Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 33 // 32 // 34 #define INCLXX_IN_GEANT4_MODE 1 33 #define INCLXX_IN_GEANT4_MODE 1 35 34 36 #include "globals.hh" 35 #include "globals.hh" 37 36 38 #include "G4INCLParticleTable.hh" 37 #include "G4INCLParticleTable.hh" 39 #include "G4INCLNuclearMassTable.hh" 38 #include "G4INCLNuclearMassTable.hh" 40 #include <algorithm> 39 #include <algorithm> 41 // #include <cassert> 40 // #include <cassert> 42 #include <cmath> 41 #include <cmath> 43 #include <cctype> 42 #include <cctype> 44 #include <sstream> 43 #include <sstream> 45 #ifdef INCLXX_IN_GEANT4_MODE 44 #ifdef INCLXX_IN_GEANT4_MODE 46 #include "G4SystemOfUnits.hh" 45 #include "G4SystemOfUnits.hh" 47 #endif 46 #endif 48 47 49 #ifdef INCLXX_IN_GEANT4_MODE 48 #ifdef INCLXX_IN_GEANT4_MODE 50 #include "G4PhysicalConstants.hh" 49 #include "G4PhysicalConstants.hh" 51 #include "G4SystemOfUnits.hh" 50 #include "G4SystemOfUnits.hh" 52 #endif 51 #endif 53 52 54 namespace G4INCL { 53 namespace G4INCL { 55 54 56 namespace ParticleTable { 55 namespace ParticleTable { 57 56 58 namespace { 57 namespace { 59 58 60 /// \brief Static instance of the Natura 59 /// \brief Static instance of the NaturalIsotopicAbundances class 61 const NaturalIsotopicDistributions *theN 60 const NaturalIsotopicDistributions *theNaturalIsotopicDistributions = NULL; 62 61 63 const G4double theINCLNucleonMass = 938. 62 const G4double theINCLNucleonMass = 938.2796; 64 const G4double theINCLPionMass = 138.0; 63 const G4double theINCLPionMass = 138.0; 65 const G4double theINCLLambdaMass = 1115. << 66 //const G4double theINCLSigmaMass = 1197 << 67 //const G4double theINCLKaonMass = 497.6 << 68 const G4double theINCLEtaMass = 547.862; << 69 const G4double theINCLOmegaMass = 782.65 << 70 const G4double theINCLEtaPrimeMass = 957 << 71 const G4double theINCLPhotonMass = 0.0; << 72 G4ThreadLocal G4double protonMass = 0.0; 64 G4ThreadLocal G4double protonMass = 0.0; 73 G4ThreadLocal G4double neutronMass = 0.0 65 G4ThreadLocal G4double neutronMass = 0.0; 74 G4ThreadLocal G4double piPlusMass = 0.0; 66 G4ThreadLocal G4double piPlusMass = 0.0; 75 G4ThreadLocal G4double piMinusMass = 0.0 67 G4ThreadLocal G4double piMinusMass = 0.0; 76 G4ThreadLocal G4double piZeroMass = 0.0; 68 G4ThreadLocal G4double piZeroMass = 0.0; 77 G4ThreadLocal G4double SigmaPlusMass = 0 << 78 G4ThreadLocal G4double SigmaZeroMass = 0 << 79 G4ThreadLocal G4double SigmaMinusMass = << 80 G4ThreadLocal G4double LambdaMass = 0.0; << 81 G4ThreadLocal G4double XiMinusMass = 0.0 << 82 G4ThreadLocal G4double XiZeroMass = 0.0; << 83 G4ThreadLocal G4double antiProtonMass = << 84 G4ThreadLocal G4double antiNeutronMass = << 85 G4ThreadLocal G4double antiSigmaPlusMass << 86 G4ThreadLocal G4double antiSigmaZeroMass << 87 G4ThreadLocal G4double antiSigmaMinusMas << 88 G4ThreadLocal G4double antiLambdaMass = << 89 G4ThreadLocal G4double antiXiMinusMass = << 90 G4ThreadLocal G4double antiXiZeroMass = << 91 G4ThreadLocal G4double KPlusMass = 0.0; << 92 G4ThreadLocal G4double KZeroMass = 0.0; << 93 G4ThreadLocal G4double KZeroBarMass = 0. << 94 G4ThreadLocal G4double KShortMass = 0.0; << 95 G4ThreadLocal G4double KLongMass = 0.0; << 96 G4ThreadLocal G4double KMinusMass = 0.0; << 97 G4ThreadLocal G4double etaMass = 0.0; << 98 G4ThreadLocal G4double omegaMass = 0.0; << 99 G4ThreadLocal G4double etaPrimeMass = 0. << 100 G4ThreadLocal G4double photonMass = 0.0; << 101 69 102 // Hard-coded values of the real particl 70 // Hard-coded values of the real particle masses (MeV/c^2) 103 G4ThreadLocal G4double theRealProtonMass 71 G4ThreadLocal G4double theRealProtonMass = 938.27203; 104 G4ThreadLocal G4double theRealNeutronMas 72 G4ThreadLocal G4double theRealNeutronMass = 939.56536; 105 G4ThreadLocal G4double theRealChargedPiM 73 G4ThreadLocal G4double theRealChargedPiMass = 139.57018; 106 G4ThreadLocal G4double theRealPiZeroMass 74 G4ThreadLocal G4double theRealPiZeroMass = 134.9766; 107 G4ThreadLocal G4double theRealLambdaMass << 108 G4ThreadLocal G4double theRealSigmaPlusM << 109 G4ThreadLocal G4double theRealSigmaZeroM << 110 G4ThreadLocal G4double theRealSigmaMinus << 111 G4ThreadLocal G4double theRealAntiProton << 112 G4ThreadLocal G4double theRealXiMinusMas << 113 G4ThreadLocal G4double theRealXiZeroMass << 114 G4ThreadLocal G4double theRealAntiNeutro << 115 G4ThreadLocal G4double theRealAntiLambda << 116 G4ThreadLocal G4double theRealAntiSigmaP << 117 G4ThreadLocal G4double theRealAntiSigmaZ << 118 G4ThreadLocal G4double theRealAntiSigmaM << 119 G4ThreadLocal G4double theRealAntiXiMinu << 120 G4ThreadLocal G4double theRealAntiXiZero << 121 G4ThreadLocal G4double theRealChargedKao << 122 G4ThreadLocal G4double theRealNeutralKao << 123 G4ThreadLocal G4double theRealEtaMass = << 124 G4ThreadLocal G4double theRealOmegaMass << 125 G4ThreadLocal G4double theRealEtaPrimeMa << 126 G4ThreadLocal G4double theRealPhotonMass << 127 << 128 // Width (second) << 129 const G4double theChargedPiWidth = 2.603 << 130 const G4double thePiZeroWidth = 8.52e-17 << 131 const G4double theEtaWidth = 5.025e-19; << 132 const G4double theOmegaWidth = 7.7528e-2 << 133 const G4double theEtaPrimeWidth = 3.3243 << 134 const G4double theChargedKaonWidth = 1.2 << 135 const G4double theKShortWidth = 8.954e-1 << 136 const G4double theKLongWidth = 5.116e-08 << 137 const G4double theLambdaWidth = 2.632e-1 << 138 const G4double theSigmaPlusWidth = 8.018 << 139 const G4double theSigmaZeroWidth = 7.4e- << 140 const G4double theSigmaMinusWidth = 1.47 << 141 //const G4double theXiMinusWidth = 1.639 << 142 //const G4double theXiZeroWidth = 2.90e- << 143 //const G4double theAntiLambdaWidth = 2. << 144 //const G4double theAntiSigmaPlusWidth = << 145 //const G4double theAntiSigmaZeroWidth = << 146 //const G4double theAntiSigmaMinusWidth << 147 //const G4double theAntiXiMinusWidth = 1 << 148 //const G4double theAntiXiZeroWidth = 2. << 149 G4ThreadLocal G4double piPlusWidth = 0.0 << 150 G4ThreadLocal G4double piMinusWidth = 0. << 151 G4ThreadLocal G4double piZeroWidth = 0.0 << 152 G4ThreadLocal G4double etaWidth = 0.0; << 153 G4ThreadLocal G4double omegaWidth = 0.0; << 154 G4ThreadLocal G4double etaPrimeWidth = 0 << 155 G4ThreadLocal G4double LambdaWidth = 0.0 << 156 G4ThreadLocal G4double SigmaPlusWidth = << 157 G4ThreadLocal G4double SigmaZeroWidth = << 158 G4ThreadLocal G4double SigmaMinusWidth = << 159 G4ThreadLocal G4double KPlusWidth = 0.0; << 160 G4ThreadLocal G4double KMinusWidth = 0.0 << 161 G4ThreadLocal G4double KShortWidth = 0.0 << 162 G4ThreadLocal G4double KLongWidth = 0.0; << 163 G4ThreadLocal G4double XiMinusWidth = 0. << 164 G4ThreadLocal G4double XiZeroWidth = 0.0 << 165 G4ThreadLocal G4double antiLambdaWidth = << 166 G4ThreadLocal G4double antiSigmaZeroWidt << 167 G4ThreadLocal G4double antiSigmaMinusWid << 168 G4ThreadLocal G4double antiSigmaPlusWidt << 169 G4ThreadLocal G4double antiXiZeroWidth = << 170 G4ThreadLocal G4double antiXiMinusWidth << 171 75 172 const G4int mediumNucleiTableSize = 30; 76 const G4int mediumNucleiTableSize = 30; 173 77 174 const G4double mediumDiffuseness[mediumN 78 const G4double mediumDiffuseness[mediumNucleiTableSize] = 175 {0.0,0.0,0.0,0.0,0.0,1.78,1.77,1.77,1.69 << 79 {0.0,0.0,0.0,0.0,0.0,1.78,1.77,1.77,1.77,1.71, 176 1.69,1.72,1.635,1.730,1.81,1.833,1.798 << 80 1.69,1.69,1.635,1.730,1.81,1.833,1.798, 177 1.93,0.567,0.571, 0.560,0.549,0.550,0. << 81 1.841,0.567,0.571, 0.560,0.549,0.550,0.551, 178 0.580,0.575,0.569,0.537,0.0,0.0}; 82 0.580,0.575,0.569,0.537,0.0,0.0}; 179 const G4double mediumRadius[mediumNuclei 83 const G4double mediumRadius[mediumNucleiTableSize] = 180 {0.0,0.0,0.0,0.0,0.0,0.334,0.327,0.479,0 84 {0.0,0.0,0.0,0.0,0.0,0.334,0.327,0.479,0.631,0.838, 181 0.811,0.84,1.403,1.335,1.25,1.544,1.49 << 85 0.811,1.07,1.403,1.335,1.25,1.544,1.498,1.513, 182 2.58,2.77, 2.775,2.78,2.88,2.98,3.22,3 86 2.58,2.77, 2.775,2.78,2.88,2.98,3.22,3.03,2.84, 183 3.14,0.0,0.0}; 87 3.14,0.0,0.0}; 184 88 185 const G4double positionRMS[clusterTableZ 89 const G4double positionRMS[clusterTableZSize][clusterTableASize] = { 186 /* A= 0 1 2 3 4 90 /* A= 0 1 2 3 4 5 6 7 8 9 10 11 12 */ 187 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1. 91 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0}, 188 /* Z=1 */ {-1.0, -1.0, 2.10, 1.80, 1.7 92 /* Z=1 */ {-1.0, -1.0, 2.10, 1.80, 1.70, 1.83, 2.60, 2.50, -1.0, -1.0, -1.0, -1.0, -1.0}, 189 /* Z=2 */ {-1.0, -1.0, -1.0, 1.80, 1.6 93 /* Z=2 */ {-1.0, -1.0, -1.0, 1.80, 1.68, 1.70, 2.60, 2.50, 2.50, 2.50, 2.50, -1.0, -1.0}, 190 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 1.7 94 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 1.70, 1.83, 2.56, 2.40, 2.50, 2.50, 2.50, 2.50, 2.50}, 191 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1. 