Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 32 // >> 33 // INCL++ revision: v5.1.8 33 // 34 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 #define INCLXX_IN_GEANT4_MODE 1 35 36 36 #include "globals.hh" 37 #include "globals.hh" 37 38 38 #ifndef G4INCLParticleTable_hh 39 #ifndef G4INCLParticleTable_hh 39 #define G4INCLParticleTable_hh 1 40 #define G4INCLParticleTable_hh 1 40 41 41 #include <string> 42 #include <string> 42 #include <vector> 43 #include <vector> 43 // #include <cassert> 44 // #include <cassert> 44 45 45 #include "G4INCLParticleType.hh" 46 #include "G4INCLParticleType.hh" 46 #include "G4INCLParticleSpecies.hh" 47 #include "G4INCLParticleSpecies.hh" 47 #include "G4INCLLogger.hh" 48 #include "G4INCLLogger.hh" 48 #include "G4INCLConfig.hh" 49 #include "G4INCLConfig.hh" 49 #include "G4INCLHFB.hh" << 50 50 51 #ifdef INCLXX_IN_GEANT4_MODE 51 #ifdef INCLXX_IN_GEANT4_MODE 52 #include "G4IonTable.hh" 52 #include "G4IonTable.hh" 53 #include "G4ParticleTable.hh" 53 #include "G4ParticleTable.hh" >> 54 #include "globals.hh" 54 #endif 55 #endif 55 #include "G4INCLGlobals.hh" 56 #include "G4INCLGlobals.hh" 56 #include "G4INCLNaturalIsotopicDistributions.h 57 #include "G4INCLNaturalIsotopicDistributions.hh" 57 58 58 namespace G4INCL { 59 namespace G4INCL { 59 << 60 class ParticleTable { 60 namespace ParticleTable { << 61 public: 61 << 62 const G4int maxClusterMass = 12; << 63 const G4int maxClusterCharge = 8; << 64 << 65 const G4int clusterTableZSize = maxCluster << 66 const G4int clusterTableASize = maxCluster << 67 const G4int clusterTableSSize = 4; << 68 << 69 const G4double effectiveNucleonMass = 938. << 70 const G4double effectiveNucleonMass2 = 8.8 << 71 const G4double effectiveDeltaMass = 1232.0 << 72 const G4double effectiveDeltaWidth = 130.0 << 73 const G4double effectivePionMass = 138.0; << 74 const G4double effectiveLambdaMass = 1115. << 75 const G4double effectiveSigmaMass = 1197.4 << 76 const G4double effectiveXiMass = 1321.71; << 77 const G4double effectiveKaonMass = 497.614 << 78 const G4double effectiveAntiKaonMass = 497 << 79 const G4double effectiveEtaMass = 547.862; << 80 const G4double effectiveOmegaMass = 782.65 << 81 const G4double effectiveEtaPrimeMass = 957 << 82 const G4double effectivePhotonMass = 0.0; << 83 extern G4ThreadLocal G4double minDeltaMass << 84 extern G4ThreadLocal G4double minDeltaMass << 85 extern G4ThreadLocal G4double minDeltaMass << 86 << 87 /// \brief Initialize the particle table 62 /// \brief Initialize the particle table 88 void initialize(Config const * const theCo << 63 static void initialize(Config const * const theConfig = 0); 89 64 90 /// \brief Get the isospin of a particle << 65 /// Get the isospin of a particle 91 G4int getIsospin(const ParticleType t); << 66 static G4int getIsospin(const ParticleType t); 92 67 93 /// \brief Get the native INCL name of the << 68 /// Get the native INCL name of the particle 94 std::string getName(const ParticleType t); << 69 static std::string getName(const ParticleType t); 95 70 96 /// \brief Get the short INCL name of the << 71 /// Get the short INCL name of the particle 97 std::string getShortName(const ParticleTyp << 72 static std::string getShortName(const ParticleType t); 98 73 99 /// \brief Get the native INCL name of the << 74 /// Get the native INCL name of the particle 100 std::string getName(const ParticleSpecies << 75 static std::string getName(const ParticleSpecies s); 101 76 102 /// \brief Get the short INCL name of the << 77 /// Get the short INCL name of the particle 103 std::string getShortName(const ParticleSpe << 78 static std::string getShortName(const ParticleSpecies s); 104 79 105 /// \brief Get the native INCL name of the << 80 /// Get the native INCL name of the ion 106 std::string getName(const G4int A, const G << 81 static std::string getName(const G4int A, const G4int Z); 107 82 108 /// \brief Get the native INCL name of the << 83 /// Get the short INCL name of the ion 109 std::string getName(const G4int A, const G << 84 static std::string getShortName(const G4int A, const G4int Z); 110 85 111 /// \brief Get the short