ( p3 + 1 ) / 2 - 1; p3--;                379     q3 = ( p3 + 1 ) / 2 - 1; p3--;
381     q4 = ( p4 + 1 ) / 2 - 1; p4--;                380     q4 = ( p4 + 1 ) / 2 - 1; p4--;
382                                                   381 
383     a = nf_amc_log_fact[q1] - ( nf_amc_log_fac    382     a = nf_amc_log_fact[q1] - ( nf_amc_log_fact[ q2 ] + nf_amc_log_fact[ q3 ] + nf_amc_log_fact[ q4 ] )
384         + 0.5 * ( nf_amc_log_fact[ w3 + 1 ] -     383         + 0.5 * ( nf_amc_log_fact[ w3 + 1 ] - nf_amc_log_fact[ w3  ]
385                 + nf_amc_log_fact[ w1  ]    -     384                 + nf_amc_log_fact[ w1  ]    - nf_amc_log_fact[ w1 + 1 ]
386                 + nf_amc_log_fact[ w2  ]    -     385                 + nf_amc_log_fact[ w2  ]    - nf_amc_log_fact[ w2 + 1 ]
387                 + nf_amc_log_fact[ p2 ]     +     386                 + nf_amc_log_fact[ p2 ]     + nf_amc_log_fact[ p3 ] + nf_amc_log_fact[ p4 ] - nf_amc_log_fact[ p1 ] );
388                                                   387 
389     return( ( ( ( q4 + k + ( mm > 0 ) * ( p1 +    388     return( ( ( ( q4 + k + ( mm > 0 ) * ( p1 + 2 ) ) % 2 == 0 ) ? -1.0 : 1.0 ) * 2.0 * G4Exp( a ) );
390 }                                                 389 }
391 /*                                                390 /*
392 ==============================================    391 ============================================================
393 */                                                392 */
394 static double cg3( int x1, int x2, int x3, int    393 static double cg3( int x1, int x2, int x3, int y1, int y2, int y3 ) {
395                                                   394 
396     int nx, i, k1, k2, q1, q2, q3, q4, p1, p2,    395     int nx, i, k1, k2, q1, q2, q3, q4, p1, p2, p3, z1, z2, z3;
397     double a, cg;                                 396     double a, cg;
398                                                   397 
399     nx = x1 + x2 + x3 - 1;                        398     nx = x1 + x2 + x3 - 1;
400     if ( ( z1 = nx - x1 - y1 ) < 0 ) return( 0    399     if ( ( z1 = nx - x1 - y1 ) < 0 ) return( 0.0 );
401     if ( ( z2 = nx - x2 - y2 ) < 0 ) return( 0    400     if ( ( z2 = nx - x2 - y2 ) < 0 ) return( 0.0 );
402     if ( ( z3 = nx - x3 - y3 ) < 0 ) return( 0    401     if ( ( z3 = nx - x3 - y3 ) < 0 ) return( 0.0 );
403                                                   402 
404     k1 = x2 - y3;                                 403     k1 = x2 - y3;
405     k2 = y1 - x3;                                 404     k2 = y1 - x3;
406                                                   405 
407     q1 = max3( k1, k2, 0 );                       406     q1 = max3( k1, k2, 0 );
408     q2 = min3( y1, x2, z3 + 1 ) - 1;              407     q2 = min3( y1, x2, z3 + 1 ) - 1;
409     q3 = q1 - k1;                                 408     q3 = q1 - k1;
410     q4 = q1 - k2;                                 409     q4 = q1 - k2;
411                                                   410 
412     p1 = y1 - q1 - 1;                             411     p1 = y1 - q1 - 1;
413     p2 = x2 - q1 - 1;                             412     p2 = x2 - q1 - 1;
414     p3 = z3 - q1;                                 413     p3 = z3 - q1;
415                                                   414 
416     a = cg = G4Exp( 0.5 * ( nf_amc_log_fact[ x    415     a = cg = G4Exp( 0.5 * ( nf_amc_log_fact[ x3 + y3 - 1 ] - nf_amc_log_fact[ x3 + y3 - 2 ] - nf_amc_log_fact[ nx - 1 ]
417                  + nf_amc_log_fact[ z1  ]    +    416                  + nf_amc_log_fact[ z1  ]    + nf_amc_log_fact[ z2  ]    + nf_amc_log_fact[ z3  ]
418                  + nf_amc_log_fact[ x1 - 1 ] +    417                  + nf_amc_log_fact[ x1 - 1 ] + nf_amc_log_fact[ x2 - 1 ] + nf_amc_log_fact[ x3 - 1 ]
419                  + nf_amc_log_fact[ y1 - 1 ] +    418                  + nf_amc_log_fact[ y1 - 1 ] + nf_amc_log_fact[ y2 - 1 ] + nf_amc_log_fact[ y3 - 1 ] )
