Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lend/src/G4LENDElastic.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/lend/src/G4LENDElastic.cc (Version 11.3.0) and /processes/hadronic/models/lend/src/G4LENDElastic.cc (Version 10.2.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26                                                    26 
 27 #include "G4LENDElastic.hh"                        27 #include "G4LENDElastic.hh"
 28 #include "G4Pow.hh"                                28 #include "G4Pow.hh"
 29 #include "G4PhysicalConstants.hh"                  29 #include "G4PhysicalConstants.hh"
 30 #include "G4SystemOfUnits.hh"                      30 #include "G4SystemOfUnits.hh"
 31 #include "G4Nucleus.hh"                            31 #include "G4Nucleus.hh"
 32 #include "G4IonTable.hh"                           32 #include "G4IonTable.hh"
 33                                                    33 
 34 //extern "C" double MyRNG(void*) { return dran     34 //extern "C" double MyRNG(void*) { return drand48(); }
 35 //extern "C" double MyRNG(void*) { return  CLH     35 //extern "C" double MyRNG(void*) { return  CLHEP::HepRandom::getTheEngine()->flat(); }
 36                                                    36 
 37 G4HadFinalState * G4LENDElastic::ApplyYourself     37 G4HadFinalState * G4LENDElastic::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& aTarg )
 38 {                                                  38 {
 39                                                    39 
 40    G4double temp = aTrack.GetMaterial()->GetTe     40    G4double temp = aTrack.GetMaterial()->GetTemperature();
 41                                                    41 
 42    //G4int iZ = int ( aTarg.GetZ() );              42    //G4int iZ = int ( aTarg.GetZ() );
 43    //G4int iA = int ( aTarg.GetN() );              43    //G4int iA = int ( aTarg.GetN() );
 44    //migrate to integer A and Z (GetN_asInt re     44    //migrate to integer A and Z (GetN_asInt returns number of neutrons in the nucleus since this) 
 45    G4int iZ = aTarg.GetZ_asInt();                  45    G4int iZ = aTarg.GetZ_asInt();
 46    G4int iA = aTarg.GetA_asInt();                  46    G4int iA = aTarg.GetA_asInt();
 47    G4int iM = 0;                                   47    G4int iM = 0;
 48    if ( aTarg.GetIsotope() != NULL ) {             48    if ( aTarg.GetIsotope() != NULL ) {
 49       iM = aTarg.GetIsotope()->Getm();             49       iM = aTarg.GetIsotope()->Getm();
 50    }                                               50    }
 51                                                    51 
 52    G4double ke = aTrack.GetKineticEnergy();        52    G4double ke = aTrack.GetKineticEnergy();
 53                                                    53 
                                                   >>  54    //G4HadFinalState* theResult = new G4HadFinalState();
 54    G4HadFinalState* theResult = &theParticleCh     55    G4HadFinalState* theResult = &theParticleChange;
 55    theResult->Clear();                             56    theResult->Clear();
 56                                                    57 
 57    G4GIDI_target* aTarget = get_target_from_ma <<  58    G4GIDI_target* aTarget = usedTarget_map.find( lend_manager->GetNucleusEncoding( iZ , iA , iM ) )->second->GetTarget();
 58    if ( aTarget == NULL ) return returnUnchang <<  59    //G4double aMu = aTarget->getElasticFinalState( ke*MeV, temp, NULL, NULL );
 59                                                << 
 60    G4double aMu = aTarget->getElasticFinalStat     60    G4double aMu = aTarget->getElasticFinalState( ke*MeV, temp, MyRNG , NULL );
 61                                                    61 
 62    G4double phi = twopi*G4UniformRand();           62    G4double phi = twopi*G4UniformRand();
