Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 #include "G4INCLParticleTable.hh" 38 #include "G4INCLParticleTable.hh" 39 #include "G4INCLNuclearMassTable.hh" 39 #include "G4INCLNuclearMassTable.hh" 40 #include <algorithm> 40 #include <algorithm> 41 // #include <cassert> 41 // #include <cassert> 42 #include <cmath> 42 #include <cmath> 43 #include <cctype> 43 #include <cctype> 44 #include <sstream> 44 #include <sstream> 45 #ifdef INCLXX_IN_GEANT4_MODE 45 #ifdef INCLXX_IN_GEANT4_MODE 46 #include "G4SystemOfUnits.hh" 46 #include "G4SystemOfUnits.hh" 47 #endif 47 #endif 48 48 49 #ifdef INCLXX_IN_GEANT4_MODE 49 #ifdef INCLXX_IN_GEANT4_MODE 50 #include "G4PhysicalConstants.hh" 50 #include "G4PhysicalConstants.hh" 51 #include "G4SystemOfUnits.hh" 51 #include "G4SystemOfUnits.hh" 52 #endif 52 #endif 53 53 54 namespace G4INCL { 54 namespace G4INCL { 55 55 56 namespace ParticleTable { 56 namespace ParticleTable { 57 57 58 namespace { 58 namespace { 59 59 60 /// \brief Static instance of the Natura 60 /// \brief Static instance of the NaturalIsotopicAbundances class 61 const NaturalIsotopicDistributions *theN 61 const NaturalIsotopicDistributions *theNaturalIsotopicDistributions = NULL; 62 62 63 const G4double theINCLNucleonMass = 938. 63 const G4double theINCLNucleonMass = 938.2796; 64 const G4double theINCLPionMass = 138.0; 64 const G4double theINCLPionMass = 138.0; 65 const G4double theINCLLambdaMass = 1115. << 66 //const G4double theINCLSigmaMass = 1197 << 67 //const G4double theINCLKaonMass = 497.6 << 68 const G4double theINCLEtaMass = 547.862; << 69 const G4double theINCLOmegaMass = 782.65 << 70 const G4double theINCLEtaPrimeMass = 957 << 71 const G4double theINCLPhotonMass = 0.0; << 72 G4ThreadLocal G4double protonMass = 0.0; 65 G4ThreadLocal G4double protonMass = 0.0; 73 G4ThreadLocal G4double neutronMass = 0.0 66 G4ThreadLocal G4double neutronMass = 0.0; 74 G4ThreadLocal G4double piPlusMass = 0.0; 67 G4ThreadLocal G4double piPlusMass = 0.0; 75 G4ThreadLocal G4double piMinusMass = 0.0 68 G4ThreadLocal G4double piMinusMass = 0.0; 76 G4ThreadLocal G4double piZeroMass = 0.0; 69 G4ThreadLocal G4double piZeroMass = 0.0; 77 G4ThreadLocal G4double SigmaPlusMass = 0 << 78 G4ThreadLocal G4double SigmaZeroMass = 0 << 79 G4ThreadLocal G4double SigmaMinusMass = << 80 G4ThreadLocal G4double LambdaMass = 0.0; << 81 G4ThreadLocal G4double XiMinusMass = 0.0 << 82 G4ThreadLocal G4double XiZeroMass = 0.0; << 83 G4ThreadLocal G4double antiProtonMass = << 84 G4ThreadLocal G4double antiNeutronMass = << 85 G4ThreadLocal G4double antiSigmaPlusMass << 86 G4ThreadLocal G4double antiSigmaZeroMass << 87 G4ThreadLocal G4double antiSigmaMinusMas << 88 G4ThreadLocal G4double antiLambdaMass = << 89 G4ThreadLocal G4double antiXiMinusMass = << 90 G4ThreadLocal G4double antiXiZeroMass = << 91 G4ThreadLocal G4double KPlusMass = 0.0; << 92 G4ThreadLocal G4double KZeroMass = 0.0; << 93 G4ThreadLocal G4double KZeroBarMass = 0. << 94 G4ThreadLocal G4double KShortMass = 0.0; << 95 G4ThreadLocal G4double KLongMass = 0.0; << 96 G4ThreadLocal G4double KMinusMass = 0.0; << 97 G4ThreadLocal G4double etaMass = 0.0; << 98 G4ThreadLocal G4double omegaMass = 0.0; << 99 G4ThreadLocal G4double etaPrimeMass = 0. << 100 G4ThreadLocal G4double photonMass = 0.0; << 101 70 102 // Hard-coded values of the real particl 71 // Hard-coded values of the real particle masses (MeV/c^2) 103 G4ThreadLocal G4double theRealProtonMass 72 G4ThreadLocal G4double theRealProtonMass = 938.27203; 104 G4ThreadLocal G4double theRealNeutronMas 73 G4ThreadLocal G4double theRealNeutronMass = 939.56536; 105 G4ThreadLocal G4double theRealChargedPiM 74 G4ThreadLocal G4double theRealChargedPiMass = 139.57018; 106 G4ThreadLocal G4double theRealPiZeroMass 75 G4ThreadLocal G4double theRealPiZeroMass = 134.9766; 107 G4ThreadLocal G4double theRealLambdaMass << 108 G4ThreadLocal G4double theRealSigmaPlusM << 109 G4ThreadLocal G4double theRealSigmaZeroM << 110 G4ThreadLocal G4double theRealSigmaMinus << 111 G4ThreadLocal G4double theRealAntiProton << 112 G4ThreadLocal G4double theRealXiMinusMas << 113 G4ThreadLocal G4double theRealXiZeroMass << 114 G4ThreadLocal G4double theRealAntiNeutro << 115 G4ThreadLocal G4double theRealAntiLambda << 116 G4ThreadLocal G4double theRealAntiSigmaP << 117 G4ThreadLocal G4double theRealAntiSigmaZ << 118 G4ThreadLocal G4double theRealAntiSigmaM << 119 G4ThreadLocal G4double theRealAntiXiMinu << 120 G4ThreadLocal G4double theRealAntiXiZero << 121 G4ThreadLocal G4double theRealChargedKao << 122 G4ThreadLocal G4double theRealNeutralKao << 123 G4ThreadLocal G4double theRealEtaMass = << 124 G4ThreadLocal G4double theRealOmegaMass << 125 G4ThreadLocal G4double theRealEtaPrimeMa << 126 G4ThreadLocal G4double theRealPhotonMass << 127 << 128 // Width (second) << 129 const G4double theChargedPiWidth = 2.603 << 130 const G4double thePiZeroWidth = 8.52e-17 << 131 const G4double theEtaWidth = 5.025e-19; << 132 const G4double theOmegaWidth = 7.7528e-2 << 133 const G4double theEtaPrimeWidth = 3.3243 << 134 const G4double theChargedKaonWidth = 1.2 << 135 const G4double theKShortWidth = 8.954e-1 << 136 const G4double theKLongWidth = 5.116e-08 << 137 const G4double theLambdaWidth = 2.632e-1 << 138 const G4double theSigmaPlusWidth = 8.018 << 139 const G4double theSigmaZeroWidth = 7.4e- << 140 const G4double theSigmaMinusWidth = 1.47 << 141 //const G4double theXiMinusWidth = 1.639 << 142 //const G4double theXiZeroWidth = 2.90e- << 143 //const G4double theAntiLambdaWidth = 2. << 144 //const G4double theAntiSigmaPlusWidth = << 145 //const G4double theAntiSigmaZeroWidth = << 146 //const G4double theAntiSigmaMinusWidth << 147 //const G4double theAntiXiMinusWidth = 1 << 148 //const G4double theAntiXiZeroWidth = 2. << 149 G4ThreadLocal G4double piPlusWidth = 0.0 << 150 G4ThreadLocal G4double piMinusWidth = 0. << 151 G4ThreadLocal G4double piZeroWidth = 0.0 << 152 G4ThreadLocal G4double etaWidth = 0.0; << 153 G4ThreadLocal G4double omegaWidth = 0.0; << 154 G4ThreadLocal G4double etaPrimeWidth = 0 << 155 G4ThreadLocal G4double LambdaWidth = 0.0 << 156 G4ThreadLocal G4double SigmaPlusWidth = << 157 G4ThreadLocal G4double SigmaZeroWidth = << 158 G4ThreadLocal G4double SigmaMinusWidth = << 159 G4ThreadLocal G4double KPlusWidth = 0.0; << 160 G4ThreadLocal G4double KMinusWidth = 0.0 << 161 G4ThreadLocal G4double KShortWidth = 0.0 << 162 G4ThreadLocal G4double KLongWidth = 0.0; << 163 G4ThreadLocal G4double XiMinusWidth = 0. << 164 G4ThreadLocal G4double XiZeroWidth = 0.0 << 165 G4ThreadLocal G4double antiLambdaWidth = << 166 G4ThreadLocal G4double antiSigmaZeroWidt << 167 G4ThreadLocal G4double antiSigmaMinusWid << 168 G4ThreadLocal G4double antiSigmaPlusWidt << 169 G4ThreadLocal G4double antiXiZeroWidth = << 170 G4ThreadLocal G4double antiXiMinusWidth << 171 76 172 const G4int mediumNucleiTableSize = 30; 77 const G4int mediumNucleiTableSize = 30; 173 78 174 const G4double mediumDiffuseness[mediumN 79 const G4double mediumDiffuseness[mediumNucleiTableSize] = 175 {0.0,0.0,0.0,0.0,0.0,1.78,1.77,1.77,1.69 << 80 {0.0,0.0,0.0,0.0,0.0,1.78,1.77,1.77,1.77,1.71, 176 1.69,1.72,1.635,1.730,1.81,1.833,1.798 << 81 1.69,1.69,1.635,1.730,1.81,1.833,1.798, 177 1.93,0.567,0.571, 0.560,0.549,0.550,0. << 82 1.841,0.567,0.571, 0.560,0.549,0.550,0.551, 178 0.580,0.575,0.569,0.537,0.0,0.0}; 83 0.580,0.575,0.569,0.537,0.0,0.0}; 179 const G4double mediumRadius[mediumNuclei 84 const G4double mediumRadius[mediumNucleiTableSize] = 180 {0.0,0.0,0.0,0.0,0.0,0.334,0.327,0.479,0 85 {0.0,0.0,0.0,0.0,0.0,0.334,0.327,0.479,0.631,0.838, 181 0.811,0.84,1.403,1.335,1.25,1.544,1.49 << 86 0.811,1.07,1.403,1.335,1.25,1.544,1.498,1.513, 182 2.58,2.77, 2.775,2.78,2.88,2.98,3.22,3 87 2.58,2.77, 2.775,2.78,2.88,2.98,3.22,3.03,2.84, 183 3.14,0.0,0.0}; 88 3.14,0.0,0.0}; 184 89 185 const G4double positionRMS[clusterTableZ 90 const G4double positionRMS[clusterTableZSize][clusterTableASize] = { 186 /* A= 0 1 2 3 4 91 /* A= 0 1 2 3 4 5 6 7 8 9 10 11 12 */ 187 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1. 92 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0}, 188 /* Z=1 */ {-1.0, -1.0, 2.10, 1.80, 1.7 93 /* Z=1 */ {-1.0, -1.0, 2.10, 1.80, 1.70, 1.83, 2.60, 2.50, -1.0, -1.0, -1.0, -1.0, -1.0}, 189 /* Z=2 */ {-1.0, -1.0, -1.0, 1.80, 1.6 94 /* Z=2 */ {-1.0, -1.0, -1.0, 1.80, 1.68, 1.70, 2.60, 2.50, 2.50, 2.50, 2.50, -1.0, -1.0}, 190 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 1.7 95 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 1.70, 1.83, 2.56, 2.40, 2.50, 2.50, 2.50, 2.50, 2.50}, 191 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1. 96 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.60, 2.50, 2.50, 2.51, 2.50, 2.50, 2.50}, 192 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1. 