95 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.60, 2.50, 2.50, 2.51, 2.50, 2.50, 2.50}, 192 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1. 96 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50, 2.50, 2.45, 2.40, 2.50}, 193 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1. 97 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50, 2.50, 2.47}, 194 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1. 98 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50, 2.50, 2.50}, 195 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1. 99 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 2.50} 196 }; 100 }; 197 101 198 const G4double momentumRMS[clusterTableZ 102 const G4double momentumRMS[clusterTableZSize][clusterTableASize] = { 199 /* A= 0 1 2 3 4 103 /* A= 0 1 2 3 4 5 6 7 8 9 10 11 12 */ 200 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1. 104 /* Z=0 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0}, 201 /* Z=1 */ {-1.0, -1.0, 77.0, 110., 153 105 /* Z=1 */ {-1.0, -1.0, 77.0, 110., 153., 100., 100., 100., -1.0, -1.0, -1.0, -1.0, -1.0}, 202 /* Z=2 */ {-1.0, -1.0, -1.0, 110., 153 106 /* Z=2 */ {-1.0, -1.0, -1.0, 110., 153., 100., 100., 100., 100., 100., 100., -1.0, -1.0}, 203 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 153 107 /* Z=3 */ {-1.0, -1.0, -1.0, -1.0, 153., 100., 100., 100., 100., 100., 100., 100., 100.}, 204 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1. 108 /* Z=4 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100., 100., 100.}, 205 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1. 109 /* Z=5 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100., 100., 100.}, 206 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1. 110 /* Z=6 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100., 100., 100.}, 207 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1. 111 /* Z=7 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100., 100., 100.}, 208 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1. 112 /* Z=8 */ {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 100.} 209 }; 113 }; 210 114 211 const G4int elementTableSize = 113; // u 115 const G4int elementTableSize = 113; // up to Cn 212 116 213 /// \brief Table of chemical element nam 117 /// \brief Table of chemical element names 214 const std::string elementTable[elementTa 118 const std::string elementTable[elementTableSize] = { 215 "", 119 "", 216 "H", 120 "H", 217 "He", 121 "He", 218 "Li", 122 "Li", 219 "Be", 123 "Be", 220 "B", 124 "B", 221 "C", 125 "C", 222 "N", 126 "N", 223 "O", 127 "O", 224 "F", 128 "F", 225 "Ne", 129 "Ne", 226 "Na", 130 "Na", 227 "Mg", 131 "Mg", 228 "Al", 132 "Al", 229 "Si", 133 "Si", 230 "P", 134 "P", 231 "S", 135 "S", 232 "Cl", 136 "Cl", 233 "Ar", 137 "Ar", 234 "K", 138 "K", 235 "Ca", 139 "Ca", 236 "Sc", 140 "Sc", 237 "Ti", 141 "Ti", 238 "V", 142 "V", 239 "Cr", 143 "Cr", 240 "Mn", 144 "Mn", 241 "Fe", 145 "Fe", 242 "Co", 146 "Co", 243 "Ni", 147 "Ni", 244 "Cu", 148 "Cu", 245 "Zn", 149 "Zn", 246 "Ga", 150 "Ga", 247 "Ge", 151 "Ge", 248 "As", 152 "As", 249 "Se", 153 "Se", 250 "Br", 154 "Br", 251 "Kr", 155 "Kr", 252 "Rb", 156 "Rb", 253 "Sr", 157 "Sr", 254 "Y", 158 "Y", 255 "Zr", 159 "Zr", 256 "Nb", 160 "Nb", 257 "Mo", 161 "Mo", 258 "Tc", 162 "Tc", 259 "Ru", 163 "Ru", 260 "Rh", 164 "Rh", 261 "Pd", 165 "Pd", 262 "Ag", 166 "Ag", 263 "Cd", 167 "Cd", 264 "In", 168 "In", 265 "Sn", 169 "Sn", 266 "Sb", 170 "Sb", 267 "Te", 171 "Te", 268 "I", 172 "I", 269 "Xe", 173 "Xe", 270 "Cs", 174 "Cs", 271 "Ba", 175 "Ba", 272 "La", 176 "La", 273 "Ce", 177 "Ce", 274 "Pr", 178 "Pr", 275 "Nd", 179 "Nd", 276 "Pm", 180 "Pm", 277 "Sm", 181 "Sm", 278 "Eu", 182 "Eu", 279 "Gd", 183 "Gd", 280 "Tb", 184 "Tb", 281 "Dy", 185 "Dy", 282 "Ho", 186 "Ho", 283 "Er", 187 "Er", 284 "Tm", 188 "Tm", 285 "Yb", 189 "Yb", 286 "Lu", 190 "Lu", 287 "Hf", 191 "Hf", 288 "Ta", 192 "Ta", 289 "W", 193 "W", 290 "Re", 194 "Re", 291 "Os", 195 "Os", 292 "Ir", 196 "Ir", 293 "Pt", 197 "Pt", 294 "Au", 198 "Au", 295 "Hg", 199 "Hg", 296 "Tl", 200 "Tl", 297 "Pb", 201 "Pb", 298 "Bi", 202 "Bi", 299 "Po", 203 "Po", 300 "At", 204 "At", 301 "Rn", 205 "Rn", 302 "Fr", 206 "Fr", 303 "Ra", 207 "Ra", 304 "Ac", 208 "Ac", 305 "Th", 209 "Th", 306 "Pa", 210 "Pa", 307 "U", 211 "U", 308 "Np", 212 "Np", 309 "Pu", 213 "Pu", 310 "Am", 214 "Am", 311 "Cm", 215 "Cm", 312 "Bk", 216 "Bk", 313 "Cf", 217 "Cf", 314 "Es", 218 "Es", 315 "Fm", 219 "Fm", 316 "Md", 220 "Md", 317 "No", 221 "No", 318 "Lr", 222 "Lr", 319 "Rf", 223 "Rf", 320 "Db", 224 "Db", 321 "Sg", 225 "Sg", 322 "Bh", 226 "Bh", 323 "Hs", 227 "Hs", 324 "Mt", 228 "Mt", 325 "Ds", 229 "Ds", 326 "Rg", 230 "Rg", 327 "Cn" 231 "Cn" 328 }; 232 }; 329 233 330 /// \brief Digit names to compose IUPAC 234 /// \brief Digit names to compose IUPAC element names 331 const std::string elementIUPACDigits = " 235 const std::string elementIUPACDigits = "nubtqphsoe"; 332 236 333 #define INCL_DEFAULT_SEPARATION_ENERGY 6.83 237 #define INCL_DEFAULT_SEPARATION_ENERGY 6.83 334 const G4double theINCLProtonSeparationEn 238 const G4double theINCLProtonSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY; 335 const G4double theINCLNeutronSeparationE 239 const G4double theINCLNeutronSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY; 336 const G4double theINCLLambdaSeparationEn << 337 //const G4double theINCLantiProtonSepara << 338 const G4double theINCLantiProtonSeparati << 339 G4ThreadLocal G4double protonSeparationE 240 G4ThreadLocal G4double protonSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY; 340 G4ThreadLocal G4double neutronSeparation 241 G4ThreadLocal G4double neutronSeparationEnergy = INCL_DEFAULT_SEPARATION_ENERGY; 341 G4ThreadLocal G4double lambdaSeparationE << 342 //G4ThreadLocal G4double antiprotonSepar << 343 //G4ThreadLocal G4double antiprotonSepar << 344 #undef INCL_DEFAULT_SEPARATION_ENERGY 242 #undef INCL_DEFAULT_SEPARATION_ENERGY 345 243 346 G4ThreadLocal G4double rpCorrelationCoef 244 G4ThreadLocal G4double rpCorrelationCoefficient[UnknownParticle]; 347 245 348 G4ThreadLocal G4double neutronSkin = 0.0 << 246 G4ThreadLocal G4double neutronSkinThickness = 0.0; 349 G4ThreadLocal G4double neutronHalo = 0.0 << 247 G4ThreadLocal G4double neutronSkinAdditionalDiffuseness = 0.0; 350 248 351 #ifdef INCLXX_IN_GEANT4_MODE 249 #ifdef INCLXX_IN_GEANT4_MODE 352 G4ThreadLocal G4IonTable *theG4IonTable; 250 G4ThreadLocal G4IonTable *theG4IonTable; 353 #endif 251 #endif 354 252 355 /// \brief Default value for constant Fe << 356 G4ThreadLocal G4double constantFermiMome << 357 << 358 /// \brief Transform a IUPAC char to an 253 /// \brief Transform a IUPAC char to an char representing an integer digit 359 char iupacToInt(char c) { 254 char iupacToInt(char c) { 360 return (char)(((G4int)'0')+elementIUPA 255 return (char)(((G4int)'0')+elementIUPACDigits.find(c)); 361 } 256 } 362 257 363 /// \brief Transform an integer digit (r 258 /// \brief Transform an integer digit (represented by a char) to a IUPAC char 364 char intToIUPAC(char n) { return element 259 char intToIUPAC(char n) { return elementIUPACDigits.at(n); } 365 260 366 /// \brief Get the singleton instance of 261 /// \brief Get the singleton instance of the natural isotopic distributions 367 const NaturalIsotopicDistributions *getN 262 const NaturalIsotopicDistributions *getNaturalIsotopicDistributions() { 368 if(!theNaturalIsotopicDistributions) 263 if(!theNaturalIsotopicDistributions) 369 theNaturalIsotopicDistributions = ne 264 theNaturalIsotopicDistributions = new NaturalIsotopicDistributions; 370 return theNaturalIsotopicDistributions 265 return theNaturalIsotopicDistributions; 371 } 266 } 372 267 373 } // namespace 268 } // namespace 374 269 375 void initialize(Config const * const theCo 270 void initialize(Config const * const theConfig /*=0*/) { 376 protonMass = theINCLNucleonMass; 271 protonMass = theINCLNucleonMass; 377 neutronMass = theINCLNucleonMass; << 272 neutronMass = theINCLNucleonMass; 378 piPlusMass = theINCLPionMass; 273 piPlusMass = theINCLPionMass; 379 piMinusMass = theINCLPionMass; 274 piMinusMass = theINCLPionMass; 380 piZeroMass = theINCLPionMass; 275 piZeroMass = theINCLPionMass; 381 276 382 etaMass = theINCLEtaMass; << 383 omegaMass = theINCLOmegaMass; << 384 etaPrimeMass = theINCLEtaPrimeMass; << 385 photonMass = theINCLPhotonMass; << 386 << 387 SigmaPlusMass = theRealSigmaPlusMass; << 388 SigmaMinusMass = theRealSigmaMinusMass; << 389 SigmaZeroMass = theRealSigmaZeroMass; << 390 LambdaMass = theINCLLambdaMass; << 391 KPlusMass = theRealChargedKaonMass; << 392 KZeroMass = theRealNeutralKaonMass; << 393 KZeroBarMass = theRealNeutralKaonMass; << 394 KShortMass = theRealNeutralKaonMass; << 395 KLongMass = theRealNeutralKaonMass; << 396 KMinusMass = theRealChargedKaonMass; << 397 << 398 antiProtonMass = theRealAntiProtonMass; << 399 XiZeroMass = theRealXiZeroMass; << 400 XiMinusMass = theRealXiMinusMass; << 401 antiNeutronMass = theRealAntiNeutronMass << 402 antiSigmaPlusMass = theRealAntiSigmaPlus << 403 antiSigmaMinusMass = theRealAntiSigmaMin << 404 antiSigmaZeroMass = theRealAntiSigmaZero << 405 antiLambdaMass = theRealAntiLambdaMass; << 406 antiXiZeroMass = theRealAntiXiZeroMass; << 407 antiXiMinusMass = theRealAntiXiMinusMass << 408 << 409 if(theConfig && theConfig->getUseRealMas 277 if(theConfig && theConfig->getUseRealMasses()) { 410 getTableMass = getRealMass; 278 getTableMass = getRealMass; 411 getTableParticleMass = getRealMass; 279 getTableParticleMass = getRealMass; 412 } else { 280 } else { 413 getTableMass = getINCLMass; 281 getTableMass = getINCLMass; 414 getTableParticleMass = getINCLMass; 282 getTableParticleMass = getINCLMass; 415 } 283 } 416 284 417 #ifndef INCLXX_IN_GEANT4_MODE 285 #ifndef INCLXX_IN_GEANT4_MODE 418 std::string dataFilePath; 286 std::string dataFilePath; 419 if(theConfig) 287 if(theConfig) 420 dataFilePath = theConfig->getINCLXXDat 288 dataFilePath = theConfig->getINCLXXDataFilePath(); 421 NuclearMassTable::initialize(dataFilePat 289 NuclearMassTable::initialize(dataFilePath, getRealMass(Proton), getRealMass(Neutron)); 422 #endif 290 #endif 423 291 424 #ifdef INCLXX_IN_GEANT4_MODE 292 #ifdef INCLXX_IN_GEANT4_MODE 425 G4ParticleTable *theG4ParticleTable = G4 293 G4ParticleTable *theG4ParticleTable = G4ParticleTable::GetParticleTable(); 426 theG4IonTable = theG4ParticleTable->GetI 294 theG4IonTable = theG4ParticleTable->GetIonTable(); 427 theRealProtonMass = theG4ParticleTable-> 295 theRealProtonMass = theG4ParticleTable->FindParticle("proton")->GetPDGMass() / MeV; 428 theRealNeutronMass = theG4ParticleTable- << 296 theRealNeutronMass = theG4ParticleTable->FindParticle("neutron")->GetPDGMass() / MeV; 429 theRealChargedPiMass = theG4ParticleTabl 297 theRealChargedPiMass = theG4ParticleTable->FindParticle("pi+")->GetPDGMass() / MeV; 430 theRealPiZeroMass = theG4ParticleTable-> 298 theRealPiZeroMass = theG4ParticleTable->FindParticle("pi0")->GetPDGMass() / MeV; 431 << 432 theRealEtaMass = theG4ParticleTable->Fin << 433 theRealOmegaMass = theG4ParticleTable->F << 434 theRealEtaPrimeMass = theG4ParticleTable << 435 theRealPhotonMass = theG4ParticleTable-> << 436 << 437 theRealSigmaPlusMass = theG4ParticleTabl << 438 theRealSigmaZeroMass = theG4ParticleTabl << 439 theRealSigmaMinusMass = theG4ParticleTab << 440 theRealLambdaMass = theG4ParticleTable-> << 441 theRealChargedKaonMass = theG4ParticleTa << 442 theRealNeutralKaonMass = theG4ParticleTa << 443 << 444 theRealAntiProtonMass = theG4ParticleTab << 445 theRealAntiNeutronMass = theG4ParticleTa << 446 theRealXiZeroMass = theG4ParticleTable-> << 447 theRealXiMinusMass = theG4ParticleTable- << 448 theRealAntiSigmaPlusMass = theG4Particle << 449 theRealAntiSigmaZeroMass = theG4Particle << 450 theRealAntiSigmaMinusMass = theG4Particl << 451 theRealAntiLambdaMass = theG4ParticleTab << 452 theRealAntiXiZeroMass = theG4ParticleTab << 453 theRealAntiXiMinusMass = theG4ParticleTa << 454 #endif 299 #endif 455 300 456 minDeltaMass = theRealNeutronMass + theR << 301 effectiveDeltaDecayThreshold = theRealNeutronMass + theRealChargedPiMass + 0.5; 457 minDeltaMass2 = minDeltaMass*minDeltaMas << 458 minDeltaMassRndm = std::atan((minDeltaMa << 459 << 460 piPlusWidth = theChargedPiWidth; << 461 piMinusWidth = theChargedPiWidth; << 462 piZeroWidth = thePiZeroWidth; << 463 etaWidth = theEtaWidth; << 464 omegaWidth = theOmegaWidth; << 465 etaPrimeWidth = theEtaPrimeWidth; << 466 << 467 SigmaMinusWidth = theSigmaMinusWidth; << 468 SigmaPlusWidth = theSigmaPlusWidth; << 469 SigmaZeroWidth = theSigmaZeroWidth; << 470 LambdaWidth = theLambdaWidth; << 471 KPlusWidth = theChargedKaonWidth; << 472 KMinusWidth = theChargedKaonWidth; << 473 KShortWidth = theKShortWidth; << 474 KLongWidth = theKLongWidth; << 475 << 476 // Initialise HFB tables << 477 #ifdef INCLXX_IN_GEANT4_MODE << 478 HFB::initialize(); << 479 #else << 480 HFB::initialize(dataFilePath); << 481 #endif << 482 302 483 // Initialise the separation-energy func 303 // Initialise the separation-energy function 484 if(!theConfig || theConfig->getSeparatio 304 if(!theConfig || theConfig->getSeparationEnergyType()==INCLSeparationEnergy) 485 getSeparationEnergy = getSeparationEne 305 getSeparationEnergy = getSeparationEnergyINCL; 486 else if(theConfig->getSeparationEnergyTy 306 else if(theConfig->getSeparationEnergyType()==RealSeparationEnergy) 487 getSeparationEnergy = getSeparationEne 307 getSeparationEnergy = getSeparationEnergyReal; 488 else if(theConfig->getSeparationEnergyTy 308 else if(theConfig->getSeparationEnergyType()==RealForLightSeparationEnergy) 489 getSeparationEnergy = getSeparationEne 309 getSeparationEnergy = getSeparationEnergyRealForLight; 490 else { 310 else { 491 INCL_FATAL("Unrecognized separation-en << 311 INCL_FATAL("Unrecognized separation-energy type in ParticleTable initialization: " << theConfig->getSeparationEnergyType() << std::endl); >> 312 std::abort(); 492 return; 313 return; 493 } 314 } 494 315 495 // Initialise the Fermi-momentum functio 316 // Initialise the Fermi-momentum function 496 if(!theConfig || theConfig->getFermiMome << 317 if(!theConfig || theConfig->getFermiMomentumType()==ConstantFermiMomentum) 497 getFermiMomentum = ParticleTable::getF 318 getFermiMomentum = ParticleTable::getFermiMomentumConstant; 498 if(theConfig) { << 319 else if(theConfig->getFermiMomentumType()==ConstantLightFermiMomentum) 499 const G4double aFermiMomentum = theC << 500 if(aFermiMomentum>0.) << 501 constantFermiMomentum = aFermiMome << 502 else << 503 constantFermiMomentum = PhysicalCo << 504 } else { << 505 constantFermiMomentum = PhysicalCons << 506 } << 507 } else if(theConfig->getFermiMomentumTyp << 508 getFermiMomentum = ParticleTable::getF 320 getFermiMomentum = ParticleTable::getFermiMomentumConstantLight; 509 else if(theConfig->getFermiMomentumType( 321 else if(theConfig->getFermiMomentumType()==MassDependentFermiMomentum) 510 getFermiMomentum = ParticleTable::getF 322 getFermiMomentum = ParticleTable::getFermiMomentumMassDependent; 511 else { 323 else { 512 INCL_FATAL("Unrecognized Fermi-momentu << 324 INCL_FATAL("Unrecognized Fermi-momentum type in ParticleTable initialization: " << theConfig->getFermiMomentumType() << std::endl); >> 325 std::abort(); 513 return; 326 return; 514 } 327 } 515 328 516 // Initialise the r-p correlation coeffi 329 // Initialise the r-p correlation coefficients 517 std::fill(rpCorrelationCoefficient, rpCo 330 std::fill(rpCorrelationCoefficient, rpCorrelationCoefficient + UnknownParticle, 1.); 518 if(theConfig) { 331 if(theConfig) { 519 rpCorrelationCoefficient[Proton] = the 332 rpCorrelationCoefficient[Proton] = theConfig->getRPCorrelationCoefficient(Proton); 520 rpCorrelationCoefficient[Neutron] = th 333 rpCorrelationCoefficient[Neutron] = theConfig->getRPCorrelationCoefficient(Neutron); 521 } 334 } 522 335 523 // Initialise the neutron-skin parameter 336 // Initialise the neutron-skin parameters 524 if(theConfig) { 337 if(theConfig) { 525 neutronSkin = theConfig->getNeutronSki << 338 neutronSkinThickness = theConfig->getNeutronSkinThickness(); 526 neutronHalo = theConfig->getNeutronHal << 339 neutronSkinAdditionalDiffuseness = theConfig->getNeutronSkinAdditionalDiffuseness(); 527 } 340 } 528 341 529 } 342 } 530 343 531 G4int getIsospin(const ParticleType t) { 344 G4int getIsospin(const ParticleType t) { 532 // Actually this is the 3rd component of 345 // Actually this is the 3rd component of isospin (I_z) multiplied by 2! 