 63    G4double theta = std::acos( aMu );              63    G4double theta = std::acos( aMu );
 64    //G4double sinth = std::sin( theta );           64    //G4double sinth = std::sin( theta );
 65                                                    65 
 66    G4ReactionProduct theNeutron( aTrack.GetDef     66    G4ReactionProduct theNeutron( aTrack.GetDefinition() );
 67    theNeutron.SetMomentum( aTrack.Get4Momentum     67    theNeutron.SetMomentum( aTrack.Get4Momentum().vect() );
 68    theNeutron.SetKineticEnergy( ke );              68    theNeutron.SetKineticEnergy( ke );
 69                                                    69 
 70    //G4ParticleDefinition* pd = G4IonTable::Ge <<  70 //G4cout << "iZ " << iZ << " iA " << iA  << G4endl;
 71    //TK 170509 Fix for the case of excited iso <<  71 
 72    G4double EE = 0.0;                          <<  72    G4ParticleDefinition* pd = G4IonTable::GetIonTable()->GetIon( iZ , iA , iM );
 73    if ( iM != 0 ) {                            <<  73    G4ReactionProduct theTarget( pd );
 74       G4LENDManager::GetInstance()->GetExcitat << 
 75    }                                           << 
 76    G4ParticleDefinition* target_pd = G4IonTabl << 
 77    G4ReactionProduct theTarget( target_pd );   << 
 78                                                    74 
 79    G4double mass = target_pd->GetPDGMass();    <<  75    G4double mass = pd->GetPDGMass();
 80                                                    76 
 81 // add Thermal motion                              77 // add Thermal motion 
 82    G4double kT = k_Boltzmann*temp;                 78    G4double kT = k_Boltzmann*temp;
 83    G4ThreeVector v ( G4RandGauss::shoot() * st     79    G4ThreeVector v ( G4RandGauss::shoot() * std::sqrt( kT*mass ) 
 84                    , G4RandGauss::shoot() * st     80                    , G4RandGauss::shoot() * std::sqrt( kT*mass ) 
 85                    , G4RandGauss::shoot() * st     81                    , G4RandGauss::shoot() * std::sqrt( kT*mass ) );
 86    theTarget.SetMomentum( v );                     82    theTarget.SetMomentum( v );
 87                                                    83 
 88      G4ThreeVector the3Neutron = theNeutron.Ge     84      G4ThreeVector the3Neutron = theNeutron.GetMomentum();
 89      G4double nEnergy = theNeutron.GetTotalEne     85      G4double nEnergy = theNeutron.GetTotalEnergy();
 90      G4ThreeVector the3Target = theTarget.GetM     86      G4ThreeVector the3Target = theTarget.GetMomentum();
 91      G4double tEnergy = theTarget.GetTotalEner     87      G4double tEnergy = theTarget.GetTotalEnergy();
 92      G4ReactionProduct theCMS;                     88      G4ReactionProduct theCMS;
 93      G4double totE = nEnergy+tEnergy;              89      G4double totE = nEnergy+tEnergy;
 94      G4ThreeVector the3CMS = the3Target+the3Ne     90      G4ThreeVector the3CMS = the3Target+the3Neutron;
 95      theCMS.SetMomentum(the3CMS);                  91      theCMS.SetMomentum(the3CMS);
 96      G4double cmsMom = std::sqrt(the3CMS*the3C     92      G4double cmsMom = std::sqrt(the3CMS*the3CMS);
 97      G4double sqrts = std::sqrt((totE-cmsMom)*     93      G4double sqrts = std::sqrt((totE-cmsMom)*(totE+cmsMom));
 98      theCMS.SetMass(sqrts);                        94      theCMS.SetMass(sqrts);
 99      theCMS.SetTotalEnergy(totE);                  95      theCMS.SetTotalEnergy(totE);
100                                                    96 
101        theNeutron.Lorentz(theNeutron, theCMS);     97        theNeutron.Lorentz(theNeutron, theCMS);
102        theTarget.Lorentz(theTarget, theCMS);       98        theTarget.Lorentz(theTarget, theCMS);
103        G4double en = theNeutron.GetTotalMoment     99        G4double en = theNeutron.GetTotalMomentum(); // already in CMS.