97 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50, 2.50, 2.45, 2.40, 2.50}, 193 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1. 98 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50, 2.50, 2.47}, 194 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1. 99 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50}, 195 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1. 100 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50} 196 }; 101 }; 197 102 198 const G4double momentumRMS[clusterTableZ 103 const G4double momentumRMS[clusterTableZSize][clusterTableASize] = { 199 /* A= 0 1 2 3 4 104 /* A= 0 1 2 3 4 5 6 7 8 9 10 11 12 */ 200 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1. 105 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0}, 201 /* Z=1 */ {-1.0, -1.0, 77.0, 110., 153 106 /* Z=1 */ {-1.0, -1.0, 77.0, 110., 153., 100., 100., 100., -1.0, -1.0, -1.0, -1.0, -1.0}, 202 /* Z=2 */ {-1.0, -1.0, -1.0, 110., 153 107 /* Z=2 */ {-1.0, -1.0, -1.0, 110., 153., 100., 100., 100., 100., 100., 100., -1.0, -1.0}, 203 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 153 108 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 153., 100., 100., 100., 100., 100., 100., 100., 100.}, 204 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1. 109 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100., 100., 100.}, 205 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1. 110 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100., 100., 100.}, 206 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1. 111 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100.}, 207 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1. 112 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100.}, 208 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1. 113 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100.} 209 }; 114 }; 210 115 211 const G4int elementTableSize = 113; // u 116 const G4int elementTableSize = 113; // up to Cn 212 117 213 /// \brief Table of chemical element nam 118 /// \brief Table of chemical element names 214 const std::string elementTable[elementTa 119 const std::string elementTable[elementTableSize] = { 215 "", 120 "", 216 "H", 121 "H", 217 "He", 122 "He", 218 "Li", 123 "Li", 219 "Be", 124 "Be", 220 "B", 125 "B", 221 "C", 126 "C", 222 "N", 127 "N", 223 "O", 128 "O", 224 "F", 129 "F", 225 "Ne", 130 "Ne", 226 "Na", 131 "Na", 227 "Mg", 132 "Mg", 228 "Al", 133 "Al", 229 "Si", 134 "Si", 230 "P", 135 "P", 231 "S", 136 "S", 232 "Cl", 137 "Cl", 233 "Ar", 138 "Ar", 234 "K", 139 "K", 235 "Ca", 140 "Ca", 236 "Sc", 141 "Sc", 237 "Ti", 142 "Ti", 238 "V", 143 "V", 239 "Cr", 144 "Cr", 240 "Mn", 145 "Mn", 241 "Fe", 146 "Fe", 242 "Co", 147 "Co", 243 "Ni", 148 "Ni", 244 "Cu", 149 "Cu", 245 "Zn", 150 "Zn", 246 "Ga", 151 "Ga", 247 "Ge", 152 "Ge", 248 "As", 153 "As", 249 "Se", 154 "Se", 250 "Br", 155 "Br", 251 "Kr", 156 "Kr", 252 "Rb", 157 "Rb", 253 "Sr", 158 "Sr", 254 "Y", 159 "Y", 255 "Zr", 160 "Zr", 256 "Nb", 161 "Nb", 257 "Mo", 162 "Mo", 258 "Tc", 163 "Tc", 259 "Ru", 164 "Ru", 260 "Rh", 165 "Rh", 261 "Pd", 166 "Pd", 262 "Ag", 167 "Ag", 263 "Cd", 168 "Cd", 264 "In", 169 "In", 265 "Sn", 170 "Sn", 266 "Sb", 171 "Sb", 267 "Te", 172 "Te", 268 "I", 173 "I", 269 "Xe", 174 "Xe", 270 "Cs", 175 "Cs", 271 "Ba", 176 "Ba", 272 "La", 177 "La", 273 "Ce", 178 "Ce", 274 "Pr", 179 "Pr", 275 "Nd", 180 "Nd", 276 "Pm", 181 "Pm", 277 "Sm", 182 "Sm", 278 "Eu", 183 "Eu", 279 "Gd", 184 "Gd", 280 "Tb", 185 "Tb", 281 "Dy", 186 "Dy", 282 "Ho", 187 "Ho", 283 "Er", 188 "Er", 284 "Tm", 189 "Tm", 285 "Yb", 190 "Yb", 286 "Lu", 191 "Lu", 287 "Hf", 192 "Hf", 288 "Ta", 193 "Ta", 289 "W", 194 "W", 290 "Re", 195 "Re", 291 "Os", 196 "Os", 292 "Ir", 197 "Ir", 293 "Pt", 198 "Pt", 294 "Au", 199 "Au", 295 "Hg", 200 "Hg", 296 "Tl", 201 "Tl", 297 "Pb", 202 "Pb", 298 "Bi", 203 "Bi", 299 "Po", 204 "Po", 300 "At", 205 "At", 301 "Rn", 206 "Rn", 302 "Fr", 207 "Fr", 303 "Ra", 208 "Ra", 304 "Ac", 209 "Ac", 305 "Th", 210 "Th", 306 "Pa", 211 "Pa", 307 "U", 212 "U", 308 "Np", 213 "Np", 309 "Pu", 214 "Pu", 310 "Am", 215 "Am", 311 "Cm", 216 "Cm", 312 "Bk", 217 "Bk", 313 "Cf", 218 "Cf", 314 "Es", 219 "Es", 315 "Fm", 220 "Fm", 316 "Md", 221 "Md", 317 "No", 222 "No", 318 "Lr", 223 "Lr", 319 "Rf", 224 "Rf", 320 "Db", 225 "Db", 321 "Sg", 226 "Sg", 322 "Bh", 227 "Bh", 323 "Hs", 228 "Hs", 324 "Mt", 229 "Mt", 325 "Ds", 230 "Ds", 326 "Rg", 231 "Rg", 327 "Cn" 232 "Cn" 328 }; 233 }; 329 234 330 /// \brief Digit names to compose IUPAC 235 /// \brief Digit names to compose IUPAC element names 331 const std::string elementIUPACDigits = " 236 const std::string elementIUPACDigits = "nubtqphsoe"; 332 237 333 #define INCL_DEFAULT_SEPARATION_ENERGY 6.83 238 #define INCL_DEFAULT_SEPARATION_ENERGY 6.83 334 const G4double theINCLProtonSeparationEn 239 const G4double theINCLProtonSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY; 335 const G4double theINCLNeutronSeparationE 240 const G4double theINCLNeutronSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY; 336 const G4double theINCLLambdaSeparationEn << 337 //const G4double theINCLantiProtonSepara << 338 const G4double theINCLantiProtonSeparati << 339 G4ThreadLocal G4double protonSeparationE 241 G4ThreadLocal G4double protonSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY; 340 G4ThreadLocal G4double neutronSeparation 242 G4ThreadLocal G4double neutronSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY; 341 G4ThreadLocal G4double lambdaSeparationE << 342 //G4ThreadLocal G4double antiprotonSepar << 343 //G4ThreadLocal G4double antiprotonSepar << 344 #undef INCL_DEFAULT_SEPARATION_ENERGY 243 #undef INCL_DEFAULT_SEPARATION_ENERGY 345 244 346 G4ThreadLocal G4double rpCorrelationCoef 245 G4ThreadLocal G4double rpCorrelationCoefficient[UnknownParticle]; 347 246 348 G4ThreadLocal G4double neutronSkin = 0.0 247 G4ThreadLocal G4double neutronSkin = 0.0; 349 G4ThreadLocal G4double neutronHalo = 0.0 248 G4ThreadLocal G4double neutronHalo = 0.0; 350 249 351 #ifdef INCLXX_IN_GEANT4_MODE 250 #ifdef INCLXX_IN_GEANT4_MODE 352 G4ThreadLocal G4IonTable *theG4IonTable; 251 G4ThreadLocal G4IonTable *theG4IonTable; 353 #endif 252 #endif 354 253 355 /// \brief Default value for constant Fe 254 /// \brief Default value for constant Fermi momentum 356 G4ThreadLocal G4double constantFermiMome 255 G4ThreadLocal G4double constantFermiMomentum = 0.0; 357 256 358 /// \brief Transform a IUPAC char to an 257 /// \brief Transform a IUPAC char to an char representing an integer digit 359 char iupacToInt(char c) { 258 char iupacToInt(char c) { 360 return (char)(((G4int)'0')+elementIUPA 259 return (char)(((G4int)'0')+elementIUPACDigits.find(c)); 361 } 260 } 362 261 363 /// \brief Transform an integer digit (r 262 /// \brief Transform an integer digit (represented by a char) to a IUPAC char 364 char intToIUPAC(char n) { return element 263 char intToIUPAC(char n) { return elementIUPACDigits.at(n); } 365 264 366 /// \brief Get the singleton instance of 265 /// \brief Get the singleton instance of the natural isotopic distributions 367 const NaturalIsotopicDistributions *getN 266 const NaturalIsotopicDistributions *getNaturalIsotopicDistributions() { 368 if(!theNaturalIsotopicDistributions) 267 if(!theNaturalIsotopicDistributions) 369 theNaturalIsotopicDistributions = ne 268 theNaturalIsotopicDistributions = new NaturalIsotopicDistributions; 370 return theNaturalIsotopicDistributions 269 return theNaturalIsotopicDistributions; 371 } 270 } 372 271 373 } // namespace 272 } // namespace 374 273 375 void initialize(Config const * const theCo 274 void initialize(Config const * const theConfig /*=0*/) { 376 protonMass = theINCLNucleonMass; 275 protonMass = theINCLNucleonMass; 377 neutronMass = theINCLNucleonMass; << 276 neutronMass = theINCLNucleonMass; 378 piPlusMass = theINCLPionMass; 277 piPlusMass = theINCLPionMass; 379 piMinusMass = theINCLPionMass; 278 piMinusMass = theINCLPionMass; 380 piZeroMass = theINCLPionMass; 279 piZeroMass = theINCLPionMass; 381 280 382 etaMass = theINCLEtaMass; << 383 omegaMass = theINCLOmegaMass; << 384 etaPrimeMass = theINCLEtaPrimeMass; << 385 photonMass = theINCLPhotonMass; << 386 << 387 SigmaPlusMass = theRealSigmaPlusMass; << 388 SigmaMinusMass = theRealSigmaMinusMass; << 389 SigmaZeroMass = theRealSigmaZeroMass; << 390 LambdaMass = theINCLLambdaMass; << 391 KPlusMass = theRealChargedKaonMass; << 392 KZeroMass = theRealNeutralKaonMass; << 393 KZeroBarMass = theRealNeutralKaonMass; << 394 KShortMass = theRealNeutralKaonMass; << 395 KLongMass = theRealNeutralKaonMass; << 396 KMinusMass = theRealChargedKaonMass; << 397 << 398 antiProtonMass = theRealAntiProtonMass; << 399 XiZeroMass = theRealXiZeroMass; << 400 XiMinusMass = theRealXiMinusMass; << 401 antiNeutronMass = theRealAntiNeutronMass << 402 antiSigmaPlusMass = theRealAntiSigmaPlus << 403 antiSigmaMinusMass = theRealAntiSigmaMin << 404 antiSigmaZeroMass = theRealAntiSigmaZero << 405 antiLambdaMass = theRealAntiLambdaMass; << 406 antiXiZeroMass = theRealAntiXiZeroMass; << 407 antiXiMinusMass = theRealAntiXiMinusMass << 408 << 409 if(theConfig && theConfig->getUseRealMas 281 if(theConfig && theConfig->getUseRealMasses()) { 410 getTableMass = getRealMass; 282 getTableMass = getRealMass; 411 getTableParticleMass = getRealMass; 283 getTableParticleMass = getRealMass; 412 } else { 284 } else { 413 getTableMass = getINCLMass; 285 getTableMass = getINCLMass; 414 getTableParticleMass = getINCLMass; 286 getTableParticleMass = getINCLMass; 415 } 287 } 416 288 417 #ifndef INCLXX_IN_GEANT4_MODE 289 #ifndef INCLXX_IN_GEANT4_MODE 418 std::string dataFilePath; 290 std::string dataFilePath; 419 if(theConfig) 291 if(theConfig) 420 dataFilePath = theConfig->getINCLXXDat 292 dataFilePath = theConfig->getINCLXXDataFilePath(); 421 NuclearMassTable::initialize(dataFilePat 293 NuclearMassTable::initialize(dataFilePath, getRealMass(Proton), getRealMass(Neutron)); 422 #endif 294 #endif 423 295 424 #ifdef INCLXX_IN_GEANT4_MODE 296 #ifdef INCLXX_IN_GEANT4_MODE 425 G4ParticleTable *theG4ParticleTable = G4 297 G4ParticleTable *theG4ParticleTable = G4ParticleTable::GetParticleTable(); 426 theG4IonTable = theG4ParticleTable->GetI 298 theG4IonTable = theG4ParticleTable->GetIonTable(); 427 theRealProtonMass = theG4ParticleTable-> 299 theRealProtonMass = theG4ParticleTable->FindParticle("proton")->GetPDGMass() / MeV; 428 theRealNeutronMass = theG4ParticleTable- << 300 theRealNeutronMass = theG4ParticleTable->FindParticle("neutron")->GetPDGMass() / MeV; 429 theRealChargedPiMass = theG4ParticleTabl 301 theRealChargedPiMass = theG4ParticleTable->FindParticle("pi+")->GetPDGMass() / MeV; 430 theRealPiZeroMass = theG4ParticleTable-> 302 theRealPiZeroMass = theG4ParticleTable->FindParticle("pi0")->GetPDGMass() / MeV; 431 << 432 theRealEtaMass = theG4ParticleTable->Fin << 433 theRealOmegaMass = theG4ParticleTable->F << 434 theRealEtaPrimeMass = theG4ParticleTable << 435 theRealPhotonMass = theG4ParticleTable-> << 436 << 437 theRealSigmaPlusMass = theG4ParticleTabl << 438 theRealSigmaZeroMass = theG4ParticleTabl << 439 theRealSigmaMinusMass = theG4ParticleTab << 440 theRealLambdaMass = theG4ParticleTable-> << 441 theRealChargedKaonMass = theG4ParticleTa << 442 theRealNeutralKaonMass = theG4ParticleTa << 443 << 444 theRealAntiProtonMass = theG4ParticleTab << 445 theRealAntiNeutronMass = theG4ParticleTa << 446 theRealXiZeroMass = theG4ParticleTable-> << 447 theRealXiMinusMass = theG4ParticleTable- << 448 theRealAntiSigmaPlusMass = theG4Particle << 449 theRealAntiSigmaZeroMass = theG4Particle << 450 theRealAntiSigmaMinusMass = theG4Particl << 451 theRealAntiLambdaMass = theG4ParticleTab << 452 theRealAntiXiZeroMass = theG4ParticleTab << 453 theRealAntiXiMinusMass = theG4ParticleTa << 454 #endif 303 #endif 455 304 456 minDeltaMass = theRealNeutronMass + theR 305 minDeltaMass = theRealNeutronMass + theRealChargedPiMass + 0.5; 457 minDeltaMass2 = minDeltaMass*minDeltaMas 306 minDeltaMass2 = minDeltaMass*minDeltaMass; 458 minDeltaMassRndm = std::atan((minDeltaMa 307 minDeltaMassRndm = std::atan((minDeltaMass-effectiveDeltaMass)*2./effectiveDeltaWidth); 459 308 460 piPlusWidth = theChargedPiWidth; << 461 piMinusWidth = theChargedPiWidth; << 462 piZeroWidth = thePiZeroWidth; << 463 etaWidth = theEtaWidth; << 464 omegaWidth = theOmegaWidth; << 465 etaPrimeWidth = theEtaPrimeWidth; << 466 << 467 SigmaMinusWidth = theSigmaMinusWidth; << 468 SigmaPlusWidth = theSigmaPlusWidth; << 469 SigmaZeroWidth = theSigmaZeroWidth; << 470 LambdaWidth = theLambdaWidth; << 471 KPlusWidth = theChargedKaonWidth; << 472 KMinusWidth = theChargedKaonWidth; << 473 KShortWidth = theKShortWidth; << 474 KLongWidth = theKLongWidth; << 475 << 476 // Initialise HFB tables << 477 #ifdef INCLXX_IN_GEANT4_MODE << 478 HFB::initialize(); << 479 #else << 480 HFB::initialize(dataFilePath); << 481 #endif << 482 << 483 // Initialise the separation-energy func 309 // Initialise the separation-energy function 484 if(!theConfig || theConfig->getSeparatio 310 if(!theConfig || theConfig->getSeparationEnergyType()==INCLSeparationEnergy) 485 getSeparationEnergy = getSeparationEne 311 getSeparationEnergy = getSeparationEnergyINCL; 486 else if(theConfig->getSeparationEnergyTy 312 else if(theConfig->getSeparationEnergyType()==RealSeparationEnergy) 487 getSeparationEnergy = getSeparationEne 313 getSeparationEnergy = getSeparationEnergyReal; 488 else if(theConfig->getSeparationEnergyTy 314 else if(theConfig->getSeparationEnergyType()==RealForLightSeparationEnergy) 489 getSeparationEnergy = getSeparationEne 315 getSeparationEnergy = getSeparationEnergyRealForLight; 490 else { 316 else { 491 INCL_FATAL("Unrecognized separation-en 317 INCL_FATAL("Unrecognized separation-energy type in ParticleTable initialization: " << theConfig->getSeparationEnergyType() << '\n'); 492 return; 318 return; 493 } 319 } 494 320 495 // Initialise the Fermi-momentum functio 321 // Initialise the Fermi-momentum function 496 if(!theConfig || theConfig->getFermiMome 322 if(!theConfig || theConfig->getFermiMomentumType()==ConstantFermiMomentum) { 497 getFermiMomentum = ParticleTable::getF 323 getFermiMomentum = ParticleTable::getFermiMomentumConstant; 498 if(theConfig) { 324 if(theConfig) { 499 const G4double aFermiMomentum = theC 325 const G4double aFermiMomentum = theConfig->getFermiMomentum(); 500 if(aFermiMomentum>0.) 326 if(aFermiMomentum>0.) 501 constantFermiMomentum = aFermiMome 327 constantFermiMomentum = aFermiMomentum; 502 else 328 else 503 constantFermiMomentum = PhysicalCo 329 constantFermiMomentum = PhysicalConstants::Pf; 504 } else { 330 } else { 505 constantFermiMomentum = PhysicalCons 331 constantFermiMomentum = PhysicalConstants::Pf; 506 } 332 } 507 } else if(theConfig->getFermiMomentumTyp 333 } else if(theConfig->getFermiMomentumType()==ConstantLightFermiMomentum) 508 getFermiMomentum = ParticleTable::getF 334 getFermiMomentum = ParticleTable::getFermiMomentumConstantLight; 509 else if(theConfig->getFermiMomentumType( 335 else if(theConfig->getFermiMomentumType()==MassDependentFermiMomentum) 510 getFermiMomentum = ParticleTable::getF 336 getFermiMomentum = ParticleTable::getFermiMomentumMassDependent; 511 else { 337 else { 512 INCL_FATAL("Unrecognized Fermi-momentu 338 INCL_FATAL("Unrecognized Fermi-momentum type in ParticleTable initialization: " << theConfig->getFermiMomentumType() << '\n'); 513 return; 339 return; 514 } 340 } 515 341 516 // Initialise the r-p correlation coeffi 342 // Initialise the r-p correlation coefficients 517 std::fill(rpCorrelationCoefficient, rpCo 343 std::fill(rpCorrelationCoefficient, rpCorrelationCoefficient + UnknownParticle, 1.); 518 if(theConfig) { 344 if(theConfig) { 519 rpCorrelationCoefficient[Proton] = the 345 rpCorrelationCoefficient[Proton] = theConfig->getRPCorrelationCoefficient(Proton); 520 rpCorrelationCoefficient[Neutron] = th 346 rpCorrelationCoefficient[Neutron] = theConfig->getRPCorrelationCoefficient(Neutron); 521 } 347 } 522 348 523 // Initialise the neutron-skin parameter 349 // Initialise the neutron-skin parameters 524 if(theConfig) { 350 if(theConfig) { 525 neutronSkin = theConfig->getNeutronSki 351 neutronSkin = theConfig->getNeutronSkin(); 526 neutronHalo = theConfig->getNeutronHal 352 neutronHalo = theConfig->getNeutronHalo(); 527 } 353 } 528 354 529 } 355 } 530 356 531 G4int getIsospin(const ParticleType t) { 357 G4int getIsospin(const ParticleType t) { 532 // Actually this is the 3rd component of 358 // Actually this is the 3rd component of isospin (I_z) multiplied by 2! 