533 if(t == Proton) { 346 if(t == Proton) { 534 return 1; 347 return 1; 535 } else if(t == Neutron) { 348 } else if(t == Neutron) { 536 return -1; 349 return -1; 537 } else if(t == PiPlus) { 350 } else if(t == PiPlus) { 538 return 2; 351 return 2; 539 } else if(t == PiMinus) { 352 } else if(t == PiMinus) { 540 return -2; 353 return -2; 541 } else if(t == PiZero) { 354 } else if(t == PiZero) { 542 return 0; 355 return 0; 543 } else if(t == DeltaPlusPlus) { 356 } else if(t == DeltaPlusPlus) { 544 return 3; 357 return 3; 545 } else if(t == DeltaPlus) { 358 } else if(t == DeltaPlus) { 546 return 1; 359 return 1; 547 } else if(t == DeltaZero) { 360 } else if(t == DeltaZero) { 548 return -1; 361 return -1; 549 } else if(t == DeltaMinus) { 362 } else if(t == DeltaMinus) { 550 return -3; 363 return -3; 551 } else if(t == Lambda) { << 552 return 0; << 553 } else if(t == SigmaPlus) { << 554 return 2; << 555 } else if(t == SigmaZero) { << 556 return 0; << 557 } else if(t == SigmaMinus) { << 558 return -2; << 559 } else if(t == KPlus) { << 560 return 1; << 561 } else if(t == KZero) { << 562 return -1; << 563 } else if(t == KZeroBar) { << 564 return 1; << 565 } else if(t == KShort) { << 566 return 0; << 567 } else if(t == KLong) { << 568 return 0; << 569 } else if(t == KMinus) { << 570 return -1; << 571 } else if(t == Eta) { << 572 return 0; << 573 } else if(t == Omega) { << 574 return 0; << 575 } else if(t == EtaPrime) { << 576 return 0; << 577 } else if(t == Photon) { << 578 return 0; << 579 } else if(t == antiProton) { << 580 return -1; << 581 } else if(t == XiMinus) { << 582 return -1; << 583 } else if(t == XiZero) { << 584 return 1; << 585 } else if(t == antiNeutron) { << 586 return 1; << 587 } else if(t == antiLambda) { << 588 return 0; << 589 } else if(t == antiSigmaPlus) { << 590 return -2; << 591 } else if(t == antiSigmaZero) { << 592 return 0; << 593 } else if(t == antiSigmaMinus) { << 594 return 2; << 595 } else if(t == antiXiMinus) { << 596 return 1; << 597 } else if(t == antiXiZero) { << 598 return -1; << 599 } 364 } >> 365 600 INCL_ERROR("Requested isospin of an unkn 366 INCL_ERROR("Requested isospin of an unknown particle!"); 601 return -10; // Unknown 367 return -10; // Unknown 602 } 368 } 603 369 604 std::string getShortName(const ParticleSpe << 370 std::string getShortName(const ParticleSpecies &s) { 605 if(sp.theType==Composite && sp.theS == 0 << 371 if(s.theType==Composite) 606 return getShortName(sp.theA,sp.theZ); << 372 return getShortName(s.theA,s.theZ); 607 else if(sp.theType==Composite) << 608 return getName(sp.theA,sp.theZ,sp.theS << 609 else 373 else 610 return getShortName(sp.theType); << 374 return getShortName(s.theType); 611 } 375 } 612 << 376 613 std::string getName(const ParticleSpecies << 377 std::string getName(const ParticleSpecies &s) { 614 if(sp.theType==Composite && sp.theS == 0 << 378 if(s.theType==Composite) 615 return getName(sp.theA,sp.theZ); << 379 return getName(s.theA,s.theZ); 616 else if(sp.theType==Composite) << 617 return getName(sp.theA,sp.theZ,sp.theS << 618 else 380 else 619 return getName(sp.theType); << 381 return getName(s.theType); 620 } 382 } 621 383 622 std::string getName(const G4int A, const G 384 std::string getName(const G4int A, const G4int Z) { 623 std::stringstream stream; 385 std::stringstream stream; 624 stream << getElementName(Z) << "-" << A; 386 stream << getElementName(Z) << "-" << A; 625 return stream.str(); 387 return stream.str(); 626 } 388 } 627 389 628 std::string getName(const G4int A, const G << 629 std::stringstream stream; << 630 if(S >= 0) // S < 0 for hypernuclei << 631 return getName(A, Z); << 632 else if(S == -1) << 633 stream << getElementName(Z) << "-" << << 634 else << 635 stream << getElementName(Z) << "-" << << 636 return stream.str(); << 637 } << 638 << 639 std::string getShortName(const G4int A, co 390 std::string getShortName(const G4int A, const G4int Z) { 640 std::stringstream stream; 391 std::stringstream stream; 641 stream << getElementName(Z); 392 stream << getElementName(Z); 642 if(A>0) 393 if(A>0) 643 stream << A; 394 stream << A; 644 return stream.str(); 395 return stream.str(); 645 } 396 } 646 397 647 std::string getName(const ParticleType p) 398 std::string getName(const ParticleType p) { 648 if(p == G4INCL::Proton) { 399 if(p == G4INCL::Proton) { 649 return std::string("proton"); 400 return std::string("proton"); 650 } else if(p == G4INCL::Neutron) { 401 } else if(p == G4INCL::Neutron) { 651 return std::string("neutron"); 402 return std::string("neutron"); 652 } else if(p == G4INCL::DeltaPlusPlus) { 403 } else if(p == G4INCL::DeltaPlusPlus) { 653 return std::string("delta++"); 404 return std::string("delta++"); 654 } else if(p == G4INCL::DeltaPlus) { 405 } else if(p == G4INCL::DeltaPlus) { 655 return std::string("delta+"); 406 return std::string("delta+"); 656 } else if(p == G4INCL::DeltaZero) { 407 } else if(p == G4INCL::DeltaZero) { 657 return std::string("delta0"); 408 return std::string("delta0"); 658 } else if(p == G4INCL::DeltaMinus) { 409 } else if(p == G4INCL::DeltaMinus) { 659 return std::string("delta-"); 410 return std::string("delta-"); 660 } else if(p == G4INCL::PiPlus) { 411 } else if(p == G4INCL::PiPlus) { 661 return std::string("pi+"); 412 return std::string("pi+"); 662 } else if(p == G4INCL::PiZero) { 413 } else if(p == G4INCL::PiZero) { 663 return std::string("pi0"); 414 return std::string("pi0"); 664 } else if(p == G4INCL::PiMinus) { 415 } else if(p == G4INCL::PiMinus) { 665 return std::string("pi-"); 416 return std::string("pi-"); 666 } else if(p == G4INCL::Lambda) { << 667 return std::string("lambda"); << 668 } else if(p == G4INCL::SigmaPlus) { << 669 return std::string("sigma+"); << 670 } else if(p == G4INCL::SigmaZero) { << 671 return std::string("sigma0"); << 672 } else if(p == G4INCL::SigmaMinus) { << 673 return std::string("sigma-"); << 674 } else if(p == G4INCL::antiProton) { << 675 return std::string("antiproton"); << 676 } else if(p == G4INCL::XiMinus) { << 677 return std::string("xi-"); << 678 } else if(p == G4INCL::XiZero) { << 679 return std::string("xi0"); << 680 } else if(p == G4INCL::antiNeutron) { << 681 return std::string("antineutron"); << 682 } else if(p == G4INCL::antiSigmaPlus) { << 683 return std::string("antisigma+"); << 684 } else if(p == G4INCL::antiSigmaZero) { << 685 return std::string("antisigma0"); << 686 } else if(p == G4INCL::antiSigmaMinus) { << 687 return std::string("antisigma-"); << 688 } else if(p == G4INCL::antiLambda) { << 689 return std::string("antilambda"); << 690 } else if(p == G4INCL::antiXiMinus) { << 691 return std::string("antixi-"); << 692 } else if(p == G4INCL::antiXiZero) { << 693 return std::string("antixi0"); << 694 } else if(p == G4INCL::KPlus) { << 695 return std::string("kaon+"); << 696 } else if(p == G4INCL::KZero) { << 697 return std::string("kaon0"); << 698 } else if(p == G4INCL::KZeroBar) { << 699 return std::string("kaon0bar"); << 700 } else if(p == G4INCL::KMinus) { << 701 return std::string("kaon-"); << 702 } else if(p == G4INCL::KShort) { << 703 return std::string("kaonshort"); << 704 } else if(p == G4INCL::KLong) { << 705 return std::string("kaonlong"); << 706 } else if(p == G4INCL::Composite) { 417 } else if(p == G4INCL::Composite) { 707 return std::string("composite"); 418 return std::string("composite"); 708 } else if(p == G4INCL::Eta) { << 709 return std::string("eta"); << 710 } else if(p == G4INCL::Omega) { << 711 return std::string("omega"); << 712 } else if(p == G4INCL::EtaPrime) { << 713 return std::string("etaprime"); << 714 } else if(p == G4INCL::Photon) { << 715 return std::string("photon"); << 716 } 419 } 717 return std::string("unknown"); 420 return std::string("unknown"); 718 } 421 } 719 422 720 std::string getShortName(const ParticleTyp 423 std::string getShortName(const ParticleType p) { 721 if(p == G4INCL::Proton) { 424 if(p == G4INCL::Proton) { 722 return std::string("p"); 425 return std::string("p"); 723 } else if(p == G4INCL::Neutron) { 426 } else if(p == G4INCL::Neutron) { 724 return std::string("n"); 427 return std::string("n"); 725 } else if(p == G4INCL::DeltaPlusPlus) { 428 } else if(p == G4INCL::DeltaPlusPlus) { 726 return std::string("d++"); 429 return std::string("d++"); 727 } else if(p == G4INCL::DeltaPlus) { 430 } else if(p == G4INCL::DeltaPlus) { 728 return std::string("d+"); 431 return std::string("d+"); 729 } else if(p == G4INCL::DeltaZero) { 432 } else if(p == G4INCL::DeltaZero) { 730 return std::string("d0"); 433 return std::string("d0"); 731 } else if(p == G4INCL::DeltaMinus) { 434 } else if(p == G4INCL::DeltaMinus) { 732 return std::string("d-"); 435 return std::string("d-"); 733 } else if(p == G4INCL::PiPlus) { 436 } else if(p == G4INCL::PiPlus) { 734 return std::string("pi+"); 437 return std::string("pi+"); 735 } else if(p == G4INCL::PiZero) { 438 } else if(p == G4INCL::PiZero) { 736 return std::string("pi0"); 439 return std::string("pi0"); 737 } else if(p == G4INCL::PiMinus) { 440 } else if(p == G4INCL::PiMinus) { 738 return std::string("pi-"); 441 return std::string("pi-"); 739 } else if(p == G4INCL::Lambda) { << 740 return std::string("l"); << 741 } else if(p == G4INCL::SigmaPlus) { << 742 return std::string("s+"); << 743 } else if(p == G4INCL::SigmaZero) { << 744 return std::string("s0"); << 745 } else if(p == G4INCL::SigmaMinus) { << 746 return std::string("s-"); << 747 } else if(p == G4INCL::antiProton) { << 748 return std::string("pb"); << 749 } else if(p == G4INCL::XiMinus) { << 750 return std::string("x-"); << 751 } else if(p == G4INCL::XiZero) { << 752 return std::string("x0"); << 753 } else if(p == G4INCL::antiNeutron) { << 754 return std::string("nb"); << 755 } else if(p == G4INCL::antiSigmaPlus) { << 