104        G4ThreeVector cms3Mom=theNeutron.GetMom    100        G4ThreeVector cms3Mom=theNeutron.GetMomentum(); // for neutron direction in CMS
105        G4double cms_theta=cms3Mom.theta();        101        G4double cms_theta=cms3Mom.theta();
106        G4double cms_phi=cms3Mom.phi();            102        G4double cms_phi=cms3Mom.phi();
107        G4ThreeVector tempVector;                  103        G4ThreeVector tempVector;
108        tempVector.setX( std::cos(theta)*std::s    104        tempVector.setX( std::cos(theta)*std::sin(cms_theta)*std::cos(cms_phi)
109                        +std::sin(theta)*std::c    105                        +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::cos(cms_phi)
110                        -std::sin(theta)*std::s    106                        -std::sin(theta)*std::sin(phi)*std::sin(cms_phi) );
111        tempVector.setY( std::cos(theta)*std::s    107        tempVector.setY( std::cos(theta)*std::sin(cms_theta)*std::sin(cms_phi)
112                        +std::sin(theta)*std::c    108                        +std::sin(theta)*std::cos(phi)*std::cos(cms_theta)*std::sin(cms_phi)
113                        +std::sin(theta)*std::s    109                        +std::sin(theta)*std::sin(phi)*std::cos(cms_phi) );
114        tempVector.setZ( std::cos(theta)*std::c    110        tempVector.setZ( std::cos(theta)*std::cos(cms_theta)
115                        -std::sin(theta)*std::c    111                        -std::sin(theta)*std::cos(phi)*std::sin(cms_theta) );
116        tempVector *= en;                          112        tempVector *= en;
117        theNeutron.SetMomentum(tempVector);        113        theNeutron.SetMomentum(tempVector);
118        theTarget.SetMomentum(-tempVector);        114        theTarget.SetMomentum(-tempVector);
119        G4double tP = theTarget.GetTotalMomentu    115        G4double tP = theTarget.GetTotalMomentum();
120        G4double tM = theTarget.GetMass();         116        G4double tM = theTarget.GetMass();
121        theTarget.SetTotalEnergy(std::sqrt((tP+    117        theTarget.SetTotalEnergy(std::sqrt((tP+tM)*(tP+tM)-2.*tP*tM));
122                                                   118 
123                                                   119 
124       theNeutron.Lorentz(theNeutron, -1.*theCM << 120        theNeutron.Lorentz(theNeutron, -1.*theCMS);
125       theTarget.Lorentz(theTarget, -1.*theCMS) << 
126                                                   121 
127 //110913 Add Protection for very low energy (1    122 //110913 Add Protection for very low energy (1e-6eV) scattering 
128       if ( theNeutron.GetKineticEnergy() <= 0     123       if ( theNeutron.GetKineticEnergy() <= 0 )
129       {                                           124       {
130          theNeutron.SetTotalEnergy ( theNeutro    125          theNeutron.SetTotalEnergy ( theNeutron.GetMass() * ( 1 + G4Pow::GetInstance()->powA( 10 , -15.65 ) ) );
131       }                                           126       }
132                                                   127 
                                                   >> 128       theTarget.Lorentz(theTarget, -1.*theCMS);
133       if ( theTarget.GetKineticEnergy() < 0 )     129       if ( theTarget.GetKineticEnergy() < 0 )
134       {                                           130       {
135          theTarget.SetTotalEnergy ( theTarget.    131          theTarget.SetTotalEnergy ( theTarget.GetMass() * ( 1 + G4Pow::GetInstance()->powA( 10 , -15.65 ) ) );
136       }                                           132       }
137 //110913 END                                      133 //110913 END
138                                                   134 
                                                   >> 135        theTarget.Lorentz(theTarget, -1.*theCMS);
                                                   >> 136 
139      theResult->SetEnergyChange(theNeutron.Get    137      theResult->SetEnergyChange(theNeutron.GetKineticEnergy());
140      theResult->SetMomentumChange(theNeutron.G    138      theResult->SetMomentumChange(theNeutron.GetMomentum().unit());
141      G4DynamicParticle* theRecoil = new G4Dyna    139      G4DynamicParticle* theRecoil = new G4DynamicParticle;
142                                                   140 
143      theRecoil->SetDefinition( target_pd );    << 141 //     theRecoil->SetDefinition( ionTable->GetIon( iZ , iA ) ); 
                                                   >> 142        theRecoil->SetDefinition( G4IonTable::GetIonTable()->GetIon( iZ, iA , iM ));
144      theRecoil->SetMomentum( theTarget.GetMome    143      theRecoil->SetMomentum( theTarget.GetMomentum() );
145      theResult->AddSecondary( theRecoil, secID << 144 
                                                   >> 145      theResult->AddSecondary( theRecoil );
146                                                   146 
147    return theResult;                              147    return theResult; 
148                                                   148 
149 }                                                 149 }
150                                                   150 
151                                                   151