533 if(t == Proton) { 359 if(t == Proton) { 534 return 1; 360 return 1; 535 } else if(t == Neutron) { 361 } else if(t == Neutron) { 536 return -1; 362 return -1; 537 } else if(t == PiPlus) { 363 } else if(t == PiPlus) { 538 return 2; 364 return 2; 539 } else if(t == PiMinus) { 365 } else if(t == PiMinus) { 540 return -2; 366 return -2; 541 } else if(t == PiZero) { 367 } else if(t == PiZero) { 542 return 0; 368 return 0; 543 } else if(t == DeltaPlusPlus) { 369 } else if(t == DeltaPlusPlus) { 544 return 3; 370 return 3; 545 } else if(t == DeltaPlus) { 371 } else if(t == DeltaPlus) { 546 return 1; 372 return 1; 547 } else if(t == DeltaZero) { 373 } else if(t == DeltaZero) { 548 return -1; 374 return -1; 549 } else if(t == DeltaMinus) { 375 } else if(t == DeltaMinus) { 550 return -3; 376 return -3; 551 } else if(t == Lambda) { << 552 return 0; << 553 } else if(t == SigmaPlus) { << 554 return 2; << 555 } else if(t == SigmaZero) { << 556 return 0; << 557 } else if(t == SigmaMinus) { << 558 return -2; << 559 } else if(t == KPlus) { << 560 return 1; << 561 } else if(t == KZero) { << 562 return -1; << 563 } else if(t == KZeroBar) { << 564 return 1; << 565 } else if(t == KShort) { << 566 return 0; << 567 } else if(t == KLong) { << 568 return 0; << 569 } else if(t == KMinus) { << 570 return -1; << 571 } else if(t == Eta) { << 572 return 0; << 573 } else if(t == Omega) { << 574 return 0; << 575 } else if(t == EtaPrime) { << 576 return 0; << 577 } else if(t == Photon) { << 578 return 0; << 579 } else if(t == antiProton) { << 580 return -1; << 581 } else if(t == XiMinus) { << 582 return -1; << 583 } else if(t == XiZero) { << 584 return 1; << 585 } else if(t == antiNeutron) { << 586 return 1; << 587 } else if(t == antiLambda) { << 588 return 0; << 589 } else if(t == antiSigmaPlus) { << 590 return -2; << 591 } else if(t == antiSigmaZero) { << 592 return 0; << 593 } else if(t == antiSigmaMinus) { << 594 return 2; << 595 } else if(t == antiXiMinus) { << 596 return 1; << 597 } else if(t == antiXiZero) { << 598 return -1; << 599 } 377 } >> 378 600 INCL_ERROR("Requested isospin of an unkn 379 INCL_ERROR("Requested isospin of an unknown particle!"); 601 return -10; // Unknown 380 return -10; // Unknown 602 } 381 } 603 382 604 std::string getShortName(const ParticleSpe << 383 std::string getShortName(const ParticleSpecies &s) { 605 if(sp.theType==Composite && sp.theS == 0 << 384 if(s.theType==Composite) 606 return getShortName(sp.theA,sp.theZ); << 385 return getShortName(s.theA,s.theZ); 607 else if(sp.theType==Composite) << 608 return getName(sp.theA,sp.theZ,sp.theS << 609 else 386 else 610 return getShortName(sp.theType); << 387 return getShortName(s.theType); 611 } 388 } 612 << 389 613 std::string getName(const ParticleSpecies << 390 std::string getName(const ParticleSpecies &s) { 614 if(sp.theType==Composite && sp.theS == 0 << 391 if(s.theType==Composite) 615 return getName(sp.theA,sp.theZ); << 392 return getName(s.theA,s.theZ); 616 else if(sp.theType==Composite) << 617 return getName(sp.theA,sp.theZ,sp.theS << 618 else 393 else 619 return getName(sp.theType); << 394 return getName(s.theType); 620 } 395 } 621 396 622 std::string getName(const G4int A, const G 397 std::string getName(const G4int A, const G4int Z) { 623 std::stringstream stream; 398 std::stringstream stream; 624 stream << getElementName(Z) << "-" << A; 399 stream << getElementName(Z) << "-" << A; 625 return stream.str(); 400 return stream.str(); 626 } 401 } 627 402 628 std::string getName(const G4int A, const G << 629 std::stringstream stream; << 630 if(S >= 0) // S < 0 for hypernuclei << 631 return getName(A, Z); << 632 else if(S == -1) << 633 stream << getElementName(Z) << "-" << << 634 else << 635 stream << getElementName(Z) << "-" << << 636 return stream.str(); << 637 } << 638 << 639 std::string getShortName(const G4int A, co 403 std::string getShortName(const G4int A, const G4int Z) { 640 std::stringstream stream; 404 std::stringstream stream; 641 stream << getElementName(Z); 405 stream << getElementName(Z); 642 if(A>0) 406 if(A>0) 643 stream << A; 407 stream << A; 644 return stream.str(); 408 return stream.str(); 645 } 409 } 646 410 647 std::string getName(const ParticleType p) 411 std::string getName(const ParticleType p) { 648 if(p == G4INCL::Proton) { 412 if(p == G4INCL::Proton) { 649 return std::string("proton"); 413 return std::string("proton"); 650 } else if(p == G4INCL::Neutron) { 414 } else if(p == G4INCL::Neutron) { 651 return std::string("neutron"); 415 return std::string("neutron"); 652 } else if(p == G4INCL::DeltaPlusPlus) { 416 } else if(p == G4INCL::DeltaPlusPlus) { 653 return std::string("delta++"); 417 return std::string("delta++"); 654 } else if(p == G4INCL::DeltaPlus) { 418 } else if(p == G4INCL::DeltaPlus) { 655 return std::string("delta+"); 419 return std::string("delta+"); 656 } else if(p == G4INCL::DeltaZero) { 420 } else if(p == G4INCL::DeltaZero) { 657 return std::string("delta0"); 421 return std::string("delta0"); 658 } else if(p == G4INCL::DeltaMinus) { 422 } else if(p == G4INCL::DeltaMinus) { 659 return std::string("delta-"); 423 return std::string("delta-"); 660 } else if(p == G4INCL::PiPlus) { 424 } else if(p == G4INCL::PiPlus) { 661 return std::string("pi+"); 425 return std::string("pi+"); 662 } else if(p == G4INCL::PiZero) { 426 } else if(p == G4INCL::PiZero) { 663 return std::string("pi0"); 427 return std::string("pi0"); 664 } else if(p == G4INCL::PiMinus) { 428 } else if(p == G4INCL::PiMinus) { 665 return std::string("pi-"); 429 return std::string("pi-"); 666 } else if(p == G4INCL::Lambda) { << 667 return std::string("lambda"); << 668 } else if(p == G4INCL::SigmaPlus) { << 669 return std::string("sigma+"); << 670 } else if(p == G4INCL::SigmaZero) { << 671 return std::string("sigma0"); << 672 } else if(p == G4INCL::SigmaMinus) { << 673 return std::string("sigma-"); << 674 } else if(p == G4INCL::antiProton) { << 675 return std::string("antiproton"); << 676 } else if(p == G4INCL::XiMinus) { << 677 return std::string("xi-"); << 678 } else if(p == G4INCL::XiZero) { << 679 return std::string("xi0"); << 680 } else if(p == G4INCL::antiNeutron) { << 681 return std::string("antineutron"); << 682 } else if(p == G4INCL::antiSigmaPlus) { << 683 return std::string("antisigma+"); << 684 } else if(p == G4INCL::antiSigmaZero) { << 685 return std::string("antisigma0"); << 686 } else if(p == G4INCL::antiSigmaMinus) { << 687 return std::string("antisigma-"); << 688 } else if(p == G4INCL::antiLambda) { << 689 return std::string("antilambda"); << 690 } else if(p == G4INCL::antiXiMinus) { << 691 return std::string("antixi-"); << 692 } else if(p == G4INCL::antiXiZero) { << 693 return std::string("antixi0"); << 694 } else if(p == G4INCL::KPlus) { << 695 return std::string("kaon+"); << 696 } else if(p == G4INCL::KZero) { << 697 return std::string("kaon0"); << 698 } else if(p == G4INCL::KZeroBar) { << 699 return std::string("kaon0bar"); << 700 } else if(p == G4INCL::KMinus) { << 701 return std::string("kaon-"); << 702 } else if(p == G4INCL::KShort) { << 703 return std::string("kaonshort"); << 704 } else if(p == G4INCL::KLong) { << 705 return std::string("kaonlong"); << 706 } else if(p == G4INCL::Composite) { 430 } else if(p == G4INCL::Composite) { 707 return std::string("composite"); 431 return std::string("composite"); 708 } else if(p == G4INCL::Eta) { << 709 return std::string("eta"); << 710 } else if(p == G4INCL::Omega) { << 711 return std::string("omega"); << 712 } else if(p == G4INCL::EtaPrime) { << 713 return std::string("etaprime"); << 714 } else if(p == G4INCL::Photon) { << 715 return std::string("photon"); << 716 } 432 } 717 return std::string("unknown"); 433 return std::string("unknown"); 718 } 434 } 719 435 720 std::string getShortName(const ParticleTyp 436 std::string getShortName(const ParticleType p) { 721 if(p == G4INCL::Proton) { 437 if(p == G4INCL::Proton) { 722 return std::string("p"); 438 return std::string("p"); 723 } else if(p == G4INCL::Neutron) { 439 } else if(p == G4INCL::Neutron) { 724 return std::string("n"); 440 return std::string("n"); 725 } else if(p == G4INCL::DeltaPlusPlus) { 441 } else if(p == G4INCL::DeltaPlusPlus) { 726 return std::string("d++"); 442 return std::string("d++"); 727 } else if(p == G4INCL::DeltaPlus) { 443 } else if(p == G4INCL::DeltaPlus) { 728 return std::string("d+"); 444 return std::string("d+"); 729 } else if(p == G4INCL::DeltaZero) { 445 } else if(p == G4INCL::DeltaZero) { 730 return std::string("d0"); 446 return std::string("d0"); 731 } else if(p == G4INCL::DeltaMinus) { 447 } else if(p == G4INCL::DeltaMinus) { 732 return std::string("d-"); 448 return std::string("d-"); 733 } else if(p == G4INCL::PiPlus) { 449 } else if(p == G4INCL::PiPlus) { 734 return std::string("pi+"); 450 return std::string("pi+"); 735 } else if(p == G4INCL::PiZero) { 451 } else if(p == G4INCL::PiZero) { 736 return std::string("pi0"); 452 return std::string("pi0"); 737 } else if(p == G4INCL::PiMinus) { 453 } else if(p == G4INCL::PiMinus) { 738 return std::string("pi-"); 454 return std::string("pi-"); 739 } else if(p == G4INCL::Lambda) { << 740 return std::string("l"); << 741 } else if(p == G4INCL::SigmaPlus) { << 742 return std::string("s+"); << 743 } else if(p == G4INCL::SigmaZero) { << 744 return std::string("s0"); << 745 } else if(p == G4INCL::SigmaMinus) { << 746 return std::string("s-"); << 747 } else if(p == G4INCL::antiProton) { << 748 return std::string("pb"); << 749 } else if(p == G4INCL::XiMinus) { << 750 return std::string("x-"); << 751 } else if(p == G4INCL::XiZero) { << 752 return std::string("x0"); << 753 } else if(p == G4INCL::antiNeutron) { << 754 return std::string("nb"); << 755 } else if(p == G4INCL::antiSigmaPlus) { << 756 return std::string("s+b"); << 757 } else if(p == G4INCL::antiSigmaZero) { << 758 return std::string("s0b"); << 759 } else if(p == G4INCL::antiSigmaMinus) { << 760 return std::string("s-b"); << 