Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 33 // 32 // 34 #define INCLXX_IN_GEANT4_MODE 1 33 #define INCLXX_IN_GEANT4_MODE 1 35 34 36 #include "globals.hh" 35 #include "globals.hh" 37 36 38 #ifndef G4INCLParticleTable_hh 37 #ifndef G4INCLParticleTable_hh 39 #define G4INCLParticleTable_hh 1 38 #define G4INCLParticleTable_hh 1 40 39 41 #include <string> 40 #include <string> 42 #include <vector> 41 #include <vector> 43 // #include <cassert> 42 // #include <cassert> 44 43 45 #include "G4INCLParticleType.hh" 44 #include "G4INCLParticleType.hh" 46 #include "G4INCLParticleSpecies.hh" 45 #include "G4INCLParticleSpecies.hh" 47 #include "G4INCLLogger.hh" 46 #include "G4INCLLogger.hh" 48 #include "G4INCLConfig.hh" 47 #include "G4INCLConfig.hh" 49 #include "G4INCLHFB.hh" << 50 48 51 #ifdef INCLXX_IN_GEANT4_MODE 49 #ifdef INCLXX_IN_GEANT4_MODE 52 #include "G4IonTable.hh" 50 #include "G4IonTable.hh" 53 #include "G4ParticleTable.hh" 51 #include "G4ParticleTable.hh" 54 #endif 52 #endif 55 #include "G4INCLGlobals.hh" 53 #include "G4INCLGlobals.hh" 56 #include "G4INCLNaturalIsotopicDistributions.h 54 #include "G4INCLNaturalIsotopicDistributions.hh" 57 55 58 namespace G4INCL { 56 namespace G4INCL { 59 << 57 class ParticleTable { 60 namespace ParticleTable { << 58 public: 61 << 62 const G4int maxClusterMass = 12; << 63 const G4int maxClusterCharge = 8; << 64 << 65 const G4int clusterTableZSize = maxCluster << 66 const G4int clusterTableASize = maxCluster << 67 const G4int clusterTableSSize = 4; << 68 << 69 const G4double effectiveNucleonMass = 938. << 70 const G4double effectiveNucleonMass2 = 8.8 << 71 const G4double effectiveDeltaMass = 1232.0 << 72 const G4double effectiveDeltaWidth = 130.0 << 73 const G4double effectivePionMass = 138.0; << 74 const G4double effectiveLambdaMass = 1115. << 75 const G4double effectiveSigmaMass = 1197.4 << 76 const G4double effectiveXiMass = 1321.71; << 77 const G4double effectiveKaonMass = 497.614 << 78 const G4double effectiveAntiKaonMass = 497 << 79 const G4double effectiveEtaMass = 547.862; << 80 const G4double effectiveOmegaMass = 782.65 << 81 const G4double effectiveEtaPrimeMass = 957 << 82 const G4double effectivePhotonMass = 0.0; << 83 extern G4ThreadLocal G4double minDeltaMass << 84 extern G4ThreadLocal G4double minDeltaMass << 85 extern G4ThreadLocal G4double minDeltaMass << 86 << 87 /// \brief Initialize the particle table 59 /// \brief Initialize the particle table 88 void initialize(Config const * const theCo << 60 static void initialize(Config const * const theConfig = 0); 89 << 90 /// \brief Get the isospin of a particle << 91 G4int getIsospin(const ParticleType t); << 92 61 93 /// \brief Get the native INCL name of the << 62 /// Get the isospin of a particle 94 std::string getName(const ParticleType t); << 63 static G4int getIsospin(const ParticleType t); 95 64 96 /// \brief Get the short INCL name of the << 65 /// Get the native INCL name of the particle 97 std::string getShortName(const ParticleTyp << 66 static std::string getName(const ParticleType t); 98 67 99 /// \brief Get the native INCL name of the << 68 /// Get the short INCL name of the particle 100 std::string getName(const ParticleSpecies << 69 static std::string getShortName(const ParticleType t); 101 70 102 /// \brief Get the short INCL name of the << 71 /// Get the native INCL name of the particle 103 std::string getShortName(const ParticleSpe << 72 static std::string getName(const ParticleSpecies s); 104 73 105 /// \brief Get the native INCL name of the << 74 /// Get the short INCL name of the particle 106 std::string getName(const G4int A, const G << 75 static std::string getShortName(const ParticleSpecies s); 107 76 108 /// \brief Get the