756 return std::string("s+b"); << 757 } else if(p == G4INCL::antiSigmaZero) { << 758 return std::string("s0b"); << 759 } else if(p == G4INCL::antiSigmaMinus) { << 760 return std::string("s-b"); << 761 } else if(p == G4INCL::antiLambda) { << 762 return std::string("lb"); << 763 } else if(p == G4INCL::antiXiMinus) { << 764 return std::string("x-b"); << 765 } else if(p == G4INCL::antiXiZero) { << 766 return std::string("x0b"); << 767 } else if(p == G4INCL::KPlus) { << 768 return std::string("k+"); << 769 } else if(p == G4INCL::KZero) { << 770 return std::string("k0"); << 771 } else if(p == G4INCL::KZeroBar) { << 772 return std::string("k0b"); << 773 } else if(p == G4INCL::KMinus) { << 774 return std::string("k-"); << 775 } else if(p == G4INCL::KShort) { << 776 return std::string("ks"); << 777 } else if(p == G4INCL::KLong) { << 778 return std::string("kl"); << 779 } else if(p == G4INCL::Composite) { 442 } else if(p == G4INCL::Composite) { 780 return std::string("comp"); 443 return std::string("comp"); 781 } else if(p == G4INCL::Eta) { << 782 return std::string("eta"); << 783 } else if(p == G4INCL::Omega) { << 784 return std::string("omega"); << 785 } else if(p == G4INCL::EtaPrime) { << 786 return std::string("etap"); << 787 } else if(p == G4INCL::Photon) { << 788 return std::string("photon"); << 789 } 444 } 790 return std::string("unknown"); 445 return std::string("unknown"); 791 } 446 } 792 447 793 G4double getINCLMass(const ParticleType pt 448 G4double getINCLMass(const ParticleType pt) { 794 if(pt == Proton) { 449 if(pt == Proton) { 795 return protonMass; 450 return protonMass; 796 } else if(pt == Neutron) { 451 } else if(pt == Neutron) { 797 return neutronMass; 452 return neutronMass; 798 } else if(pt == PiPlus) { 453 } else if(pt == PiPlus) { 799 return piPlusMass; 454 return piPlusMass; 800 } else if(pt == PiMinus) { 455 } else if(pt == PiMinus) { 801 return piMinusMass; 456 return piMinusMass; 802 } else if(pt == PiZero) { 457 } else if(pt == PiZero) { 803 return piZeroMass; 458 return piZeroMass; 804 } else if(pt == SigmaPlus) { << 805 return SigmaPlusMass; << 806 } else if(pt == SigmaMinus) { << 807 return SigmaMinusMass; << 808 } else if(pt == SigmaZero) { << 809 return SigmaZeroMass; << 810 } else if(pt == Lambda) { << 811 return LambdaMass; << 812 } else if(pt == antiProton) { << 813 return antiProtonMass; << 814 } else if(pt == XiMinus) { << 815 return XiMinusMass; << 816 } else if(pt == XiZero) { << 817 return XiZeroMass; << 818 } else if(pt == antiNeutron) { << 819 return antiNeutronMass; << 820 } else if(pt == antiSigmaPlus) { << 821 return antiSigmaPlusMass; << 822 } else if(pt == antiSigmaMinus) { << 823 return antiSigmaMinusMass; << 824 } else if(pt == antiSigmaZero) { << 825 return antiSigmaZeroMass; << 826 } else if(pt == antiLambda) { << 827 return antiLambdaMass; << 828 } else if(pt == antiXiMinus) { << 829 return antiXiMinusMass; << 830 } else if(pt == antiXiZero) { << 831 return antiXiZeroMass; << 832 } else if(pt == KPlus) { << 833 return KPlusMass; << 834 } else if(pt == KZero) { << 835 return KZeroMass; << 836 } else if(pt == KZeroBar) { << 837 return KZeroBarMass; << 838 } else if(pt == KMinus) { << 839 return KMinusMass; << 840 } else if(pt == KShort) { << 841 return KShortMass; << 842 } else if(pt == KLong) { << 843 return KLongMass; << 844 } else if(pt == Eta) { << 845 return etaMass; << 846 } else if(pt == Omega) { << 847 return omegaMass; << 848 } else if(pt == EtaPrime) { << 849 return etaPrimeMass; << 850 } else if(pt == Photon) { << 851 return photonMass; << 852 } else { 459 } else { 853 INCL_ERROR("getMass : Unknown particle << 460 INCL_ERROR("getMass : Unknown particle type." << std::endl); 854 return 0.0; 461 return 0.0; 855 } 462 } 856 } 463 } 857 << 464 858 G4double getRealMass(const ParticleType t) 465 G4double getRealMass(const ParticleType t) { 859 switch(t) { 466 switch(t) { 860 case Proton: 467 case Proton: 861 return theRealProtonMass; 468 return theRealProtonMass; 862 break; 469 break; 863 case Neutron: 470 case Neutron: 864 return theRealNeutronMass; 471 return theRealNeutronMass; 865 break; 472 break; 866 case PiPlus: 473 case PiPlus: 867 case PiMinus: 474 case PiMinus: 868 return theRealChargedPiMass; 475 return theRealChargedPiMass; 869 break; 476 break; 870 case PiZero: 477 case PiZero: 871 return theRealPiZeroMass; 478 return theRealPiZeroMass; 872 break; 479 break; 873 case Eta: << 874 return theRealEtaMass; << 875 break; << 876 case Omega: << 877 return theRealOmegaMass; << 878 break; << 879 case EtaPrime: << 880 return theRealEtaPrimeMass; << 881 break; << 882 case Photon: << 883 return theRealPhotonMass; << 884 break; << 885 case Lambda: << 886 return theRealLambdaMass; << 887 break; << 888 case KPlus: << 889 case KMinus: << 890 return theRealChargedKaonMass; << 891 break; << 892 case KZero: << 893 case KZeroBar: << 894 case KShort: << 895 case KLong: << 896 return theRealNeutralKaonMass; << 897 break; << 898 case SigmaPlus: << 899 return theRealSigmaPlusMass; << 900 break; << 901 case SigmaZero: << 902 return theRealSigmaZeroMass; << 903 break; << 904 case SigmaMinus: << 905 return theRealSigmaMinusMass; << 906 break; << 907 case antiProton: << 908 return theRealAntiProtonMass; << 909 break; << 910 case XiMinus: << 911 return theRealXiMinusMass; << 912 break; << 913 case XiZero: << 914 return theRealXiZeroMass; << 915 break; << 916 case antiNeutron: << 917 return theRealAntiNeutronMass; << 918 break; << 919 case antiSigmaPlus: << 920 return theRealAntiSigmaPlusMass; << 921 break; << 922 case antiSigmaZero: << 923 return theRealAntiSigmaZeroMass; << 924 break; << 925 case antiSigmaMinus: << 926 return theRealAntiSigmaMinusMass; << 927 break; << 928 case antiXiMinus: << 929 return theRealAntiXiMinusMass; << 930 break; << 931 case antiXiZero: << 932 return theRealAntiXiZeroMass; << 933 break; << 934 case antiLambda: << 935 return theRealAntiLambdaMass; << 936 break; << 937 default: 480 default: 938 INCL_ERROR("Particle::getRealMass : << 481 INCL_ERROR("Particle::getRealMass : Unknown particle type." << std::endl); 939 return 0.0; 482 return 0.0; 940 break; 483 break; 941 } 484 } 942 } 485 } 943 << 486 944 G4double getRealMass(const G4int A, const << 487 G4double getRealMass(const G4int A, const G4int Z) { 945 // assert(A>=0); 488 // assert(A>=0); 946 // For nuclei with Z<0 or Z>A, assume th 489 // For nuclei with Z<0 or Z>A, assume that the exotic charge state is due to pions 947 if(Z<0 && S<0) << 948 return (A+S)*theRealNeutronMass - S*La << 949 else if(Z>A && S<0) << 950 return (A+S)*theRealProtonMass - S*Lam << 951 if(Z<0) 490 if(Z<0) 952 return (A)*theRealNeutronMass - Z*getR << 491 return A*neutronMass - Z*getRealMass(PiMinus); 953 else if(Z>A) 492 else if(Z>A) 954 return (A)*theRealProtonMass + (A-Z)*g << 493 return A*protonMass + (A-Z)*getRealMass(PiPlus); 955 else if(Z==0 && S==0) << 494 else if(Z==0) 956 return A*theRealNeutronMass; << 495 return A*getRealMass(Neutron); 957 else if(A==Z) 496 else if(A==Z) 958 return A*theRealProtonMass; << 497 return A*getRealMass(Proton); 959 else if(Z==0 && S<0) << 960 return (A+S)*theRealNeutronMass-S*Lamb << 961 else if(A>1) { 498 else if(A>1) { 962 #ifndef INCLXX_IN_GEANT4_MODE 499 #ifndef INCLXX_IN_GEANT4_MODE 963 return ::G4INCL::NuclearMassTable::get << 500 return ::G4INCL::NuclearMassTable::getMass(A,Z); 964 #else 501 #else 965 if(S<0) return theG4IonTable->GetNucle << 502 return theG4IonTable->GetNucleusMass(Z,A) / MeV; 966 else return theG4IonTable->GetNucle << 967 #endif 503 #endif 968 } else 504 } else 969 return 0.; 505 return 0.; 970 } 506 } 971 507 972 G4double getINCLMass(const G4int A, const << 508 G4double getINCLMass(const G4int A, const G4int Z) { 973 // assert(A>=0); 509 // assert(A>=0); 974 // For nuclei with Z<0 or Z>A, assume th 510 // For nuclei with Z<0 or Z>A, assume that the exotic charge state is due to pions 975 // Note that S<0 for lambda << 511 if(Z<0) 976 if(Z<0 && S<0) << 512 return A*neutronMass - Z*getINCLMass(PiMinus); 977 return (A+S)*neutronMass - S*LambdaMas << 978 else if(Z>A && S<0) << 979 return (A+S)*protonMass - S*LambdaMass << 980 else if(Z<0) << 981 return (A)*neutronMass - Z*getINCLMass << 982 else if(Z>A) 513 else if(Z>A) 983 return (A)*protonMass + (A-Z)*getINCLM << 514 return A*protonMass + (A-Z)*getINCLMass(PiPlus); 984 else if(A>1 && S<0) << 985 return Z*(protonMass - protonSeparatio << 986 else if(A>1) 515 else if(A>1) 987 return Z*(protonMass - protonSeparatio 516 return Z*(protonMass - protonSeparationEnergy) + (A-Z)*(neutronMass - neutronSeparationEnergy); 988 else if(A==1 && Z==0 && S==0) << 517 else if(A==1 && Z==0) 989 return getINCLMass(Neutron); 518 return getINCLMass(Neutron); 