420                  - nf_amc_log_fact[ p1  ]    -    419                  - nf_amc_log_fact[ p1  ]    - nf_amc_log_fact[ p2  ]    - nf_amc_log_fact[ p3  ]
421                  - nf_amc_log_fact[ q1  ]    -    420                  - nf_amc_log_fact[ q1  ]    - nf_amc_log_fact[ q3  ]    - nf_amc_log_fact[ q4  ] ) * ( ( ( q1 % 2 ) == 0 ) ? 1 : -1 );
422     if( cg == INFINITY ) return( INFINITY );      421     if( cg == INFINITY ) return( INFINITY );
423                                                   422 
424     if ( q1 != q2 ){                              423     if ( q1 != q2 ){
425         q3 = q2 - k1;                             424         q3 = q2 - k1;
426         q4 = q2 - k2;                             425         q4 = q2 - k2;
427         p1 = y1 - q2;                             426         p1 = y1 - q2;
428         p2 = x2 - q2;                             427         p2 = x2 - q2;
429         p3 = z3 - q2 + 1;                         428         p3 = z3 - q2 + 1;
430         for( i = 0; i < ( q2 - q1 ); i++ )        429         for( i = 0; i < ( q2 - q1 ); i++ )
431             cg = a - cg * ( ( p1 + i ) * ( p2     430             cg = a - cg * ( ( p1 + i ) * ( p2 + i ) * ( p3 + i ) ) / ( ( q2 - i ) * ( q3 - i ) * ( q4 - i ) );
432     }                                             431     }
433     return( cg );                                 432     return( cg );
434 }                                                 433 }
435 /*                                                434 /*
436 ==============================================    435 ============================================================
437 */                                                436 */
438 double nf_amc_z_coefficient( int l1, int j1, i    437 double nf_amc_z_coefficient( int l1, int j1, int l2, int j2, int s, int ll ) {
439 /*                                                438 /*
440 *       Biedenharn's Z-coefficient coefficient    439 *       Biedenharn's Z-coefficient coefficient
441 *           =  Z(l1  j1  l2  j2 | S L )           440 *           =  Z(l1  j1  l2  j2 | S L )
442 */                                                441 */
443     double z, clebsh_gordan = nf_amc_clebsh_go    442     double z, clebsh_gordan = nf_amc_clebsh_gordan( l1, l2, 0, 0, ll ), racah = nf_amc_racah( l1, j1, l2, j2, s, ll );
444                                                   443 
445     if( ( clebsh_gordan == INFINITY ) || ( rac    444     if( ( clebsh_gordan == INFINITY ) || ( racah == INFINITY ) ) return( INFINITY );
446     z = ( ( ( -l1 + l2 + ll ) % 8 == 0 ) ? 1.0    445     z = ( ( ( -l1 + l2 + ll ) % 8 == 0 ) ? 1.0 : -1.0 )
447         * std::sqrt( l1 + 1.0 ) * std::sqrt( l    446         * std::sqrt( l1 + 1.0 ) * std::sqrt( l2 + 1.0 ) * std::sqrt( j1 + 1.0 ) * std::sqrt( j2 + 1.0 ) * clebsh_gordan * racah;
448                                                   447 
449    return( z );                                   448    return( z );
450 }                                                 449 }
451 /*                                                450 /*
452 ==============================================    451 ============================================================
453 */                                                452 */
454 double nf_amc_zbar_coefficient( int l1, int j1    453 double nf_amc_zbar_coefficient( int l1, int j1, int l2, int j2, int s, int ll ) {
455 /*                                                454 /*
456 *       Lane & Thomas's Zbar-coefficient coeff    455 *       Lane & Thomas's Zbar-coefficient coefficient
457 *           = Zbar(l1  j1  l2  j2 | S L )         456 *           = Zbar(l1  j1  l2  j2 | S L )
458 *           = (-i)^( -l1 + l2 + ll ) * Z(l1  j    457 *           = (-i)^( -l1 + l2 + ll ) * Z(l1  j1  l2  j2 | S L )
459 *                                                 458 *
460 *       Lane & Thomas Rev. Mod. Phys. 30, 257-    459 *       Lane & Thomas Rev. Mod. Phys. 30, 257-353 (1958).