761 } else if(p == G4INCL::antiLambda) { << 762 return std::string("lb"); << 763 } else if(p == G4INCL::antiXiMinus) { << 764 return std::string("x-b"); << 765 } else if(p == G4INCL::antiXiZero) { << 766 return std::string("x0b"); << 767 } else if(p == G4INCL::KPlus) { << 768 return std::string("k+"); << 769 } else if(p == G4INCL::KZero) { << 770 return std::string("k0"); << 771 } else if(p == G4INCL::KZeroBar) { << 772 return std::string("k0b"); << 773 } else if(p == G4INCL::KMinus) { << 774 return std::string("k-"); << 775 } else if(p == G4INCL::KShort) { << 776 return std::string("ks"); << 777 } else if(p == G4INCL::KLong) { << 778 return std::string("kl"); << 779 } else if(p == G4INCL::Composite) { 455 } else if(p == G4INCL::Composite) { 780 return std::string("comp"); 456 return std::string("comp"); 781 } else if(p == G4INCL::Eta) { << 782 return std::string("eta"); << 783 } else if(p == G4INCL::Omega) { << 784 return std::string("omega"); << 785 } else if(p == G4INCL::EtaPrime) { << 786 return std::string("etap"); << 787 } else if(p == G4INCL::Photon) { << 788 return std::string("photon"); << 789 } 457 } 790 return std::string("unknown"); 458 return std::string("unknown"); 791 } 459 } 792 460 793 G4double getINCLMass(const ParticleType pt 461 G4double getINCLMass(const ParticleType pt) { 794 if(pt == Proton) { 462 if(pt == Proton) { 795 return protonMass; 463 return protonMass; 796 } else if(pt == Neutron) { 464 } else if(pt == Neutron) { 797 return neutronMass; 465 return neutronMass; 798 } else if(pt == PiPlus) { 466 } else if(pt == PiPlus) { 799 return piPlusMass; 467 return piPlusMass; 800 } else if(pt == PiMinus) { 468 } else if(pt == PiMinus) { 801 return piMinusMass; 469 return piMinusMass; 802 } else if(pt == PiZero) { 470 } else if(pt == PiZero) { 803 return piZeroMass; 471 return piZeroMass; 804 } else if(pt == SigmaPlus) { << 805 return SigmaPlusMass; << 806 } else if(pt == SigmaMinus) { << 807 return SigmaMinusMass; << 808 } else if(pt == SigmaZero) { << 809 return SigmaZeroMass; << 810 } else if(pt == Lambda) { << 811 return LambdaMass; << 812 } else if(pt == antiProton) { << 813 return antiProtonMass; << 814 } else if(pt == XiMinus) { << 815 return XiMinusMass; << 816 } else if(pt == XiZero) { << 817 return XiZeroMass; << 818 } else if(pt == antiNeutron) { << 819 return antiNeutronMass; << 820 } else if(pt == antiSigmaPlus) { << 821 return antiSigmaPlusMass; << 822 } else if(pt == antiSigmaMinus) { << 823 return antiSigmaMinusMass; << 824 } else if(pt == antiSigmaZero) { << 825 return antiSigmaZeroMass; << 826 } else if(pt == antiLambda) { << 827 return antiLambdaMass; << 828 } else if(pt == antiXiMinus) { << 829 return antiXiMinusMass; << 830 } else if(pt == antiXiZero) { << 831 return antiXiZeroMass; << 832 } else if(pt == KPlus) { << 833 return KPlusMass; << 834 } else if(pt == KZero) { << 835 return KZeroMass; << 836 } else if(pt == KZeroBar) { << 837 return KZeroBarMass; << 838 } else if(pt == KMinus) { << 839 return KMinusMass; << 840 } else if(pt == KShort) { << 841 return KShortMass; << 842 } else if(pt == KLong) { << 843 return KLongMass; << 844 } else if(pt == Eta) { << 845 return etaMass; << 846 } else if(pt == Omega) { << 847 return omegaMass; << 848 } else if(pt == EtaPrime) { << 849 return etaPrimeMass; << 850 } else if(pt == Photon) { << 851 return photonMass; << 852 } else { 472 } else { 853 INCL_ERROR("getMass : Unknown particle 473 INCL_ERROR("getMass : Unknown particle type." << '\n'); 854 return 0.0; 474 return 0.0; 855 } 475 } 856 } 476 } 857 << 477 858 G4double getRealMass(const ParticleType t) 478 G4double getRealMass(const ParticleType t) { 859 switch(t) { 479 switch(t) { 860 case Proton: 480 case Proton: 861 return theRealProtonMass; 481 return theRealProtonMass; 862 break; 482 break; 863 case Neutron: 483 case Neutron: 864 return theRealNeutronMass; 484 return theRealNeutronMass; 865 break; 485 break; 866 case PiPlus: 486 case PiPlus: 867 case PiMinus: 487 case PiMinus: 868 return theRealChargedPiMass; 488 return theRealChargedPiMass; 869 break; 489 break; 870 case PiZero: 490 case PiZero: 871 return theRealPiZeroMass; 491 return theRealPiZeroMass; 872 break; 492 break; 873 case Eta: << 874 return theRealEtaMass; << 875 break; << 876 case Omega: << 877 return theRealOmegaMass; << 878 break; << 879 case EtaPrime: << 880 return theRealEtaPrimeMass; << 881 break; << 882 case Photon: << 883 return theRealPhotonMass; << 884 break; << 885 case Lambda: << 886 return theRealLambdaMass; << 887 break; << 888 case KPlus: << 889 case KMinus: << 890 return theRealChargedKaonMass; << 891 break; << 892 case KZero: << 893 case KZeroBar: << 894 case KShort: << 895 case KLong: << 896 return theRealNeutralKaonMass; << 897 break; << 898 case SigmaPlus: << 899 return theRealSigmaPlusMass; << 900 break; << 901 case SigmaZero: << 902 return theRealSigmaZeroMass; << 903 break; << 904 case SigmaMinus: << 905 return theRealSigmaMinusMass; << 906 break; << 907 case antiProton: << 908 return theRealAntiProtonMass; << 909 break; << 910 case XiMinus: << 911 return theRealXiMinusMass; << 912 break; << 913 case XiZero: << 914 return theRealXiZeroMass; << 915 break; << 916 case antiNeutron: << 917 return theRealAntiNeutronMass; << 918 break; << 919 case antiSigmaPlus: << 920 return theRealAntiSigmaPlusMass; << 921 break; << 922 case antiSigmaZero: << 923 return theRealAntiSigmaZeroMass; << 924 break; << 925 case antiSigmaMinus: << 926 return theRealAntiSigmaMinusMass; << 927 break; << 928 case antiXiMinus: << 929 return theRealAntiXiMinusMass; << 930 break; << 931 case antiXiZero: << 932 return theRealAntiXiZeroMass; << 933 break; << 934 case antiLambda: << 935 return theRealAntiLambdaMass; << 936 break; << 937 default: 493 default: 938 INCL_ERROR("Particle::getRealMass : 494 INCL_ERROR("Particle::getRealMass : Unknown particle type." << '\n'); 939 return 0.0; 495 return 0.0; 940 break; 496 break; 941 } 497 } 942 } 498 } 943 << 499 944 G4double getRealMass(const G4int A, const << 500 G4double getRealMass(const G4int A, const G4int Z) { 945 // assert(A>=0); 501 // assert(A>=0); 946 // For nuclei with Z<0 or Z>A, assume th 502 // For nuclei with Z<0 or Z>A, assume that the exotic charge state is due to pions 947 if(Z<0 && S<0) << 948 return (A+S)*theRealNeutronMass - S*La << 949 else if(Z>A && S<0) << 950 return (A+S)*theRealProtonMass - S*Lam << 951 if(Z<0) 503 if(Z<0) 952 return (A)*theRealNeutronMass - Z*getR << 504 return A*neutronMass - Z*getRealMass(PiMinus); 953 else if(Z>A) 505 else if(Z>A) 954 return (A)*theRealProtonMass + (A-Z)*g << 506 return A*protonMass + (A-Z)*getRealMass(PiPlus); 955 else if(Z==0 && S==0) << 507 else if(Z==0) 956 return A*theRealNeutronMass; << 508 return A*getRealMass(Neutron); 957 else if(A==Z) 509 else if(A==Z) 958 return A*theRealProtonMass; << 510 return A*getRealMass(Proton); 959 else if(Z==0 && S<0) << 960 return (A+S)*theRealNeutronMass-S*Lamb << 961 else if(A>1) { 511 else if(A>1) { 962 #ifndef INCLXX_IN_GEANT4_MODE 512 #ifndef INCLXX_IN_GEANT4_MODE 963 return ::G4INCL::NuclearMassTable::get << 513 return ::G4INCL::NuclearMassTable::getMass(A,Z); 964 #else 514 #else 965 if(S<0) return theG4IonTable->GetNucle << 515 return theG4IonTable->GetNucleusMass(Z,A) / MeV; 966 else return theG4IonTable->GetNucle << 967 #endif 516 #endif 968 } else 517 } else 969 return 0.; 518 return 0.; 970 } 519 } 971 520 972 G4double getINCLMass(const G4int A, const << 521 G4double getINCLMass(const G4int A, const G4int Z) { 973 // assert(A>=0); 522 // assert(A>=0); 974 // For nuclei with Z<0 or Z>A, assume th 523 // For nuclei with Z<0 or Z>A, assume that the exotic charge state is due to pions 975 // Note that S<0 for lambda << 524 if(Z<0) 976 if(Z<0 && S<0) << 525 return A*neutronMass - Z*getINCLMass(PiMinus); 977 return (A+S)*neutronMass - S*LambdaMas << 978 else if(Z>A && S<0) << 979 return (A+S)*protonMass - S*LambdaMass << 980 else if(Z<0) << 981 return (A)*neutronMass - Z*getINCLMass << 982 else if(Z>A) 526 else if(Z>A) 983 return (A)*protonMass + (A-Z)*getINCLM << 527 return A*protonMass + (A-Z)*getINCLMass(PiPlus); 984 else if(A>1 && S<0) << 985 return Z*(protonMass - protonSeparatio << 986 else if(A>1) 528 else if(A>1) 987 return Z*(protonMass - protonSeparatio 529 return Z*(protonMass - protonSeparationEnergy) + (A-Z)*(neutronMass - neutronSeparationEnergy); 988 else if(A==1 && Z==0 && S==0) << 530 else if(A==1 && Z==0) 989 return getINCLMass(Neutron); 531 return getINCLMass(Neutron); 990 else if(A==1 && Z==1 && S==0) << 532 else if(A==1 && Z==1) 991 return getINCLMass(Proton); 533 return getINCLMass(Proton); 992 else if(A==1 && Z==0 && S==-1) << 993 return getINCLMass(Lambda); << 994 else 534 else 995 return 0.; 535 return 0.; 996 } 536 } 997 537 998 G4double getTableQValue(const