990 else if(A==1 && Z==1 && S==0) << 519 else if(A==1 && Z==1) 991 return getINCLMass(Proton); 520 return getINCLMass(Proton); 992 else if(A==1 && Z==0 && S==-1) << 993 return getINCLMass(Lambda); << 994 else 521 else 995 return 0.; 522 return 0.; 996 } 523 } 997 524 998 G4double getTableQValue(const G4int A1, co << 525 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2) { 999 return getTableMass(A1,Z1,S1) + getTable << 526 return getTableMass(A1,Z1) + getTableMass(A2,Z2) - getTableMass(A1+A2,Z1+Z2); 1000 } 527 } 1001 528 1002 G4double getTableQValue(const G4int A1, c << 529 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2, const G4int A3, const G4int Z3) { 1003 return getTableMass(A1,Z1,S1) + getTabl << 530 return getTableMass(A1,Z1) + getTableMass(A2,Z2) - getTableMass(A3,Z3) - getTableMass(A1+A2-A3,Z1+Z2-Z3); 1004 } 531 } 1005 532 1006 G4double getTableSpeciesMass(const Partic 533 G4double getTableSpeciesMass(const ParticleSpecies &p) { 1007 if(p.theType == Composite) 534 if(p.theType == Composite) 1008 return (*getTableMass)(p.theA, p.theZ << 535 return (*getTableMass)(p.theA, p.theZ); 1009 else 536 else 1010 return (*getTableParticleMass)(p.theT 537 return (*getTableParticleMass)(p.theType); 1011 } 538 } 1012 539 1013 G4int getMassNumber(const ParticleType t) << 540 G4int getMassNumber(const ParticleType t) { 1014 << 1015 switch(t) { 541 switch(t) { 1016 case Proton: 542 case Proton: 1017 case Neutron: 543 case Neutron: 1018 case DeltaPlusPlus: 544 case DeltaPlusPlus: 1019 case DeltaPlus: 545 case DeltaPlus: 1020 case DeltaZero: 546 case DeltaZero: 1021 case DeltaMinus: 547 case DeltaMinus: 1022 case SigmaPlus: << 1023 case SigmaZero: << 1024 case SigmaMinus: << 1025 case Lambda: << 1026 case XiZero: << 1027 case XiMinus: << 1028 return 1; 548 return 1; 1029 break; << 1030 case antiProton: << 1031 case antiNeutron: << 1032 case antiSigmaPlus: << 1033 case antiSigmaZero: << 1034 case antiSigmaMinus: << 1035 case antiLambda: << 1036 case antiXiZero: << 1037 case antiXiMinus: << 1038 return -1; << 1039 break; 549 break; 1040 case PiPlus: 550 case PiPlus: 1041 case PiMinus: 551 case PiMinus: 1042 case PiZero: 552 case PiZero: 1043 case KPlus: << 1044 case KZero: << 1045 case KZeroBar: << 1046 case KShort: << 1047 case KLong: << 1048 case KMinus: << 1049 case Eta: << 1050 case Omega: << 1051 case EtaPrime: << 1052 case Photon: << 1053 return 0; 553 return 0; 1054 break; 554 break; 1055 default: 555 default: 1056 return 0; 556 return 0; 1057 break; 557 break; 1058 } 558 } 1059 } 559 } 1060 560 1061 G4int getChargeNumber(const ParticleType 561 G4int getChargeNumber(const ParticleType t) { 1062 switch(t) { 562 switch(t) { 1063 case DeltaPlusPlus: 563 case DeltaPlusPlus: 1064 return 2; 564 return 2; 1065 break; 565 break; 1066 case Proton: 566 case Proton: 1067 case DeltaPlus: 567 case DeltaPlus: 1068 case PiPlus: 568 case PiPlus: 1069 case SigmaPlus: << 1070 case KPlus: << 1071 case antiSigmaMinus: << 1072 case antiXiMinus: << 1073 return 1; 569 return 1; 1074 break; << 570 break; 1075 case Neutron: 571 case Neutron: 1076 case DeltaZero: 572 case DeltaZero: 1077 case PiZero: 573 case PiZero: 1078 case SigmaZero: << 1079 case Lambda: << 1080 case KZero: << 1081 case KZeroBar: << 1082 case KShort: << 1083 case KLong: << 1084 case Eta: << 1085 case Omega: << 1086 case EtaPrime: << 1087 case Photon: << 1088 case XiZero: << 1089 case antiNeutron: << 1090 case antiLambda: << 1091 case antiSigmaZero: << 1092 case antiXiZero: << 1093 return 0; 574 return 0; 1094 break; 575 break; 1095 case DeltaMinus: 576 case DeltaMinus: 1096 case PiMinus: 577 case PiMinus: 1097 case SigmaMinus: << 1098 case KMinus: << 1099 case antiProton: << 1100 case XiMinus: << 1101 case antiSigmaPlus: << 1102 return -1; 578 return -1; 1103 break; << 1104 default: << 1105 return 0; << 1106 break; 579 break; 1107 } << 1108 } << 1109 << 1110 G4int getStrangenessNumber(const Particle << 1111 switch(t) { << 1112 case DeltaPlusPlus: << 1113 case DeltaPlus: << 1114 case DeltaZero: << 1115 case DeltaMinus: << 1116 case Proton: << 1117 case Neutron: << 1118 case PiPlus: << 1119 case PiZero: << 1120 case PiMinus: << 1121 case Eta: << 1122 case Omega: << 1123 case EtaPrime: << 1124 case Photon: << 1125 case antiProton: << 1126 case antiNeutron: << 1127 return 0; << 1128 break; << 1129 case XiMinus: << 1130 case XiZero: << 1131 case antiXiMinus: << 1132 case antiXiZero: << 1133 return 2; << 1134 break; << 1135 case antiLambda: << 1136 case antiSigmaPlus: << 1137 case antiSigmaZero: << 1138 case antiSigmaMinus: << 1139 return 1; << 1140 break; << 1141 case Lambda: << 1142 case SigmaPlus: << 1143 case SigmaZero: << 1144 case SigmaMinus: << 1145 case KZeroBar: << 1146 case KMinus: << 1147 return -1; << 1148 break; << 1149 case KPlus: << 1150 case KZero: << 1151 return 1; << 1152 break; << 1153 case KShort: << 1154 return 0; << 1155 break; << 1156 case KLong: << 1157 return 0; << 1158 break; << 1159 default: 580 default: 1160 return 0; 581 return 0; 1161 break; 582 break; 1162 } 583 } 1163 } 584 } 1164 585 1165 G4double getNuclearRadius(const ParticleT 586 G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z) { 1166 // assert(A>=0); 587 // assert(A>=0); 1167 if(A > 19 || (A < 6 && A >= 2)) { << 588 if(A >= 19 || (A < 6 && A >= 2)) { 1168 // For large (Woods-Saxon or Modified 589 // For large (Woods-Saxon or Modified Harmonic Oscillator) or small 1169 // (Gaussian) nuclei, the radius para 590 // (Gaussian) nuclei, the radius parameter is just the nuclear radius 1170 return getRadiusParameter(t,A,Z); 591 return getRadiusParameter(t,A,Z); 1171 } else if(A < clusterTableASize && Z>=0 592 } else if(A < clusterTableASize && Z>=0 && Z < clusterTableZSize && A >= 6) { 1172 const G4double thisRMS = positionRMS[ 593 const G4double thisRMS = positionRMS[Z][A]; 1173 if(thisRMS>0.0) 594 if(thisRMS>0.0) 1174 return thisRMS; 595 return thisRMS; 1175 else { 596 else { 1176 INCL_DEBUG("getNuclearRadius: Radiu << 597 INCL_DEBUG("getNuclearRadius: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << std::endl 1177 << "returning radius for 598 << "returning radius for C12"); 1178 return positionRMS[6][12]; 599 return positionRMS[6][12]; 1179 } 600 } 1180 } else if(A <= 19) { << 601 } else if(A < 19) { 1181 const G4double theRadiusParameter = g 602 const G4double theRadiusParameter = getRadiusParameter(t, A, Z); 1182 const G4double theDiffusenessParamete 603 const G4double theDiffusenessParameter = getSurfaceDiffuseness(t, A, Z); 1183 // The formula yields the nuclear RMS 604 // The formula yields the nuclear RMS radius based on the parameters of 1184 // the nuclear-density function 605 // the nuclear-density function 1185 return 1.225*theDiffusenessParameter* << 606 return 1.581*theDiffusenessParameter* 1186 std::sqrt((2.+5.*theRadiusParameter << 607 (2.+5.*theRadiusParameter)/(2.+3.*theRadiusParameter); 1187 } else { 608 } else { 1188 INCL_ERROR("getNuclearRadius: No radi << 609 INCL_ERROR("getNuclearRadius: No radius for nucleus A = " << A << " Z = " << Z << std::endl); 1189 return 0.0; 610 return 0.0; 1190 } 611 } 1191 } 612 } 1192 613 1193 G4double getLargestNuclearRadius(const G4 614 G4double getLargestNuclearRadius(const G4int A, const G4int Z) { 1194 return Math::max(getNuclearRadius(Proto 615 return Math::max(getNuclearRadius(Proton, A, Z), getNuclearRadius(Neutron, A, Z)); 1195 } 616 } 1196 617 1197 G4double getRadiusParameter(const Particl 618 G4double getRadiusParameter(const ParticleType t, const G4int A, const G4int Z) { 1198 // assert(A>0); 619 // assert(A>0); 1199 if(A > 19) { << 620 if(A >= 28) { 1200 // radius fit for lambdas << 1201 if(t==Lambda){ << 1202 G4double r0 = (1.128+0.439*std::pow( << 1203 return r0; << 1204 } << 1205 // phenomenological radius fit 621 // phenomenological radius fit 1206 G4double r0 = (2.745e-4 * A + 1.063) 622 G4double r0 = (2.745e-4 * A + 1.063) * std::pow(A, 1.0/3.0); 1207 // HFB calculations << 1208 if(getRPCorrelationCoefficient(t)<1.) << 1209 G4double r0hfb = HFB::getRadiusParam << 1210 if(r0hfb>0.)r0 = r0hfb; << 1211 } << 1212 // << 1213 if(t==Neutron) 623 if(t==Neutron) 1214 r0 += neutronSkin; << 624 r0 += neutronSkinThickness; 1215 return r0; 625 return r0; 1216 } else if(A < 6 && A >= 2) { 626 } else if(A < 6 && A >= 2) { 1217 if(Z<clusterTableZSize && Z>=0) { 627 if(Z<clusterTableZSize && Z>=0) { 1218 const G4double thisRMS = positionRM 628 const G4double thisRMS = positionRMS[Z][A]; 1219 if(thisRMS>0.0) 629 if(thisRMS>0.0) 1220 return thisRMS; 630 return thisRMS; 1221 else { 631 else { 1222 INCL_DEBUG("getRadiusParameter: R << 632 INCL_DEBUG("getRadiusParameter: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << std::endl 1223 << "returning radius f 633 << "returning radius for C12"); 1224 return positionRMS[6][12]; 634 return positionRMS[6][12]; 1225 } 635 } 1226 } else { 636 } else { 1227 INCL_DEBUG("getRadiusParameter: Rad << 637 INCL_DEBUG("getRadiusParameter: Radius for nucleus A = " << A << " Z = " << Z << " is not available" << std::endl 1228 << "returning radius for 638 << "returning radius for C12"); 1229 return positionRMS[6][12]; 639 return positionRMS[6][12]; 1230 } 640 } 1231 } else if(A <= 19 && A >= 6) { << 641 } else if(A < 28 && A >= 6) { 1232 if(t==Lambda){ << 1233 G4double r0 = (1.128+0.439*std::pow( << 1234 return r0; << 1235 } << 1236 // HFB calculations << 1237 if(getRPCorrelationCoefficient(t)<1.) << 1238 G4double r0hfb = HFB::getSurfaceDiff << 1239 if(r0hfb>0.)return r0hfb; << 1240 } << 1241 return mediumRadius[A-1]; 642 return mediumRadius[A-1]; 1242 // return 1.581*mediumDiffusenes 643 // return 1.581*mediumDiffuseness[A-1]*(2.