461 *       Note, Lane & Thomas define this becaus    460 *       Note, Lane & Thomas define this because they did not like the different phase convention in Blatt & Biedenharn's Z coefficient.  They changed it to get better time-reversal behavior.
462 *       Froehner uses Lane & Thomas convention    461 *       Froehner uses Lane & Thomas convention as does T. Kawano.
463 */                                                462 */
464     double zbar, clebsh_gordan = nf_amc_clebsh    463     double zbar, clebsh_gordan = nf_amc_clebsh_gordan( l1, l2, 0, 0, ll ), racah = nf_amc_racah( l1, j1, l2, j2, s, ll );
465                                                   464 
466     if( ( clebsh_gordan == INFINITY ) || ( rac    465     if( ( clebsh_gordan == INFINITY ) || ( racah == INFINITY ) ) return( INFINITY );
467     zbar = std::sqrt( l1 + 1.0 ) * std::sqrt(     466     zbar = std::sqrt( l1 + 1.0 ) * std::sqrt( l2 + 1.0 ) * std::sqrt( j1 + 1.0 ) * std::sqrt( j2 + 1.0 ) * clebsh_gordan * racah;
468                                                   467 
469    return( zbar );                                468    return( zbar );
470 }                                                 469 }
471 /*                                                470 /*
472 ==============================================    471 ============================================================
473 */                                                472 */
474 double nf_amc_reduced_matrix_element( int lt,     473 double nf_amc_reduced_matrix_element( int lt, int st, int jt, int l0, int j0, int l1, int j1 ) {
475 /*                                                474 /*
476 *       Reduced Matrix Element for Tensor Oper    475 *       Reduced Matrix Element for Tensor Operator
477 *           = < l1j1 || T(YL,sigma_S)J || l0j0    476 *           = < l1j1 || T(YL,sigma_S)J || l0j0 >
478 *                                                 477 *
479 *   M.B.Johnson, L.W.Owen, G.R.Satchler           478 *   M.B.Johnson, L.W.Owen, G.R.Satchler
480 *   Phys. Rev. 142, 748 (1966)                    479 *   Phys. Rev. 142, 748 (1966)
481 *   Note: definition differs from JOS by the f    480 *   Note: definition differs from JOS by the factor sqrt(2j1+1)
482 */                                                481 */
483     int    llt;                                   482     int    llt;
484     double x1, x2, x3, reduced_mat, clebsh_gor    483     double x1, x2, x3, reduced_mat, clebsh_gordan;
485                                                   484 
486     if ( parity( lt ) != parity( l0 ) * parity    485     if ( parity( lt ) != parity( l0 ) * parity( l1 ) ) return( 0.0 );
487     if ( std::abs( l0 - l1 ) > lt || ( l0 + l1    486     if ( std::abs( l0 - l1 ) > lt || ( l0 + l1 ) < lt ) return( 0.0 );
488     if ( std::abs( ( j0 - j1 ) / 2 ) > jt || (    487     if ( std::abs( ( j0 - j1 ) / 2 ) > jt || ( ( j0 + j1 ) / 2 ) < jt ) return( 0.0 );
489                                                   488 
490     llt = 2 * lt;                                 489     llt = 2 * lt;
491     jt *= 2;                                      490     jt *= 2;
492     st *= 2;                                      491     st *= 2;
493                                                   492 
494     if( ( clebsh_gordan = nf_amc_clebsh_gordan    493     if( ( clebsh_gordan = nf_amc_clebsh_gordan( j1, j0, 1, -1, jt ) ) == INFINITY ) return( INFINITY );
495                                                   494 
496     reduced_mat = 1.0 / std::sqrt( 4 * M_PI )     495     reduced_mat = 1.0 / std::sqrt( 4 * M_PI ) * clebsh_gordan / std::sqrt( jt + 1.0 )         /* BRB jt + 1 <= 0? */
497                 * std::sqrt( ( j0 + 1.0 ) * (     496                 * std::sqrt( ( j0 + 1.0 ) * ( j1 + 1.0 ) * ( llt + 1.0 ) )
498                 * parity( ( j1 - j0 ) / 2 ) *     497                 * parity( ( j1 - j0 ) / 2 ) * parity( ( -l0 + l1 + lt ) / 2 ) * parity( ( j0 - 1 ) / 2 );
499                                                   498 
500     if( st == 2 ){                                499     if( st == 2 ){
501         x1 = ( l0 - j0 / 2.0 ) * ( j0 + 1.0 );    500         x1 = ( l0 - j0 / 2.0 ) * ( j0 + 1.0 );
502         x2 = ( l1 - j1 / 2.0 ) * ( j1 + 1.0 );    501         x2 = ( l1 - j1 / 2.0 ) * ( j1 + 1.0 );
503         if ( jt == llt ){                         502         if ( jt == llt ){