native INCL name of the << 77 /// Get the native INCL name of the ion 109 std::string getName(const G4int A, const G << 78 static std::string getName(const G4int A, const G4int Z); 110 79 111 /// \brief Get the short INCL name of the << 80 /// Get the short INCL name of the ion 112 std::string getShortName(const G4int A, co << 81 static std::string getShortName(const G4int A, const G4int Z); 113 82 114 /// \brief Get INCL nuclear mass (in MeV/c << 83 ///\brief Get INCL nuclear mass (in MeV/c^2) 115 G4double getINCLMass(const G4int A, const << 84 static G4double getINCLMass(const G4int A, const G4int Z); 116 85 117 /// \brief Get INCL particle mass (in MeV/ << 86 ///\brief Get INCL particle mass (in MeV/c^2) 118 G4double getINCLMass(const ParticleType t) << 87 static G4double getINCLMass(const ParticleType t); 119 88 120 #ifndef INCLXX_IN_GEANT4_MODE 89 #ifndef INCLXX_IN_GEANT4_MODE 121 /// \brief Do we have this particle mass? << 90 ///\brief Do we have this particle mass? 122 G4double hasMassTable(const unsigned int A << 91 static G4double hasMassTable(const unsigned int A, const unsigned int Z) { >> 92 return ( Z > 0 && A > 0 >> 93 && Z < massTableMask.size() && A < massTableMask.at(Z).size() >> 94 && massTableMask.at(Z).at(A)); >> 95 } 123 96 124 /** \brief Weizsaecker mass formula 97 /** \brief Weizsaecker mass formula 125 * 98 * 126 * Return the nuclear mass, as calculated 99 * Return the nuclear mass, as calculated from Weizsaecker's mass formula. 127 * Adapted from the Geant4 source. 100 * Adapted from the Geant4 source. 128 * 101 * 129 * \param A the mass number 102 * \param A the mass number 130 * \param Z the charge number 103 * \param Z the charge number 131 * \return the nuclear mass [MeV/c^2] 104 * \return the nuclear mass [MeV/c^2] 132 */ 105 */ 133 G4double getWeizsaeckerMass(const G4int A, << 106 static G4double getWeizsaeckerMass(const G4int A, const G4int Z) { >> 107 const G4int Npairing = (A-Z)%2; // pairing >> 108 const G4int Zpairing = Z%2; >> 109 const G4double fA = (G4double) A; >> 110 const G4double fZ = (G4double) Z; >> 111 G4double binding = >> 112 - 15.67*fA // nuclear volume >> 113 + 17.23*Math::pow23(fA) // surface energy >> 114 + 93.15*((fA/2.-fZ)*(fA/2.-fZ))/fA // asymmetry >> 115 + 0.6984523*fZ*fZ*Math::powMinus13(fA); // coulomb >> 116 if( Npairing == Zpairing ) binding += (Npairing+Zpairing-1) * 12.0 / std::sqrt(fA); // pairing >> 117 >> 118 return fZ*getRealMass(Proton)+((G4double)(A-Z))*getRealMass(Neutron)+binding; >> 119 } 134 #endif 120 #endif 135 121 136 ///\brief Get particle mass (in MeV/c^2) 122 ///\brief Get particle mass (in MeV/c^2) 137 G4double getRealMass(const G4INCL::Particl << 123 static G4double getRealMass(const G4INCL::ParticleType t); 138 ///\brief Get nuclear mass (in MeV/c^2) 124 ///\brief Get nuclear mass (in MeV/c^2) 139 G4double getRealMass(const G4int A, const << 125 static G4double getRealMass(const G4int A, const G4int Z); 140 126 141 /**\brief Get Q-value (in MeV/c^2) 127 /**\brief Get Q-value (in MeV/c^2) 142 * 128 * 143 * Uses the getTableMass function to compu 129 * Uses the getTableMass function to compute the Q-value for the 144 * following reaction: 130 * following reaction: 145 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2 131 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2,Z_1+Z_2) \f] 146 */ 132 */ 147 G4double getTableQValue(const G4int A1, co << 133 static G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2) { >> 134 return getTableMass(A1,Z1) + getTableMass(A2,Z2) - getTableMass(A1+A2,Z1+Z2); >> 135 } 148 136 149 /**\brief Get Q-value (in MeV/c^2) 137 /**\brief Get Q-value (in MeV/c^2) 150 * 138 * 151 * Uses the getTableMass function to compu 139 * Uses the getTableMass function to compute the Q-value for the 152 * following reaction: 140 * following reaction: 153 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3 141 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3) + (A1+A2-A3,Z1+Z2-Z3) \f] 154 */ 142 */ 155 G4double getTableQValue(const G4int A1, co << 143 static G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2, const G4int A3, const G4int Z3) { >> 144 return getTableMass(A1,Z1) + getTableMass(A2,Z2) - getTableMass(A3,Z3) - getTableMass(A1+A2-A3,Z1+Z2-Z3); >> 145 } 156 146 157 G4double getTableSpeciesMass(const Particl << 147 // Typedefs and pointers for transparent handling of mass functions >> 148 typedef G4double (*NuclearMassFn)(const G4int, const G4int); >> 149 typedef G4double (*ParticleMassFn)(const ParticleType); >> 150 static NuclearMassFn getTableMass; >> 151 static ParticleMassFn getTableParticleMass; >> 152 >> 153 static G4double getTableSpeciesMass(const ParticleSpecies &p) { >> 154 if(p.theType == Composite) >> 155 return (*getTableMass)(p.theA, p.theZ); >> 156 else >> 157 return (*getTableParticleMass)(p.theType); >> 158 } >> 159 >> 160 // Typedefs and pointers for transparent handling of separation energies >> 161 typedef G4double (*SeparationEnergyFn)(const ParticleType, const G4int, const G4int); >> 162 static SeparationEnergyFn getSeparationEnergy; 158 163 159 /// \brief Get mass number from particle t 164 /// \brief Get mass number from particle type 160 G4int getMassNumber(const ParticleType t); << 165 static G4int getMassNumber(const ParticleType t) { >> 166 switch(t) { >> 167 case Proton: >> 168 case Neutron: >> 169 case DeltaPlusPlus: >> 170 case DeltaPlus: >> 171 case DeltaZero: >> 172 case DeltaMinus: >> 173 return 1; >> 174 break; >> 175 case PiPlus: >> 176 case PiMinus: >> 177 case PiZero: >> 178 return 0; >> 179 break; >> 180 default: >> 181 return 0; >> 182 break; >> 183 } >> 184 } 161 185 162 /// \brief Get charge number from particle 186 /// \brief Get charge number from particle type 163 G4int getChargeNumber(const ParticleType t << 187 static G4int getChargeNumber(const ParticleType t) { 164 << 188 switch(t) { 165 /// \brief Get strangeness number from par << 189 case DeltaPlusPlus: 166 G4int getStrangenessNumber(const ParticleT << 190 return 2; 167 << 191 break; 168 G4double getNuclearRadius(const ParticleTy << 192 case Proton: 169 G4double getLargestNuclearRadius(const G4i << 193 case DeltaPlus: 170 G4double getRadiusParameter(const Particle << 194 case PiPlus: 171 G4double getMaximumNuclearRadius(const Par << 195 return 1; 172 G4double getSurfaceDiffuseness(const Parti << 196 break; >> 197 case Neutron: >> 198 case DeltaZero: >> 199 case PiZero: >> 200 return 0; >> 201 break; >> 202 case DeltaMinus: >> 203 case PiMinus: >> 204 return -1; >> 205 break; >> 206 default: >> 207 return 0; >> 208 break; >> 209 } >> 210 } >> 211 >> 212 static G4double getNuclearRadius(const G4int A, const G4int Z); >> 213 static G4double getRadiusParameter(const G4int A, const G4int Z); >> 214 static G4double getMaximumNuclearRadius(const G4int A, const G4int Z); >> 215 static G4double getSurfaceDiffuseness(const G4int A, const G4int Z); 173 216 174 /// \brief Return the RMS of the momentum 217 /// \brief Return the RMS of the momentum distribution (light clusters) 175 G4double getMomentumRMS(const G4int A, con << 218 static G4double getMomentumRMS(const G4int A, const G4int Z) { >> 219 // assert(Z>=0 && A>=0 && Z<=A); >> 220 if(Z<clusterTableZSize && A<clusterTableASize) >> 221 return momentumRMS[Z][A]; >> 222 else >> 223 return Math::sqrtThreeFifths * PhysicalConstants::Pf; >> 224 } 176 225 177 /// \brief Return INCL's default separatio 226 /// \brief Return