+5.*mediumRadius[A-1])/(2.+3.*mediumRadius[A-1]); 1243 } else { 644 } else { 1244 INCL_ERROR("getRadiusParameter: No ra << 645 INCL_ERROR("getRadiusParameter: No radius for nucleus A = " << A << " Z = " << Z << std::endl); 1245 return 0.0; 646 return 0.0; 1246 } 647 } 1247 } 648 } 1248 649 1249 G4double getMaximumNuclearRadius(const Pa 650 G4double getMaximumNuclearRadius(const ParticleType t, const G4int A, const G4int Z) { 1250 const G4double XFOISA = 8.0; 651 const G4double XFOISA = 8.0; 1251 if(A > 19) { << 652 if(A >= 19) { 1252 return getNuclearRadius(t,A,Z) + XFOI 653 return getNuclearRadius(t,A,Z) + XFOISA * getSurfaceDiffuseness(t,A,Z); 1253 } else if(A <= 19 && A >= 6) { << 654 } else if(A < 19 && A >= 6) { 1254 return 5.5 + 0.3 * (G4double(A) - 6.0 655 return 5.5 + 0.3 * (G4double(A) - 6.0)/12.0; 1255 } else if(A >= 2) { 656 } else if(A >= 2) { 1256 return getNuclearRadius(t, A, Z) + 4. 657 return getNuclearRadius(t, A, Z) + 4.5; 1257 } else { 658 } else { 1258 INCL_ERROR("getMaximumNuclearRadius : << 659 INCL_ERROR("getMaximumNuclearRadius : No maximum radius for nucleus A = " << A << " Z = " << Z << std::endl); 1259 return 0.0; 660 return 0.0; 1260 } 661 } 1261 } 662 } 1262 663 1263 G4double getSurfaceDiffuseness(const Part 664 G4double getSurfaceDiffuseness(const ParticleType t, const G4int A, const G4int Z) { 1264 if(A > 19) { << 665 if(A >= 28) { 1265 // phenomenological fit << 1266 G4double a = 1.63e-4 * A + 0.510; 666 G4double a = 1.63e-4 * A + 0.510; 1267 // HFB calculations << 1268 if(getRPCorrelationCoefficient(t)<1.) << 1269 G4double ahfb = HFB::getSurfaceDiff << 1270 if(ahfb>0.)a=ahfb; << 1271 } << 1272 // << 1273 if(t==Lambda){ << 1274 // Like for neutrons << 1275 G4double ahfb = HFB::getSurfaceDiff << 1276 if(ahfb>0.)a=ahfb; << 1277 } << 1278 if(t==Neutron) 667 if(t==Neutron) 1279 a += neutronHalo; << 668 a += neutronSkinAdditionalDiffuseness; 1280 return a; 669 return a; 1281 } else if(A <= 19 && A >= 6) { << 670 } else if(A < 28 && A >= 19) { 1282 // HFB calculations << 671 return mediumDiffuseness[A-1]; 1283 if(getRPCorrelationCoefficient(t)<1.) << 672 } else if(A < 19 && A >= 6) { 1284 G4double ahfb = HFB::getRadiusParam << 1285 if(ahfb>0.)return ahfb; << 1286 } << 1287 return mediumDiffuseness[A-1]; 673 return mediumDiffuseness[A-1]; 1288 } else if(A < 6 && A >= 2) { 674 } else if(A < 6 && A >= 2) { 1289 INCL_ERROR("getSurfaceDiffuseness: wa << 675 INCL_ERROR("getSurfaceDiffuseness: was called for A = " << A << " Z = " << Z << std::endl); 1290 return 0.0; 676 return 0.0; 1291 } else { 677 } else { 1292 INCL_ERROR("getSurfaceDiffuseness: No << 678 INCL_ERROR("getSurfaceDiffuseness: No diffuseness for nucleus A = " << A << " Z = " << Z << std::endl); 1293 return 0.0; 679 return 0.0; 1294 } 680 } 1295 } 681 } 1296 682 1297 G4double getMomentumRMS(const G4int A, co 683 G4double getMomentumRMS(const G4int A, const G4int Z) { 1298 // assert(Z>=0 && A>=0 && Z<=A); 684 // assert(Z>=0 && A>=0 && Z<=A); 1299 return getFermiMomentum(A,Z) * Math::sq 685 return getFermiMomentum(A,Z) * Math::sqrtThreeFifths; 1300 } 686 } 1301 687 1302 G4double getSeparationEnergyINCL(const Pa 688 G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/) { 1303 if(t==Proton) 689 if(t==Proton) 1304 return theINCLProtonSeparationEnergy; 690 return theINCLProtonSeparationEnergy; 1305 else if(t==Neutron) 691 else if(t==Neutron) 1306 return theINCLNeutronSeparationEnergy 692 return theINCLNeutronSeparationEnergy; 1307 else if(t==Lambda) << 1308 return theINCLLambdaSeparationEnergy; << 1309 else if(t==antiProton) << 1310 return theINCLantiProtonSeparationEne << 1311 else { 693 else { 1312 INCL_ERROR("ParticleTable::getSeparat << 694 INCL_ERROR("ParticleTable::getSeparationEnergyINCL : Unknown particle type." << std::endl); 1313 return 0.0; 695 return 0.0; 1314 } 696 } 1315 } 697 } 1316 698 1317 G4double getSeparationEnergyReal(const Pa 699 G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z) { 1318 // Real separation energies for all nuc 700 // Real separation energies for all nuclei 1319 if(t==Proton) 701 if(t==Proton) 1320 return (*getTableParticleMass)(Proton << 702 return (*getTableParticleMass)(Proton) + (*getTableMass)(A-1,Z-1) - (*getTableMass)(A,Z); 1321 else if(t==Neutron) 703 else if(t==Neutron) 1322 return (*getTableParticleMass)(Neutro << 704 return (*getTableParticleMass)(Neutron) + (*getTableMass)(A-1,Z) - (*getTableMass)(A,Z); 1323 else if(t==Lambda) << 1324 return (*getTableParticleMass)(Lambda << 1325 else { 705 else { 1326 INCL_ERROR("ParticleTable::getSeparat << 706 INCL_ERROR("ParticleTable::getSeparationEnergyReal : Unknown particle type." << std::endl); 1327 return 0.0; 707 return 0.0; 1328 } 708 } 1329 } 709 } 1330 710 1331 G4double getSeparationEnergyRealForLight( 711 G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z) { 1332 // Real separation energies for light n 712 // Real separation energies for light nuclei, fixed values for heavy nuclei 1333 if(Z<clusterTableZSize && A<clusterTabl 713 if(Z<clusterTableZSize && A<clusterTableASize) 1334 return getSeparationEnergyReal(t, A, 714 return getSeparationEnergyReal(t, A, Z); 1335 else 715 else 1336 return getSeparationEnergyINCL(t, A, 716 return getSeparationEnergyINCL(t, A, Z); 1337 } 717 } 1338 718 1339 G4double getProtonSeparationEnergy() { re 719 G4double getProtonSeparationEnergy() { return protonSeparationEnergy; } 1340 720 1341 G4double getNeutronSeparationEnergy() { r 721 G4double getNeutronSeparationEnergy() { return neutronSeparationEnergy; } 1342 722 1343 G4double getLambdaSeparationEnergy() { re << 723 void setProtonSeparationEnergy(const G4double s) { protonSeparationEnergy = s; } 1344 << 1345 void setProtonSeparationEnergy(const G4do << 1346 724 1347 void setNeutronSeparationEnergy(const G4d << 725 void setNeutronSeparationEnergy(const G4double s) { neutronSeparationEnergy = s; } 1348 << 1349 void setLambdaSeparationEnergy(const G4do << 1350 726 1351 std::string getElementName(const G4int Z) 727 std::string getElementName(const G4int Z) { 1352 if(Z<1) { 728 if(Z<1) { 1353 INCL_WARN("getElementName called with << 729 INCL_WARN("getElementName called with Z<1" << std::endl); 1354 return elementTable[0]; 730 return elementTable[0]; 1355 } else if(Z<elementTableSize) 731 } else if(Z<elementTableSize) 1356 return elementTable[Z]; 732 return elementTable[Z]; 1357 else 733 else 1358 return getIUPACElementName(Z); 734 return getIUPACElementName(Z); 1359 } 735 } 1360 736 1361 std::string getIUPACElementName(const G4i 737 std::string getIUPACElementName(const G4int Z) { 1362 std::stringstream elementStream; 738 std::stringstream elementStream; 1363 elementStream << Z; 739 elementStream << Z; 1364 std::string elementName = elementStream 740 std::string elementName = elementStream.str(); 1365 std::transform(elementName.begin(), ele 741 std::transform(elementName.begin(), elementName.end(), elementName.begin(), intToIUPAC); 1366 elementName[0] = (char)std::toupper(ele << 742 elementName[0] = std::toupper(elementName.at(0)); 1367 return elementName; 743 return elementName; 1368 } 744 } 1369 745 1370 G4int parseElement(std::string pS) { 746 G4int parseElement(std::string pS) { 1371 // Normalize the element name 747 // Normalize the element name 1372 std::transform(pS.begin(), pS.end(), pS 748 std::transform(pS.begin(), pS.end(), pS.begin(), ::tolower); 1373 pS[0] = (char)std::toupper(pS[0]); << 749 pS[0] = ::toupper(pS[0]); 1374 750 1375 const std::string *iter = std::find(ele 751 const std::string *iter = std::find(elementTable, elementTable+elementTableSize, pS); 1376 if(iter != elementTable+elementTableSiz 752 if(iter != elementTable+elementTableSize) 1377 return G4int(iter - elementTable); << 753 return iter - elementTable; 1378 else 754 else 1379 return ParticleTable::parseIUPACEleme 755 return ParticleTable::parseIUPACElement(pS); 1380 } 756 } 1381 757 1382 G4int parseIUPACElement(std::string const << 758 G4int parseIUPACElement(std::string const &s) { 1383 // Normalise to lower case 759 // Normalise to lower case 1384 std::string elementName(sel); << 760 std::string elementName(s); 1385 std::transform(elementName.begin(), ele 761 std::transform(elementName.begin(), elementName.end(), elementName.begin(), ::tolower); 1386 // Return 0 if the element name contain 762 // Return 0 if the element name contains anything but IUPAC digits 1387 if(elementName.find_first_not_of(elemen 763 if(elementName.find_first_not_of(elementIUPACDigits)!