G4int A1, co << 538 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2) { 999 return getTableMass(A1,Z1,S1) + getTable << 539 return getTableMass(A1,Z1) + getTableMass(A2,Z2) - getTableMass(A1+A2,Z1+Z2); 1000 } 540 } 1001 541 1002 G4double getTableQValue(const G4int A1, c << 542 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2, const G4int A3, const G4int Z3) { 1003 return getTableMass(A1,Z1,S1) + getTabl << 543 return getTableMass(A1,Z1) + getTableMass(A2,Z2) - getTableMass(A3,Z3) - getTableMass(A1+A2-A3,Z1+Z2-Z3); 1004 } 544 } 1005 545 1006 G4double getTableSpeciesMass(const Partic 546 G4double getTableSpeciesMass(const ParticleSpecies &p) { 1007 if(p.theType == Composite) 547 if(p.theType == Composite) 1008 return (*getTableMass)(p.theA, p.theZ << 548 return (*getTableMass)(p.theA, p.theZ); 1009 else 549 else 1010 return (*getTableParticleMass)(p.theT 550 return (*getTableParticleMass)(p.theType); 1011 } 551 } 1012 552 1013 G4int getMassNumber(const ParticleType t) << 553 G4int getMassNumber(const ParticleType t) { 1014 << 1015 switch(t) { 554 switch(t) { 1016 case Proton: 555 case Proton: 1017 case Neutron: 556 case Neutron: 1018 case DeltaPlusPlus: 557 case DeltaPlusPlus: 1019 case DeltaPlus: 558 case DeltaPlus: 1020 case DeltaZero: 559 case DeltaZero: 1021 case DeltaMinus: 560 case DeltaMinus: 1022 case SigmaPlus: << 1023 case SigmaZero: << 1024 case SigmaMinus: << 1025 case Lambda: << 1026 case XiZero: << 1027 case XiMinus: << 1028 return 1; 561 return 1; 1029 break; << 1030 case antiProton: << 1031 case antiNeutron: << 1032 case antiSigmaPlus: << 1033 case antiSigmaZero: << 1034 case antiSigmaMinus: << 1035 case antiLambda: << 1036 case antiXiZero: << 1037 case antiXiMinus: << 1038 return -1; << 1039 break; 562 break; 1040 case PiPlus: 563 case PiPlus: 1041 case PiMinus: 564 case PiMinus: 1042 case PiZero: 565 case PiZero: 1043 case KPlus: << 1044 case KZero: << 1045 case KZeroBar: << 1046 case KShort: << 1047 case KLong: << 1048 case KMinus: << 1049 case Eta: << 1050 case Omega: << 1051 case EtaPrime: << 1052 case Photon: << 1053 return 0; 566 return 0; 1054 break; 567 break; 1055 default: 568 default: 1056 return 0; 569 return 0; 1057 break; 570 break; 1058 } 571 } 1059 } 572 } 1060 573 1061 G4int getChargeNumber(const ParticleType 574 G4int getChargeNumber(const ParticleType t) { 1062 switch(t) { 575 switch(t) { 1063 case DeltaPlusPlus: 576 case DeltaPlusPlus: 1064 return 2; 577 return 2; 1065 break; 578 break; 1066 case Proton: 579 case Proton: 1067 case DeltaPlus: 580 case DeltaPlus: 1068 case PiPlus: 581 case PiPlus: 1069 case SigmaPlus: << 1070 case KPlus: << 1071 case antiSigmaMinus: << 1072 case antiXiMinus: << 1073 return 1; 582 return 1; 1074 break; << 583 break; 1075 case Neutron: 584 case Neutron: 1076 case DeltaZero: 585 case DeltaZero: 1077 case PiZero: 586 case PiZero: 1078 case SigmaZero: << 1079 case Lambda: << 1080 case KZero: << 1081 case KZeroBar: << 1082 case KShort: << 1083 case KLong: << 1084 case Eta: << 1085 case Omega: << 1086 case EtaPrime: << 1087 case Photon: << 1088 case XiZero: << 1089 case antiNeutron: << 1090 case antiLambda: << 1091 case antiSigmaZero: << 1092 case antiXiZero: << 1093 return 0; 587 return 0; 1094 break; 588 break; 1095 case DeltaMinus: 589 case DeltaMinus: 1096 case PiMinus: 590 case PiMinus: 1097 case SigmaMinus: << 1098 case KMinus: << 1099 case antiProton: << 1100 case XiMinus: << 1101 case antiSigmaPlus: << 1102 return -1; 591 return -1; 1103 break; << 1104 default: << 1105 return 0; << 1106 break; 592 break; 1107 } << 1108 } << 1109 << 1110 G4int getStrangenessNumber(const Particle << 1111 switch(t) { << 1112 case DeltaPlusPlus: << 1113 case DeltaPlus: << 1114 case DeltaZero: << 1115 case DeltaMinus: << 1116 case Proton: << 1117 case Neutron: << 1118 case PiPlus: << 1119 case PiZero: << 1120 case PiMinus: << 1121 case Eta: << 1122 case Omega: << 1123 case EtaPrime: << 1124 case Photon: << 1125 case antiProton: << 1126 case antiNeutron: << 1127 return 0; << 1128 break; << 1129 case XiMinus: << 1130 case XiZero: << 1131 case antiXiMinus: << 1132 case antiXiZero: << 1133 return 2; << 1134 break; << 1135 case antiLambda: << 1136 case antiSigmaPlus: << 1137 case antiSigmaZero: << 1138 case antiSigmaMinus: << 1139 return 1; << 1140 break; << 1141 case Lambda: << 1142 case SigmaPlus: << 1143 case SigmaZero: << 1144 case SigmaMinus: << 1145 case KZeroBar: << 1146 case KMinus: << 1147 return -1; << 1148 break; << 1149 case KPlus: << 1150 case KZero: << 1151 return 1; << 1152 break; << 1153 case KShort: << 1154 return 0; << 1155 break; << 1156 case KLong: << 1157 return 0; << 1158 break; << 1159 default: 593 default: 1160 return 0; 594 return 0; 1161 break; 595 break; 1162 } 596 } 1163 } 597 } 1164 598 1165 G4double getNuclearRadius(const ParticleT 599 G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z) { 1166 // assert(A>=0); 600 // assert(A>=0); 1167 if(A > 19 || (A < 6 && A >= 2)) { << 601 if(A >= 19 || (A < 6 && A >= 2)) { 1168 // For large (Woods-Saxon or Modified 602 // For large (Woods-Saxon or Modified Harmonic Oscillator) or small 1169 // (Gaussian) nuclei, the radius para 603 // (Gaussian) nuclei, the radius parameter is just the nuclear radius 1170 return getRadiusParameter(t,A,Z); 604 return getRadiusParameter(t,A,Z); 1171 } else if(A < clusterTableASize && Z>=0 605 } else if(A < clusterTableASize && Z>=0 && Z < clusterTableZSize && A >= 6) { 1172 const G4double thisRMS = positionRMS[ 606 const G4double thisRMS = positionRMS[Z][A]; 1173 if(thisRMS>0.0) 607 if(thisRMS>0.0) 1174 return thisRMS; 608 return thisRMS; 1175 else { 609 else { 1176 INCL_DEBUG("getNuclearRadius: Radiu 610 INCL_DEBUG("getNuclearRadius: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << '\n' 1177 << "returning radius for 611 << "returning radius for C12"); 1178 return positionRMS[6][12]; 612 return positionRMS[6][12]; 1179 } 613 } 1180 } else if(A <= 19) { << 614 } else if(A < 19) { 1181 const G4double theRadiusParameter = g 615 const G4double theRadiusParameter = getRadiusParameter(t, A, Z); 1182 const G4double theDiffusenessParamete 616 const G4double theDiffusenessParameter = getSurfaceDiffuseness(t, A, Z); 1183 // The formula yields the nuclear RMS 617 // The formula yields the nuclear RMS radius based on the parameters of 1184 // the nuclear-density function 618 // the nuclear-density function 1185 return 1.225*theDiffusenessParameter* 619 return 1.225*theDiffusenessParameter* 1186 std::sqrt((2.+5.*theRadiusParameter 620 std::sqrt((2.+5.*theRadiusParameter)/(2.+3.*theRadiusParameter)); 1187 } else { 621 } else { 1188 INCL_ERROR("getNuclearRadius: No radi 622 INCL_ERROR("getNuclearRadius: No radius for nucleus A = " << A << " Z = " << Z << '\n'); 1189 return 0.0; 623 return 0.0; 1190 } 624 } 1191 } 625 } 1192 626 1193 G4double getLargestNuclearRadius(const G4 627 G4double getLargestNuclearRadius(const G4int A, const G4int Z) { 1194 return Math::max(getNuclearRadius(Proto 628 return Math::max(getNuclearRadius(Proton, A, Z), getNuclearRadius(Neutron, A, Z)); 1195 } 629 } 1196 630 1197 G4double getRadiusParameter(const Particl 631 G4double getRadiusParameter(const ParticleType t, const G4int A, const G4int Z) { 1198 // assert(A>0); 632 // assert(A>0); 1199 if(A > 19) { << 633 if(A >= 28) { 1200 // radius fit for lambdas << 1201 if(t==Lambda){ << 1202 G4double r0 = (1.128+0.439*std::pow( << 1203 return r0; << 1204 } << 1205 // phenomenological radius fit 634 // phenomenological radius fit 1206 G4double r0 = (2.745e-4 * A + 1.063) 635 G4double r0 = (2.745e-4 * A + 1.063) * std::pow(A, 1.0/3.0); 1207 // HFB calculations << 1208 if(getRPCorrelationCoefficient(t)<1.) << 1209 G4double r0hfb = HFB::getRadiusParam << 1210 if(r0hfb>0.)r0 = r0hfb; << 1211 } << 1212 // << 1213 if(t==Neutron) 636 if(t==Neutron) 1214 r0 += neutronSkin; 637 r0 += neutronSkin; 1215 return r0; 638 return r0; 1216 } else if(A < 6 && A >= 2) { 639 } else if(A < 6 && A >= 2) { 1217 if(Z<clusterTableZSize && Z>=0) { 640 if(Z<clusterTableZSize && Z>=0) { 1218 const G4double thisRMS = positionRM 641 const G4double thisRMS = positionRMS[Z][A]; 1219 if(thisRMS>0.0) 642 if(thisRMS>0.0) 1220 return thisRMS; 643 return thisRMS; 1221 else { 644 else { 1222 INCL_DEBUG("getRadiusParameter: R 645 INCL_DEBUG("getRadiusParameter: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << '\n' 1223 << "returning radius f 646 << "returning radius for C12"); 1224 return positionRMS[6][12]; 647 return positionRMS[6][12]; 1225 } 648 } 1226 } else { 649 } else { 1227 INCL_DEBUG("getRadiusParameter: Rad 650 INCL_DEBUG("getRadiusParameter: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << '\n' 1228 << "returning radius for 651 << "returning radius for C12"); 1229 return positionRMS[6][12]; 652 return positionRMS[6][12]; 1230 } 653 } 1231 } else if(A <= 19 && A >= 6) { << 654 } else if(A < 28 && A >= 6) { 1232 if(t==Lambda){ << 1233 G4double r0 = (1.128+0.439*std::pow( << 1234 return r0; << 1235 } << 1236 // HFB calculations << 1237 if(getRPCorrelationCoefficient(t)<1.) << 1238 G4double r0hfb = HFB::getSurfaceDiff << 1239 if(r0hfb>0.)return r0hfb; << 1240 } << 1241 return mediumRadius[A-1]; 655 return mediumRadius[A-1]; 1242 // return 1.581*mediumDiffusenes 656 // return 1.581*mediumDiffuseness[A-1]*(2.