INCL's default separation energy 178 G4double getSeparationEnergyINCL(const Par << 227 static G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/) { >> 228 if(t==Proton) >> 229 return theINCLProtonSeparationEnergy; >> 230 else if(t==Neutron) >> 231 return theINCLNeutronSeparationEnergy; >> 232 else { >> 233 ERROR("ParticleTable::getSeparationEnergyINCL : Unknown particle type." << std::endl); >> 234 return 0.0; >> 235 } >> 236 } 179 237 180 /// \brief Return the real separation ener 238 /// \brief Return the real separation energy 181 G4double getSeparationEnergyReal(const Par << 239 static G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z) { >> 240 // Real separation energies for all nuclei >> 241 if(t==Proton) >> 242 return (*getTableParticleMass)(Proton) + (*getTableMass)(A-1,Z-1) - (*getTableMass)(A,Z); >> 243 else if(t==Neutron) >> 244 return (*getTableParticleMass)(Neutron) + (*getTableMass)(A-1,Z) - (*getTableMass)(A,Z); >> 245 else { >> 246 ERROR("ParticleTable::getSeparationEnergyReal : Unknown particle type." << std::endl); >> 247 return 0.0; >> 248 } >> 249 } 182 250 183 /// \brief Return the real separation ener 251 /// \brief Return the real separation energy only for light nuclei 184 G4double getSeparationEnergyRealForLight(c << 252 static G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z) { >> 253 // Real separation energies for light nuclei, fixed values for heavy nuclei >> 254 if(Z<clusterTableZSize && A<clusterTableASize) >> 255 return getSeparationEnergyReal(t, A, Z); >> 256 else >> 257 return getSeparationEnergyINCL(t, A, Z); >> 258 } 185 259 186 /// \brief Getter for protonSeparationEner 260 /// \brief Getter for protonSeparationEnergy 187 G4double getProtonSeparationEnergy(); << 261 static G4double getProtonSeparationEnergy() { return protonSeparationEnergy; } 188 262 189 /// \brief Getter for neutronSeparationEne 263 /// \brief Getter for neutronSeparationEnergy 190 G4double getNeutronSeparationEnergy(); << 264 static G4double getNeutronSeparationEnergy() { return neutronSeparationEnergy; } 191 265 192 /// \brief Setter for protonSeparationEner 266 /// \brief Setter for protonSeparationEnergy 193 void setProtonSeparationEnergy(const G4dou << 267 static void setProtonSeparationEnergy(const G4double s) { protonSeparationEnergy = s; } 194 268 195 /// \brief Setter for protonSeparationEner 269 /// \brief Setter for protonSeparationEnergy 196 void setNeutronSeparationEnergy(const G4do << 270 static void setNeutronSeparationEnergy(const G4double s) { neutronSeparationEnergy = s; } 197 271 198 /// \brief Get the name of the element fro 272 /// \brief Get the name of the element from the atomic number 199 std::string getElementName(const G4int Z); << 273 static std::string getElementName(const G4int Z); 200 << 201 /// \brief Get the name of an unnamed elem 274 /// \brief Get the name of an unnamed element from the IUPAC convention 202 std::string getIUPACElementName(const G4in << 275 static std::string getIUPACElementName(const G4int Z); 203 << 204 /// \brief Get the name of the element fro << 205 G4int parseElement(std::string pS); << 206 276 207 /** \brief Parse a IUPAC element name 277 /** \brief Parse a IUPAC element name 208 * 278 * 209 * Note: this function is UGLY. Look at it 279 * Note: this function is UGLY. Look at it at your own peril. 