=std::string::npos) 1388 return 0; 764 return 0; 1389 std::transform(elementName.begin(), ele 765 std::transform(elementName.begin(), elementName.end(), elementName.begin(), iupacToInt); 1390 std::stringstream elementStream(element 766 std::stringstream elementStream(elementName); 1391 G4int Z; 767 G4int Z; 1392 elementStream >> Z; 768 elementStream >> Z; 1393 return Z; 769 return Z; 1394 } 770 } 1395 771 1396 IsotopicDistribution const &getNaturalIso 772 IsotopicDistribution const &getNaturalIsotopicDistribution(const G4int Z) { 1397 return getNaturalIsotopicDistributions( 773 return getNaturalIsotopicDistributions()->getIsotopicDistribution(Z); 1398 } 774 } 1399 775 1400 G4int drawRandomNaturalIsotope(const G4in 776 G4int drawRandomNaturalIsotope(const G4int Z) { 1401 return getNaturalIsotopicDistributions( 777 return getNaturalIsotopicDistributions()->drawRandomIsotope(Z); 1402 } 778 } 1403 779 1404 G4double getFermiMomentumConstant(const G 780 G4double getFermiMomentumConstant(const G4int /*A*/, const G4int /*Z*/) { 1405 return constantFermiMomentum; << 781 return PhysicalConstants::Pf; 1406 } 782 } 1407 783 1408 G4double getFermiMomentumConstantLight(co 784 G4double getFermiMomentumConstantLight(const G4int A, const G4int Z) { 1409 // assert(Z>0 && A>0 && Z<=A); 785 // assert(Z>0 && A>0 && Z<=A); 1410 if(Z<clusterTableZSize && A<clusterTabl 786 if(Z<clusterTableZSize && A<clusterTableASize) { 1411 const G4double rms = momentumRMS[Z][A 787 const G4double rms = momentumRMS[Z][A]; 1412 return ((rms>0.) ? rms : momentumRMS[ 788 return ((rms>0.) ? rms : momentumRMS[6][12]) * Math::sqrtFiveThirds; 1413 } else 789 } else 1414 return getFermiMomentumConstant(A,Z); 790 return getFermiMomentumConstant(A,Z); 1415 } 791 } 1416 792 1417 G4double getFermiMomentumMassDependent(co 793 G4double getFermiMomentumMassDependent(const G4int A, const G4int /*Z*/) { 1418 // assert(A>0); 794 // assert(A>0); 1419 static const G4double alphaParam = 259. 795 static const G4double alphaParam = 259.416; // MeV/c 1420 static const G4double betaParam = 152. 796 static const G4double betaParam = 152.824; // MeV/c 1421 static const G4double gammaParam = 9.51 797 static const G4double gammaParam = 9.5157E-2; 1422 return alphaParam - betaParam*std::exp( 798 return alphaParam - betaParam*std::exp(-gammaParam*((G4double)A)); 1423 } 799 } 1424 800 1425 G4double getRPCorrelationCoefficient(cons 801 G4double getRPCorrelationCoefficient(const ParticleType t) { 1426 // assert(t==Proton || t==Neutron || t==Lambd << 802 // assert(t==Proton || t==Neutron); 1427 return rpCorrelationCoefficient[t]; 803 return rpCorrelationCoefficient[t]; 1428 } 804 } 1429 805 1430 G4double getNeutronSkin() { return neutro << 806 G4double getNeutronSkinThickness() { return neutronSkinThickness; } 1431 807 1432 G4double getNeutronHalo() { return neutro << 808 G4double getNeutronSkinAdditionalDiffuseness() { return neutronSkinAdditionalDiffuseness; } 1433 809 1434 G4ThreadLocal G4double minDeltaMass = 0.; << 810 G4ThreadLocal G4double effectiveDeltaDecayThreshold = 0.; 1435 G4ThreadLocal G4double minDeltaMass2 = 0. << 1436 G4ThreadLocal G4double minDeltaMassRndm = << 1437 G4ThreadLocal NuclearMassFn getTableMass 811 G4ThreadLocal NuclearMassFn getTableMass = NULL; 1438 G4ThreadLocal ParticleMassFn getTablePart 812 G4ThreadLocal ParticleMassFn getTableParticleMass = NULL; 1439 G4ThreadLocal SeparationEnergyFn getSepar 813 G4ThreadLocal SeparationEnergyFn getSeparationEnergy = NULL; 1440 G4ThreadLocal FermiMomentumFn getFermiMom 814 G4ThreadLocal FermiMomentumFn getFermiMomentum = NULL; 1441 815 1442 ParticleType getPionType(const G4int isos << 1443 // assert(isosp == -2 || isosp == 0 || isosp << 1444 if (isosp == -2) { << 1445 return PiMinus; << 1446 } << 1447 else if (isosp == 0) { << 1448 return PiZero; << 1449 } << 1450 else { << 1451 return PiPlus; << 1452 } << 1453 } << 1454 << 1455 ParticleType getNucleonType(const G4int i << 1456 // assert(isosp == -1 || isosp == 1); << 1457 if (isosp == -1) { << 1458 return Neutron; << 1459 } << 1460 else { << 1461 return Proton; << 1462 } << 1463 } << 1464 << 1465 ParticleType getDeltaType(const G4int iso << 1466 // assert(isosp == -3 || isosp == -1 || isosp << 1467 if (isosp == -3) { << 1468 return DeltaMinus; << 1469 } << 1470 else if (isosp == -1) { << 1471 return DeltaZero; << 1472 } << 1473 else if (isosp == 1) { << 1474 return DeltaPlus; << 1475 } << 1476 else { << 1477 return DeltaPlusPlus; << 1478 } << 1479 } << 1480 << 1481 ParticleType getSigmaType(const G4int iso << 1482 // assert(isosp == -2 || isosp == 0 || isosp << 1483 if (isosp == -2) { << 1484 return SigmaMinus; << 1485 } << 1486 else if (isosp == 0) { << 1487 return SigmaZero; << 1488 } << 1489 else { << 1490 return SigmaPlus; << 1491 } << 1492 } << 1493 << 1494 ParticleType getXiType(const G4int isosp) << 1495 // assert(isosp == -1 || isosp == 1); << 1496 if (isosp == -1) { << 1497 return XiMinus; << 1498 } << 1499 else { << 1500 return XiZero; << 1501 } << 1502 } << 1503 << 1504 /*ParticleType getAntiNucleonType(const G4i << 1505 // assert(isosp == -1); //|| isosp == 1 << 1506 if (isosp == -1) { << 1507 return antiProton; << 1508 } << 1509 else { << 1510 return antiNeutron; << 1511 } << 1512 }*/ << 1513 << 1514 ParticleType getAntiSigmaType(const G4int << 1515 // assert(isosp == -2 || isosp == 0 || isosp << 1516 if (isosp == -2) { << 1517 return antiSigmaPlus; << 1518 } << 1519 else if (isosp == 0) { << 1520 return antiSigmaZero; << 1521 } << 1522 else { << 1523 return antiSigmaMinus; << 1524 } << 1525 } << 1526 << 1527 ParticleType getAntiXiType(const G4int is << 1528 // assert(isosp == -1 || isosp == 1); << 1529 if (isosp == -1) { << 1530 return antiXiZero; << 1531 } << 1532 else { << 1533 return antiXiMinus; << 1534 } << 1535 } << 1536 << 1537 ParticleType getKaonType(const G4int isos << 1538 // assert(isosp == -1 || isosp == 1); << 1539 if (isosp == -1) { << 1540 return KZero; << 1541 } << 1542 else { << 1543 return KPlus; << 1544 } << 1545 } << 1546 << 1547 ParticleType getAntiKaonType(const G4int << 1548 // assert(isosp == -1 || isosp == 1); << 1549 if (isosp == -1) { << 1550 return KMinus; << 1551 } << 1552 else { << 1553 return KZeroBar; << 1554 } << 1555 } << 1556 << 1557 G4double getWidth(const ParticleType pt) << 1558 // assert(pt == PiPlus || pt == PiMinus || pt << 1559 if(pt == PiPlus) { << 1560 return piPlusWidth; << 1561 } else if(pt == PiMinus) { << 1562 return piMinusWidth; << 1563 } else if(pt == PiZero) { << 1564 return piZeroWidth; << 1565 } else if(pt == Eta) { << 1566 return etaWidth; << 1567 } else if(pt == Omega) { << 1568 return omegaWidth; << 1569 } else if(pt == EtaPrime) { << 1570 return etaPrimeWidth; << 1571 } else if(pt == SigmaPlus) { << 1572 return SigmaPlusWidth; << 1573 } else if(pt == SigmaZero) { << 1574 return SigmaZeroWidth; << 1575 } else if(pt == SigmaMinus) { << 1576 return SigmaMinusWidth; << 1577 } else if(pt == KPlus) { << 1578 return KPlusWidth; << 1579 } else if(pt == KMinus) { << 1580 return KMinusWidth; << 1581 } else if(pt == KShort) { << 1582 return KShortWidth; << 1583 } else if(pt == KLong) { << 1584 return KLongWidth; << 1585 } else if(pt == Lambda) { << 1586 return LambdaWidth; << 1587 } else if(pt == XiMinus) { << 1588 return XiMinusWidth; << 1589 } else if(pt == XiZero) { << 1590 return XiZeroWidth; << 1591 } else if(pt == antiSigmaPlus) { << 1592 return antiSigmaPlusWidth; << 1593 } else if(pt == antiSigmaZero) { << 1594 return antiSigmaZeroWidth; << 1595 } else if(pt == antiSigmaMinus) { << 1596 return antiSigmaMinusWidth; << 1597 } else if(pt == antiLambda) { << 1598 return antiLambdaWidth; << 1599 } else if(pt == antiXiMinus) { << 1600 return antiXiMinusWidth; << 1601 } else if(pt == antiXiZero) { << 1602 return antiXiZeroWidth; << 1603 } else { << 1604 INCL_ERROR("getWidth : Unknown << 1605 return 0.0; << 1606 } << 1607 } << 1608 << 1609 } // namespace ParticleTable 816 } // namespace ParticleTable 1610 } // namespace G4INCL 817 } // namespace G4INCL 1611 818 1612 819