+5.*mediumRadius[A-1])/(2.+3.*mediumRadius[A-1]); 1243 } else { 657 } else { 1244 INCL_ERROR("getRadiusParameter: No ra 658 INCL_ERROR("getRadiusParameter: No radius for nucleus A = " << A << " Z = " << Z << '\n'); 1245 return 0.0; 659 return 0.0; 1246 } 660 } 1247 } 661 } 1248 662 1249 G4double getMaximumNuclearRadius(const Pa 663 G4double getMaximumNuclearRadius(const ParticleType t, const G4int A, const G4int Z) { 1250 const G4double XFOISA = 8.0; 664 const G4double XFOISA = 8.0; 1251 if(A > 19) { << 665 if(A >= 19) { 1252 return getNuclearRadius(t,A,Z) + XFOI 666 return getNuclearRadius(t,A,Z) + XFOISA * getSurfaceDiffuseness(t,A,Z); 1253 } else if(A <= 19 && A >= 6) { << 667 } else if(A < 19 && A >= 6) { 1254 return 5.5 + 0.3 * (G4double(A) - 6.0 668 return 5.5 + 0.3 * (G4double(A) - 6.0)/12.0; 1255 } else if(A >= 2) { 669 } else if(A >= 2) { 1256 return getNuclearRadius(t, A, Z) + 4. 670 return getNuclearRadius(t, A, Z) + 4.5; 1257 } else { 671 } else { 1258 INCL_ERROR("getMaximumNuclearRadius : 672 INCL_ERROR("getMaximumNuclearRadius : No maximum radius for nucleus A = " << A << " Z = " << Z << '\n'); 1259 return 0.0; 673 return 0.0; 1260 } 674 } 1261 } 675 } 1262 676 1263 G4double getSurfaceDiffuseness(const Part 677 G4double getSurfaceDiffuseness(const ParticleType t, const G4int A, const G4int Z) { 1264 if(A > 19) { << 678 if(A >= 28) { 1265 // phenomenological fit << 1266 G4double a = 1.63e-4 * A + 0.510; 679 G4double a = 1.63e-4 * A + 0.510; 1267 // HFB calculations << 1268 if(getRPCorrelationCoefficient(t)<1.) << 1269 G4double ahfb = HFB::getSurfaceDiff << 1270 if(ahfb>0.)a=ahfb; << 1271 } << 1272 // << 1273 if(t==Lambda){ << 1274 // Like for neutrons << 1275 G4double ahfb = HFB::getSurfaceDiff << 1276 if(ahfb>0.)a=ahfb; << 1277 } << 1278 if(t==Neutron) 680 if(t==Neutron) 1279 a += neutronHalo; 681 a += neutronHalo; 1280 return a; 682 return a; 1281 } else if(A <= 19 && A >= 6) { << 683 } else if(A < 28 && A >= 19) { 1282 // HFB calculations << 684 return mediumDiffuseness[A-1]; 1283 if(getRPCorrelationCoefficient(t)<1.) << 685 } else if(A < 19 && A >= 6) { 1284 G4double ahfb = HFB::getRadiusParam << 1285 if(ahfb>0.)return ahfb; << 1286 } << 1287 return mediumDiffuseness[A-1]; 686 return mediumDiffuseness[A-1]; 1288 } else if(A < 6 && A >= 2) { 687 } else if(A < 6 && A >= 2) { 1289 INCL_ERROR("getSurfaceDiffuseness: wa 688 INCL_ERROR("getSurfaceDiffuseness: was called for A = " << A << " Z = " << Z << '\n'); 1290 return 0.0; 689 return 0.0; 1291 } else { 690 } else { 1292 INCL_ERROR("getSurfaceDiffuseness: No 691 INCL_ERROR("getSurfaceDiffuseness: No diffuseness for nucleus A = " << A << " Z = " << Z << '\n'); 1293 return 0.0; 692 return 0.0; 1294 } 693 } 1295 } 694 } 1296 695 1297 G4double getMomentumRMS(const G4int A, co 696 G4double getMomentumRMS(const G4int A, const G4int Z) { 1298 // assert(Z>=0 && A>=0 && Z<=A); 697 // assert(Z>=0 && A>=0 && Z<=A); 1299 return getFermiMomentum(A,Z) * Math::sq 698 return getFermiMomentum(A,Z) * Math::sqrtThreeFifths; 1300 } 699 } 1301 700 1302 G4double getSeparationEnergyINCL(const Pa 701 G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/) { 1303 if(t==Proton) 702 if(t==Proton) 1304 return theINCLProtonSeparationEnergy; 703 return theINCLProtonSeparationEnergy; 1305 else if(t==Neutron) 704 else if(t==Neutron) 1306 return theINCLNeutronSeparationEnergy 705 return theINCLNeutronSeparationEnergy; 1307 else if(t==Lambda) << 1308 return theINCLLambdaSeparationEnergy; << 1309 else if(t==antiProton) << 1310 return theINCLantiProtonSeparationEne << 1311 else { 706 else { 1312 INCL_ERROR("ParticleTable::getSeparat 707 INCL_ERROR("ParticleTable::getSeparationEnergyINCL : Unknown particle type." << '\n'); 1313 return 0.0; 708 return 0.0; 1314 } 709 } 1315 } 710 } 1316 711 1317 G4double getSeparationEnergyReal(const Pa 712 G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z) { 1318 // Real separation energies for all nuc 713 // Real separation energies for all nuclei 1319 if(t==Proton) 714 if(t==Proton) 1320 return (*getTableParticleMass)(Proton << 715 return (*getTableParticleMass)(Proton) + (*getTableMass)(A-1,Z-1) - (*getTableMass)(A,Z); 1321 else if(t==Neutron) 716 else if(t==Neutron) 1322 return (*getTableParticleMass)(Neutro << 717 return (*getTableParticleMass)(Neutron) + (*getTableMass)(A-1,Z) - (*getTableMass)(A,Z); 1323 else if(t==Lambda) << 1324 return (*getTableParticleMass)(Lambda << 1325 else { 718 else { 1326 INCL_ERROR("ParticleTable::getSeparat 719 INCL_ERROR("ParticleTable::getSeparationEnergyReal : Unknown particle type." << '\n'); 1327 return 0.0; 720 return 0.0; 1328 } 721 } 1329 } 722 } 1330 723 1331 G4double getSeparationEnergyRealForLight( 724 G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z) { 1332 // Real separation energies for light n 725 // Real separation energies for light nuclei, fixed values for heavy nuclei 1333 if(Z<clusterTableZSize && A<clusterTabl 726 if(Z<clusterTableZSize && A<clusterTableASize) 1334 return getSeparationEnergyReal(t, A, 727 return getSeparationEnergyReal(t, A, Z); 1335 else 728 else 1336 return getSeparationEnergyINCL(t, A, 729 return getSeparationEnergyINCL(t, A, Z); 1337 } 730 } 1338 731 1339 G4double getProtonSeparationEnergy() { re 732 G4double getProtonSeparationEnergy() { return protonSeparationEnergy; } 1340 733 1341 G4double getNeutronSeparationEnergy() { r 734 G4double getNeutronSeparationEnergy() { return neutronSeparationEnergy; } 1342 735 1343 G4double getLambdaSeparationEnergy() { re << 736 void setProtonSeparationEnergy(const G4double s) { protonSeparationEnergy = s; } 1344 << 1345 void setProtonSeparationEnergy(const G4do << 1346 << 1347 void setNeutronSeparationEnergy(const G4d << 1348 737 1349 void setLambdaSeparationEnergy(const G4do << 738 void setNeutronSeparationEnergy(const G4double s) { neutronSeparationEnergy = s; } 1350 739 1351 std::string getElementName(const G4int Z) 740 std::string getElementName(const G4int Z) { 1352 if(Z<1) { 741 if(Z<1) { 1353 INCL_WARN("getElementName called with 742 INCL_WARN("getElementName called with Z<1" << '\n'); 1354 return elementTable[0]; 743 return elementTable[0]; 1355 } else if(Z<elementTableSize) 744 } else if(Z<elementTableSize) 1356 return elementTable[Z]; 745 return elementTable[Z]; 1357 else 746 else 1358 return getIUPACElementName(Z); 747 return getIUPACElementName(Z); 1359 } 748 } 1360 749 1361 std::string getIUPACElementName(const G4i 750 std::string getIUPACElementName(const G4int Z) { 1362 std::stringstream elementStream; 751 std::stringstream elementStream; 1363 elementStream << Z; 752 elementStream << Z; 1364 std::string elementName = elementStream 753 std::string elementName = elementStream.str(); 1365 std::transform(elementName.begin(), ele 754 std::transform(elementName.begin(), elementName.end(), elementName.begin(), intToIUPAC); 1366 elementName[0] = (char)std::toupper(ele << 755 elementName[0] = std::toupper(elementName.at(0)); 1367 return elementName; 756 return elementName; 1368 } 757 } 1369 758 1370 G4int parseElement(std::string pS) { 759 G4int parseElement(std::string pS) { 1371 // Normalize the element name 760 // Normalize the element name 1372 std::transform(pS.begin(), pS.end(), pS 761 std::transform(pS.begin(), pS.end(), pS.begin(), ::tolower); 1373 pS[0] = (char)std::toupper(pS[0]); << 762 pS[0] = ::toupper(pS[0]); 1374 763 1375 const std::string *iter = std::find(ele 764 const std::string *iter = std::find(elementTable, elementTable+elementTableSize, pS); 1376 if(iter != elementTable+elementTableSiz 765 if(iter != elementTable+elementTableSize) 1377 return G4int(iter - elementTable); << 766 return iter - elementTable; 1378 else 767 else 1379 return ParticleTable::parseIUPACEleme 768 return ParticleTable::parseIUPACElement(pS); 1380 } 769 } 1381 770 1382 G4int parseIUPACElement(std::string const << 771 G4int parseIUPACElement(std::string const &s) { 1383 // Normalise to lower case 772 // Normalise to lower case 1384 std::string elementName(sel); << 773 std::string elementName(s); 1385 std::transform(elementName.begin(), ele 774 std::transform(elementName.begin(), elementName.end(), elementName.begin(), ::tolower); 1386 // Return 0 if the element name contain 775 // Return 0 if the element name contains anything but IUPAC digits 1387 if(elementName.find_first_not_of(elemen 776 if(elementName.find_first_not_of(elementIUPACDigits)!