210 * 280 * 211 * \param pS a normalised string (lowercas 281 * \param pS a normalised string (lowercase) 212 * \return the charge number of the nuclid 282 * \return the charge number of the nuclide, or zero on fail 213 */ 283 */ 214 G4int parseIUPACElement(std::string const << 284 static G4int parseIUPACElement(std::string const &pS); 215 << 216 IsotopicDistribution const &getNaturalIsot << 217 << 218 G4int drawRandomNaturalIsotope(const G4int << 219 << 220 // Typedefs and pointers for transparent h << 221 //typedef G4double (*NuclearMassFn)(const << 222 typedef G4double (*NuclearMassFn)(const G4 << 223 typedef G4double (*ParticleMassFn)(const P << 224 /// \brief Static pointer to the mass func << 225 extern G4ThreadLocal NuclearMassFn getTabl << 226 /// \brief Static pointer to the mass func << 227 extern G4ThreadLocal ParticleMassFn getTab << 228 285 229 // Typedefs and pointers for transparent h << 286 const static G4int elementTableSize = 113; // up to Cn 230 typedef G4double (*SeparationEnergyFn)(con << 231 /// \brief Static pointer to the separatio << 232 extern G4ThreadLocal SeparationEnergyFn ge << 233 287 234 // Typedefs and pointers for transparent h << 288 const static G4double effectiveNucleonMass; 235 typedef G4double (*FermiMomentumFn)(const << 289 const static G4double effectiveNucleonMass2; 236 extern G4ThreadLocal FermiMomentumFn getFe << 290 const static G4double effectiveDeltaMass; >> 291 const static G4double effectivePionMass; >> 292 const static G4double effectiveDeltaDecayThreshold; >> 293 >> 294 static const G4int maxClusterMass = 12; >> 295 static const G4int maxClusterCharge = 8; >> 296 >> 297 const static G4int clusterTableZSize = ParticleTable::maxClusterCharge+1; >> 298 const static G4int clusterTableASize = ParticleTable::maxClusterMass+1; >> 299 const static G4double clusterPosFact[maxClusterMass+1]; >> 300 const static G4double clusterPosFact2[maxClusterMass+1]; >> 301 const static G4int clusterZMin[maxClusterMass+1]; // Lower limit of Z for cluster of mass A >> 302 const static G4int clusterZMax[maxClusterMass+1]; // Upper limit of Z for cluster of mass A >> 303 const static G4double clusterPhaseSpaceCut[maxClusterMass+1]; 237 304 238 /// \brief Return the constant value of th << 305 #ifdef INCLXX_IN_GEANT4_MODE 239 G4double getFermiMomentumConstant(const G4 << 306 static G4IonTable *theG4IonTable; >> 307 #else >> 308 static std::vector< std::vector <G4bool> > massTableMask; >> 309 static std::vector< std::vector <G4double> > massTable; >> 310 #endif 240 311 241 /** \brief Return the constant value of th << 312 // Enumerator for cluster-decay channels 242 * << 313 enum ClusterDecayType { 243 * This function should always return Phys << 314 StableCluster, 244 * nuclei, and values from the momentumRMS << 315 NeutronDecay, 245 * << 316 ProtonDecay, 246 * \param A mass number << 317 AlphaDecay, 247 * \param Z charge number << 318 TwoProtonDecay, 248 */ << 319 TwoNeutronDecay, 249 G4double getFermiMomentumConstantLight(con << 320 ProtonUnbound, >> 321 NeutronUnbound >> 322 }; >> 323 const static ClusterDecayType clusterDecayMode[clusterTableZSize][clusterTableASize]; 250 324 251 /** \brief Return the value Fermi momentum << 325 /** \brief Coulomb conversion factor, in MeV*fm. 252 * << 253 * This function returns a fitted Fermi mo << 254 * et al., Phys. Rev. Lett. 26 (1971) 445. << 255 * \f[ << 256 * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\ga << 257 * \f] << 258 * with \f$\alpha=259.416\f$ MeV/\f$c\f$, << 259 * and \f$\gamma=9.5157\cdot10^{-2}\f$. << 260 * 326 * 261 * \param A mass number << 327 * \f[ e^2/(4 pi epsilon_0) \f] 262 */ 328 */ 263 G4double getFermiMomentumMassDependent(con << 329 static const G4double eSquared; 264 330 265 /** \brief Get the value of the r-p correl << 331 static IsotopicDistribution const &getNaturalIsotopicDistribution(const G4int Z) { 266 * << 332 return getNaturalIsotopicDistributions()->getIsotopicDistribution(Z); 267 * \param t the type of the particle (Prot << 333 } 268 * \return the value of the r-p correlatio << 334 269 */ << 335 