504             x3 = ( lt == 0 ) ? 0 :  ( x1 - x2     503             x3 = ( lt == 0 ) ? 0 :  ( x1 - x2 ) / std::sqrt( lt * ( lt + 1.0 ) );
505         }                                         504         }
506         else if ( jt == ( llt - st ) ){           505         else if ( jt == ( llt - st ) ){
507             x3 = ( lt == 0 ) ? 0 : -( lt + x1     506             x3 = ( lt == 0 ) ? 0 : -( lt + x1 + x2 ) / std::sqrt( lt * ( 2.0 * lt + 1.0 ) );
508         }                                         507         }
509         else if ( jt == ( llt + st ) ){           508         else if ( jt == ( llt + st ) ){
510             x3 = ( lt + 1 - x1 - x2 ) / std::s    509             x3 = ( lt + 1 - x1 - x2 ) / std::sqrt( ( 2.0 * lt + 1.0 ) * ( lt + 1.0 ) );
511         }                                         510         }
512         else{                                     511         else{
513             x3 = 1.0;                             512             x3 = 1.0;
514         }                                         513         }
515     }                                             514     }
516     else x3 = 1.0;                                515     else x3 = 1.0;
517     reduced_mat *= x3;                            516     reduced_mat *= x3;
518                                                   517 
519     return( reduced_mat );                        518     return( reduced_mat );
520 }                                                 519 }
521 /*                                                520 /*
522 ==============================================    521 ============================================================
523 */                                                522 */
524 static int parity( int x ) {                      523 static int parity( int x ) {
525                                                   524 
526     return( ( ( x / 2 ) % 2 == 0 ) ? 1 : -1 );    525     return( ( ( x / 2 ) % 2 == 0 ) ? 1 : -1 );
527 }                                                 526 }
528 /*                                                527 /*
529 ==============================================    528 ============================================================
530 */                                                529 */
531 static int max3( int a, int b, int c ) {          530 static int max3( int a, int b, int c ) {
532                                                   531 
533     if( a < b ) a = b;                            532     if( a < b ) a = b;
534     if( a < c ) a = c;                            533     if( a < c ) a = c;
535     return( a );                                  534     return( a );
536 }                                                 535 }
537 /*                                                536 /*
538 ==============================================    537 ============================================================
539 */                                                538 */
540 static int max4( int a, int b, int c, int d )     539 static int max4( int a, int b, int c, int d ) {
541                                                   540 
542     if( a < b ) a = b;                            541     if( a < b ) a = b;
543     if( a < c ) a = c;                            542     if( a < c ) a = c;
544     if( a < d ) a = d;                            543     if( a < d ) a = d;
545     return( a );                                  544     return( a );
546 }                                                 545 }
547 /*                                                546 /*
548 ==============================================    547 ============================================================
549 */                                                548 */
550 static int min3( int a, int b, int c ) {          549 static int min3( int a, int b, int c ) {
551                                                   550 
552     if( a > b ) a = b;                            551     if( a > b ) a = b;
553     if( a > c ) a = c;                            552     if( a > c ) a = c;
554     return( a );                                  553     return( a );
555 }                                                 554 }
556                                                   555 
557 #if defined __cplusplus                           556 #if defined __cplusplus
558 }                                                 557 }
559 #endif                                            558 #endif
560                                                   559