=std::string::npos) 1388 return 0; 777 return 0; 1389 std::transform(elementName.begin(), ele 778 std::transform(elementName.begin(), elementName.end(), elementName.begin(), iupacToInt); 1390 std::stringstream elementStream(element 779 std::stringstream elementStream(elementName); 1391 G4int Z; 780 G4int Z; 1392 elementStream >> Z; 781 elementStream >> Z; 1393 return Z; 782 return Z; 1394 } 783 } 1395 784 1396 IsotopicDistribution const &getNaturalIso 785 IsotopicDistribution const &getNaturalIsotopicDistribution(const G4int Z) { 1397 return getNaturalIsotopicDistributions( 786 return getNaturalIsotopicDistributions()->getIsotopicDistribution(Z); 1398 } 787 } 1399 788 1400 G4int drawRandomNaturalIsotope(const G4in 789 G4int drawRandomNaturalIsotope(const G4int Z) { 1401 return getNaturalIsotopicDistributions( 790 return getNaturalIsotopicDistributions()->drawRandomIsotope(Z); 1402 } 791 } 1403 792 1404 G4double getFermiMomentumConstant(const G 793 G4double getFermiMomentumConstant(const G4int /*A*/, const G4int /*Z*/) { 1405 return constantFermiMomentum; 794 return constantFermiMomentum; 1406 } 795 } 1407 796 1408 G4double getFermiMomentumConstantLight(co 797 G4double getFermiMomentumConstantLight(const G4int A, const G4int Z) { 1409 // assert(Z>0 && A>0 && Z<=A); 798 // assert(Z>0 && A>0 && Z<=A); 1410 if(Z<clusterTableZSize && A<clusterTabl 799 if(Z<clusterTableZSize && A<clusterTableASize) { 1411 const G4double rms = momentumRMS[Z][A 800 const G4double rms = momentumRMS[Z][A]; 1412 return ((rms>0.) ? rms : momentumRMS[ 801 return ((rms>0.) ? rms : momentumRMS[6][12]) * Math::sqrtFiveThirds; 1413 } else 802 } else 1414 return getFermiMomentumConstant(A,Z); 803 return getFermiMomentumConstant(A,Z); 1415 } 804 } 1416 805 1417 G4double getFermiMomentumMassDependent(co 806 G4double getFermiMomentumMassDependent(const G4int A, const G4int /*Z*/) { 1418 // assert(A>0); 807 // assert(A>0); 1419 static const G4double alphaParam = 259. 808 static const G4double alphaParam = 259.416; // MeV/c 1420 static const G4double betaParam = 152. 809 static const G4double betaParam = 152.824; // MeV/c 1421 static const G4double gammaParam = 9.51 810 static const G4double gammaParam = 9.5157E-2; 1422 return alphaParam - betaParam*std::exp( 811 return alphaParam - betaParam*std::exp(-gammaParam*((G4double)A)); 1423 } 812 } 1424 813 1425 G4double getRPCorrelationCoefficient(cons 814 G4double getRPCorrelationCoefficient(const ParticleType t) { 1426 // assert(t==Proton || t==Neutron || t==Lambd << 815 // assert(t==Proton || t==Neutron); 1427 return rpCorrelationCoefficient[t]; 816 return rpCorrelationCoefficient[t]; 1428 } 817 } 1429 818 1430 G4double getNeutronSkin() { return neutro 819 G4double getNeutronSkin() { return neutronSkin; } 1431 820 1432 G4double getNeutronHalo() { return neutro 821 G4double getNeutronHalo() { return neutronHalo; } 1433 822 1434 G4ThreadLocal G4double minDeltaMass = 0.; 823 G4ThreadLocal G4double minDeltaMass = 0.; 1435 G4ThreadLocal G4double minDeltaMass2 = 0. 824 G4ThreadLocal G4double minDeltaMass2 = 0.; 1436 G4ThreadLocal G4double minDeltaMassRndm = 825 G4ThreadLocal G4double minDeltaMassRndm = 0.; 1437 G4ThreadLocal NuclearMassFn getTableMass 826 G4ThreadLocal NuclearMassFn getTableMass = NULL; 1438 G4ThreadLocal ParticleMassFn getTablePart 827 G4ThreadLocal ParticleMassFn getTableParticleMass = NULL; 1439 G4ThreadLocal SeparationEnergyFn getSepar 828 G4ThreadLocal SeparationEnergyFn getSeparationEnergy = NULL; 1440 G4ThreadLocal FermiMomentumFn getFermiMom 829 G4ThreadLocal FermiMomentumFn getFermiMomentum = NULL; 1441 830 1442 ParticleType getPionType(const G4int isos 831 ParticleType getPionType(const G4int isosp) { 1443 // assert(isosp == -2 || isosp == 0 || isosp 832 // assert(isosp == -2 || isosp == 0 || isosp == 2); 1444 if (isosp == -2) { 833 if (isosp == -2) { 1445 return PiMinus; 834 return PiMinus; 1446 } 835 } 1447 else if (isosp == 0) { 836 else if (isosp == 0) { 1448 return PiZero; 837 return PiZero; 1449 } 838 } 1450 else { 839 else { 1451 return PiPlus; 840 return PiPlus; 1452 } 841 } 1453 } 842 } 1454 843 1455 ParticleType getNucleonType(const G4int i 844 ParticleType getNucleonType(const G4int isosp) { 1456 // assert(isosp == -1 || isosp == 1); 845 // assert(isosp == -1 || isosp == 1); 1457 if (isosp == -1) { 846 if (isosp == -1) { 1458 return Neutron; 847 return Neutron; 1459 } 848 } 1460 else { 849 else { 1461 return Proton; 850 return Proton; 1462 } 851 } 1463 } 852 } 1464 853 1465 ParticleType getDeltaType(const G4int iso 854 ParticleType getDeltaType(const G4int isosp) { 1466 // assert(isosp == -3 || isosp == -1 || isosp 855 // assert(isosp == -3 || isosp == -1 || isosp == 1 || isosp == 3); 1467 if (isosp == -3) { 856 if (isosp == -3) { 1468 return DeltaMinus; 857 return DeltaMinus; 1469 } 858 } 1470 else if (isosp == -1) { 859 else if (isosp == -1) { 1471 return DeltaZero; 860 return DeltaZero; 1472 } 861 } 1473 else if (isosp == 1) { 862 else if (isosp == 1) { 1474 return DeltaPlus; 863 return DeltaPlus; 1475 } 864 } 1476 else { 865 else { 1477 return DeltaPlusPlus; 866 return DeltaPlusPlus; 1478 } 867 } 1479 } 868 } 1480 869 1481 ParticleType getSigmaType(const G4int iso << 1482 // assert(isosp == -2 || isosp == 0 || isosp << 1483 if (isosp == -2) { << 1484 return SigmaMinus; << 1485 } << 1486 else if (isosp == 0) { << 1487 return SigmaZero; << 1488 } << 1489 else { << 1490 return SigmaPlus; << 1491 } << 1492 } << 1493 << 1494 ParticleType getXiType(const G4int isosp) << 1495 // assert(isosp == -1 || isosp == 1); << 1496 if (isosp == -1) { << 1497 return XiMinus; << 1498 } << 1499 else { << 1500 return XiZero; << 1501 } << 1502 } << 1503 << 1504 /*ParticleType getAntiNucleonType(const G4i << 1505 // assert(isosp == -1); //|| isosp == 1 << 1506 if (isosp == -1) { << 1507 return antiProton; << 1508 } << 1509 else { << 1510 return antiNeutron; << 1511 } << 1512 }*/ << 1513 << 1514 ParticleType getAntiSigmaType(const G4int << 1515 // assert(isosp == -2 || isosp == 0 || isosp << 1516 if (isosp == -2) { << 1517 return antiSigmaPlus; << 1518 } << 1519 else if (isosp == 0) { << 1520 return antiSigmaZero; << 1521 } << 1522 else { << 1523 return antiSigmaMinus; << 1524 } << 1525 } << 1526 << 1527 ParticleType getAntiXiType(const G4int is << 1528 // assert(isosp == -1 || isosp == 1); << 1529 if (isosp == -1) { << 1530 return antiXiZero; << 1531 } << 1532 else { << 1533 return antiXiMinus; << 1534 } << 1535 } << 1536 << 1537 ParticleType getKaonType(const G4int isos << 1538 // assert(isosp == -1 || isosp == 1); << 1539 if (isosp == -1) { << 1540 return KZero; << 1541 } << 1542 else { << 1543 return KPlus; << 1544 } << 1545 } << 1546 << 1547 ParticleType getAntiKaonType(const G4int << 1548 // assert(isosp == -1 || isosp == 1); << 1549 if (isosp == -1) { << 1550 return KMinus; << 1551 } << 1552 else { << 1553 return KZeroBar; << 1554 } << 1555 } << 1556 << 1557 G4double getWidth(const ParticleType pt) << 1558 // assert(pt == PiPlus || pt == PiMinus || pt << 1559 if(pt == PiPlus) { << 1560 return piPlusWidth; << 1561 } else if(pt == PiMinus) { << 1562 return piMinusWidth; << 1563 } else if(pt == PiZero) { << 1564 return piZeroWidth; << 1565 } else if(pt == Eta) { << 1566 return etaWidth; << 1567 } else if(pt == Omega) { << 1568 return omegaWidth; << 1569 } else if(pt == EtaPrime) { << 1570 return etaPrimeWidth; << 1571 } else if(pt == SigmaPlus) { << 1572 return SigmaPlusWidth; << 1573 } else if(pt == SigmaZero) { << 1574 return SigmaZeroWidth; << 1575 } else if(pt == SigmaMinus) { << 1576 return SigmaMinusWidth; << 1577 } else if(pt == KPlus) { << 1578 return KPlusWidth; << 1579 } else if(pt == KMinus) { << 1580 return KMinusWidth; << 1581 } else if(pt == KShort) { << 1582 return KShortWidth; << 1583 } else if(pt == KLong) { << 1584 return KLongWidth; << 1585 } else if(pt == Lambda) { << 1586 return LambdaWidth; << 1587 } else if(pt == XiMinus) { << 1588 return XiMinusWidth; << 1589 } else if(pt == XiZero) { << 1590 return XiZeroWidth; << 1591 } else if(pt == antiSigmaPlus) { << 1592 return antiSigmaPlusWidth; << 1593 } else if(pt == antiSigmaZero) { << 1594 return antiSigmaZeroWidth; << 1595 } else if(pt == antiSigmaMinus) { << 1596 return antiSigmaMinusWidth; << 1597 } else if(pt == antiLambda) { << 1598 return antiLambdaWidth; << 1599 } else if(pt == antiXiMinus) { << 1600 return antiXiMinusWidth; << 1601 } else if(pt == antiXiZero) { << 1602 return antiXiZeroWidth; << 1603 } else { << 1604 INCL_ERROR("getWidth : Unknown << 1605 return 0.0; << 1606 } << 1607 } << 1608 << 1609 } // namespace ParticleTable 870 } // namespace ParticleTable 1610 } // namespace G4INCL 871 } // namespace G4INCL 1611 872 1612 873