static G4int drawRandomNaturalIsotope(const G4int Z) { 270 G4double getRPCorrelationCoefficient(const << 336 return getNaturalIsotopicDistributions()->drawRandomIsotope(Z); >> 337 } >> 338 >> 339 protected: >> 340 ParticleTable() {}; >> 341 ~ParticleTable() {}; >> 342 >> 343 private: >> 344 static const G4double theINCLNucleonMass; >> 345 static const G4double theINCLPionMass; >> 346 static const G4double theINCLNeutronSeparationEnergy; >> 347 static const G4double theINCLProtonSeparationEnergy; >> 348 static G4double protonMass; >> 349 static G4double neutronMass; >> 350 static G4double neutronSeparationEnergy; >> 351 static G4double protonSeparationEnergy; >> 352 static G4double piPlusMass, piMinusMass, piZeroMass; >> 353 static G4double theRealProtonMass; >> 354 static G4double theRealNeutronMass; >> 355 static G4double theRealChargedPiMass; >> 356 static G4double theRealPiZeroMass; >> 357 >> 358 const static G4int mediumNucleiTableSize = 30; >> 359 const static G4double mediumDiffuseness[mediumNucleiTableSize]; >> 360 const static G4double mediumRadius[mediumNucleiTableSize]; >> 361 const static G4double positionRMS[clusterTableZSize][clusterTableASize]; >> 362 const static G4double momentumRMS[clusterTableZSize][clusterTableASize]; 271 363 272 /// \brief Get the thickness of the neutro << 364 const static std::string elementTable[elementTableSize]; 273 G4double getNeutronSkin(); << 274 << 275 /// \brief Get the size of the neutron hal << 276 G4double getNeutronHalo(); << 277 << 278 /// \brief Get the type of pion << 279 ParticleType getPionType(const G4int isosp << 280 << 281 /// \brief Get the type of nucleon << 282 ParticleType getNucleonType(const G4int is << 283 << 284 /// \brief Get the type of delta << 285 ParticleType getDeltaType(const G4int isos << 286 << 287 /// \brief Get the type of sigma << 288 ParticleType getSigmaType(const G4int isos << 289 365 290 /// \brief Get the type of kaon << 366 #ifndef INCLXX_IN_GEANT4_MODE 291 ParticleType getKaonType(const G4int isosp << 367 /// \brief Read nuclear masses from a data file 292 << 368 static void readRealMasses(std::string const &path); 293 /// \brief Get the type of antikaon << 369 #endif 294 ParticleType getAntiKaonType(const G4int i << 295 << 296 /// \brief Get the type of xi << 297 ParticleType getXiType(const G4int isosp); << 298 << 299 /// \brief Get the type of antinucleon << 300 ParticleType getAntiNucleonType(const G4in << 301 370 302 /// \brief Get the type of antidelta << 371 const static std::string elementIUPACDigits; 303 ParticleType getAntiXiType(const G4int iso << 304 372 305 /// \brief Get the type of antisigma << 373 /// \brief Transform a IUPAC char to an char representing an integer digit 306 ParticleType getAntiSigmaType(const G4int << 374 static char iupacToInt(char c) { >> 375 return (char)(((G4int)'0')+elementIUPACDigits.find(c)); >> 376 } >> 377 >> 378 /// \brief Transform an integer digit (represented by a char) to a IUPAC char >> 379 static char intToIUPAC(char n) { return elementIUPACDigits.at(n); } >> 380 >> 381 /// \brief Array of natural isotopic distributions >> 382 static const NaturalIsotopicDistributions *theNaturalIsotopicDistributions; >> 383 >> 384 /// \brief Get the singleton instance of the natural isotopic distributions >> 385 static const NaturalIsotopicDistributions *getNaturalIsotopicDistributions() { >> 386 if(!theNaturalIsotopicDistributions) >> 387 theNaturalIsotopicDistributions = new NaturalIsotopicDistributions; >> 388 return theNaturalIsotopicDistributions; >> 389 } 307 390 308 /// \brief Get particle width (in s) << 391 }; 309 G4double getWidth(const ParticleType t); << 310 } << 311 } 392 } 312 393 313 #endif 394 #endif 314 << 315 395