INCL name of the << 86 ///\brief Get INCL nuclear mass (in MeV/c^2) 112 std::string getShortName(const G4int A, co << 87 static G4double getINCLMass(const G4int A, const G4int Z); 113 88 114 /// \brief Get INCL nuclear mass (in MeV/c << 89 ///\brief Get INCL particle mass (in MeV/c^2) 115 G4double getINCLMass(const G4int A, const << 90 static G4double getINCLMass(const ParticleType t); 116 << 117 /// \brief Get INCL particle mass (in MeV/ << 118 G4double getINCLMass(const ParticleType t) << 119 91 120 #ifndef INCLXX_IN_GEANT4_MODE 92 #ifndef INCLXX_IN_GEANT4_MODE 121 /// \brief Do we have this particle mass? << 93 ///\brief Do we have this particle mass? 122 G4double hasMassTable(const unsigned int A << 94 static G4double hasMassTable(const unsigned int A, const unsigned int Z) { >> 95 return ( Z > 0 && A > 0 >> 96 && Z < massTableMask.size() && A < massTableMask.at(Z).size() >> 97 && massTableMask.at(Z).at(A)); >> 98 } 123 99 124 /** \brief Weizsaecker mass formula 100 /** \brief Weizsaecker mass formula 125 * 101 * 126 * Return the nuclear mass, as calculated 102 * Return the nuclear mass, as calculated from Weizsaecker's mass formula. 127 * Adapted from the Geant4 source. 103 * Adapted from the Geant4 source. 128 * 104 * 129 * \param A the mass number 105 * \param A the mass number 130 * \param Z the charge number 106 * \param Z the charge number 131 * \return the nuclear mass [MeV/c^2] 107 * \return the nuclear mass [MeV/c^2] 132 */ 108 */ 133 G4double getWeizsaeckerMass(const G4int A, << 109 static G4double getWeizsaeckerMass(const G4int A, const G4int Z) { >> 110 const G4int Npairing = (A-Z)%2; // pairing >> 111 const G4int Zpairing = Z%2; >> 112 const G4double fA = (G4double) A; >> 113 const G4double fZ = (G4double) Z; >> 114 G4double binding = >> 115 - 15.67*fA // nuclear volume >> 116 + 17.23*Math::pow23(fA) // surface energy >> 117 + 93.15*((fA/2.-fZ)*(fA/2.-fZ))/fA // asymmetry >> 118 + 0.6984523*fZ*fZ*Math::powMinus13(fA); // coulomb >> 119 if( Npairing == Zpairing ) binding += (Npairing+Zpairing-1) * 12.0 / std::sqrt(fA); // pairing >> 120 >> 121 return fZ*getRealMass(Proton)+((G4double)(A-Z))*getRealMass(Neutron)+binding; >> 122 } 134 #endif 123 #endif 135 124 136 ///\brief Get particle mass (in MeV/c^2) 125 ///\brief Get particle mass (in MeV/c^2) 137 G4double getRealMass(const G4INCL::Particl << 126 static G4double getRealMass(const G4INCL::ParticleType t); 138 ///\brief Get nuclear mass (in MeV/c^2) 127 ///\brief Get nuclear mass (in MeV/c^2) 139 G4double getRealMass(const G4int A, const << 128 static G4double getRealMass(const G4int A, const G4int Z); 140 129 141 /**\brief Get Q-value (in MeV/c^2) 130 /**\brief Get Q-value (in MeV/c^2) 142 * 131 * 143 * Uses the getTableMass function to compu 132 * Uses the getTableMass function to compute the Q-value for the 144 * following reaction: 133 * following reaction: 145 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2 134 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2,Z_1+Z_2) \f] 146 */ 135 */ 147 G4double getTableQValue(const G4int A1, co << 136 static G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2) { >> 137 return getTableMass(A1,Z1) + getTableMass(A2,Z2) - getTableMass(A1+A2,Z1+Z2); >> 138 } 148 139 149 /**\brief Get Q-value (in MeV/c^2) 140 /**\brief Get Q-value (in MeV/c^2) 150 * 141 * 151 * Uses the getTableMass function to compu 142 * Uses the getTableMass function to compute the Q-value for the 152 * following reaction: 143 * following reaction: 153 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3 144 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3) + (A1+A2-A3,Z1+Z2-Z3) \f] 154 */ 145 */ 155 G4double getTableQValue(const G4int A1, co << 146 static G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2, const G4int A3, const G4int Z3) { >> 147 return getTableMass(A1,Z1) + getTableMass(A2,Z2) - getTableMass(A3,Z3) - getTableMass(A1+A2-A3,Z1+Z2-Z3); >> 148 } >> 149 >> 150 // Typedefs and pointers for transparent handling of mass functions >> 151 typedef G4double (*NuclearMassFn)(const G4int, const G4int); >> 152 typedef G4double (*ParticleMassFn)(const ParticleType); >> 153 static NuclearMassFn getTableMass; >> 154 static ParticleMassFn getTableParticleMass; 156 155 157 G4double getTableSpeciesMass(const Particl << 156 static G4double getTableSpeciesMass(const ParticleSpecies &p) { >> 157 if(p.theType == Composite) >> 158 return (*getTableMass)(p.theA, p.theZ); >> 159 else >> 160 return (*getTableParticleMass)(p.theType); >> 161 } >> 162 >> 163 // Typedefs and pointers for transparent handling of separation energies >> 164 typedef G4double (*SeparationEnergyFn)(const ParticleType, const G4int, const G4int); >> 165 static SeparationEnergyFn getSeparationEnergy; 158 166 159 /// \brief Get mass number from particle t 167 /// \brief Get mass number from particle type 160 G4int getMassNumber(const ParticleType t); << 168 static G4int getMassNumber(const ParticleType t) { >> 169 switch(t) { >> 170 case Proton: >> 171 case Neutron: >> 172 case DeltaPlusPlus: >> 173 case DeltaPlus: >> 174 case DeltaZero: >> 175 case DeltaMinus: >> 176 return 1; >> 177 break; >> 178 case PiPlus: >> 179 case PiMinus: >> 180 case PiZero: >> 181 return 0; >> 182 break; >> 183 default: >> 184 /* FATAL("Can't determine mass number for particle type " << t << std::endl); >> 185 std::abort();*/ >> 186 return 0; >> 187 break; >> 188 } >> 189 } 161 190 162 /// \brief Get charge number from particle 191 /// \brief Get charge number from particle type 163 G4int getChargeNumber(const ParticleType t << 192 static G4int getChargeNumber(const ParticleType t) { 164 << 193 switch(t) { 165 /// \brief Get strangeness number from par << 194 case DeltaPlusPlus: 166 G4int getStrangenessNumber(const ParticleT << 195 return 2; 167 << 196 break; 168 G4double getNuclearRadius(const ParticleTy << 197 case Proton: 169 G4double getLargestNuclearRadius(const G4i << 198 case DeltaPlus: 170 G4double getRadiusParameter(const Particle << 199 case PiPlus: 171 G4double getMaximumNuclearRadius(const Par << 200 return 1; 172 G4double getSurfaceDiffuseness(const Parti << 201 break; >> 202 case Neutron: >> 203 case DeltaZero: >> 204 case PiZero: >> 205 return 0; >> 206 break; >> 207 case DeltaMinus: >> 208 case PiMinus: >> 209 return -1; >> 210 break; >> 211 default: >> 212 /* FATAL("Can't determine charge number for particle type " << t << std::endl); >> 213 std::abort();*/ >> 214 return 0; >> 215 break; >> 216 } >> 217 } >> 218 >> 219 static G4double getNuclearRadius(const G4int A, const G4int Z); >> 220 static G4double getRadiusParameter(const G4int A, const G4int Z); >> 221 static G4double getMaximumNuclearRadius(const G4int A, const G4int Z); >> 222 static G4double getSurfaceDiffuseness(const G4int A, const G4int Z); 173 223 174 /// \brief Return the RMS of the momentum 224 /// \brief Return the RMS of the momentum distribution (light clusters) 175 G4double getMomentumRMS(const G4int A, con << 225 static G4double getMomentumRMS(const G4int A, const G4int Z) { >> 226 // assert(Z>=0 && A>=0 && Z<=A); >> 227 if(Z<clusterTableZSize && A<clusterTableASize) >> 228 return momentumRMS[Z][A]; >> 229 else >> 230 return Math::sqrtThreeFifths * PhysicalConstants::Pf; >> 231 } 176 232 177 /// \brief Return INCL's default separatio 233 /// \brief Return INCL's default separation energy 178 G4double getSeparationEnergyINCL(const Par << 234 static G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/) { >> 235 if(t==Proton) >> 236 return theINCLProtonSeparationEnergy; >> 237 else if(t==Neutron) >> 238 return theINCLNeutronSeparationEnergy; >> 239 else { >> 240 ERROR("ParticleTable::getSeparationEnergyINCL : Unknown particle type." << std::endl); >> 241 return 0.0; >> 242 } >> 243 } 179 244 180 /// \brief Return the real separation ener 245 /// \brief Return the real separation energy 181 G4double getSeparationEnergyReal(const Par << 246 static G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z) { >> 247 // Real separation energies for all nuclei >> 248 if(t==Proton) >> 249 return (*getTableParticleMass)(Proton) + (*getTableMass)(A-1,Z-1) - (*getTableMass)(A,Z); >> 250 else if(t==Neutron) >> 251 return (*getTableParticleMass)(Neutron) + (*getTableMass)(A-1,Z) - (*getTableMass)(A,Z); >> 252 else { >> 253 ERROR("ParticleTable::getSeparationEnergyReal : Unknown particle type." << std::endl); >> 254 return 0.0; >> 255 } >> 256 } 182 257 183 /// \brief Return the real separation ener 258 /// \brief Return the real separation energy only for light nuclei 184 G4double getSeparationEnergyRealForLight(c << 259 static G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z) { >> 260 // Real separation energies for light nuclei, fixed values for heavy nuclei >> 261 if(Z<clusterTableZSize && A<clusterTableASize) >> 262 return getSeparationEnergyReal(t, A, Z); >> 263 else >> 264 return getSeparationEnergyINCL(t, A, Z); >> 265 } 185 266 186 /// \brief Getter for protonSeparationEner 267 /// \brief Getter for protonSeparationEnergy 187 G4double getProtonSeparationEnergy(); << 268 static G4double getProtonSeparationEnergy() { return protonSeparationEnergy; } 188 269 189 /// \brief Getter for neutronSeparationEne 270 /// \brief Getter for neutronSeparationEnergy 190 G4double getNeutronSeparationEnergy(); << 271 static G4double getNeutronSeparationEnergy() { return neutronSeparationEnergy; } 191 272 192 /// \brief Setter for protonSeparationEner 273 /// \brief Setter for protonSeparationEnergy 193 void setProtonSeparationEnergy(const G4dou << 274 static void setProtonSeparationEnergy(const G4double s) { protonSeparationEnergy = s; } 194 275 195 /// \brief Setter for protonSeparationEner 276 /// \brief Setter for protonSeparationEnergy 196 void setNeutronSeparationEnergy(const G4do << 277 static void setNeutronSeparationEnergy(const G4double s) { neutronSeparationEnergy = s; } 197 278 198 /// \brief Get the name of the element fro 279 /// \brief Get the name of the element from the atomic number 199 std::string getElementName(const G4int Z); << 280 static std::string getElementName(const G4int Z); 200 << 201 /// \brief Get the name of an unnamed elem 281 /// \brief Get the name of an unnamed element from the IUPAC convention 202 std::string getIUPACElementName(const G4in << 282 static std::string getIUPACElementName(const G4int Z); 203 << 204 /// \brief Get the name of the element fro << 205 G4int parseElement(std::string pS); << 206 283 207 /** \brief Parse a IUPAC element name 284 /** \brief Parse a IUPAC element name 208 * 285 * 209 * Note: this function is UGLY. Look at it 286 * Note: this function is UGLY. Look at it at your own peril. 210 * 287 * 211 * \param pS a normalised string (lowercas 288 * \param pS a normalised string (lowercase) 212 * \return the charge number of the nuclid 289 * \return the charge number of the nuclide, or zero on fail 213 */ 290 */ 214 G4int parseIUPACElement(std::string const << 291 static G4int parseIUPACElement(std::string const &pS); 215 << 216 IsotopicDistribution const &getNaturalIsot << 217 << 218 G4int drawRandomNaturalIsotope(const G4int << 219 << 220 // Typedefs and pointers for transparent h << 221 //typedef G4double (*NuclearMassFn)(const << 222 typedef G4double (*NuclearMassFn)(const G4 << 223 typedef G4double (*ParticleMassFn)(const P << 224 /// \brief Static pointer to the mass func << 225 extern G4ThreadLocal NuclearMassFn getTabl << 226 /// \brief Static pointer to the mass func << 227 extern G4ThreadLocal ParticleMassFn getTab << 228 << 229 // Typedefs and pointers for transparent h << 230 typedef G4double (*SeparationEnergyFn)(con << 231 /// \brief Static pointer to the separatio << 232 extern G4ThreadLocal SeparationEnergyFn ge << 233 292 234 // Typedefs and pointers for transparent h << 293 const static G4int elementTableSize = 113; // up to Cn 235 typedef G4double (*FermiMomentumFn)(const << 236 extern G4ThreadLocal FermiMomentumFn getFe << 237 294 238 /// \brief Return the constant value of th << 295 const static G4double effectiveNucleonMass; 239 G4double getFermiMomentumConstant(const G4 << 296 const static G4double effectiveNucleonMass2; >> 297 const static G4double effectiveDeltaMass; >> 298 const static G4double effectivePionMass; >> 299 const static G4double effectiveDeltaDecayThreshold; >> 300 >> 301 static const G4int maxClusterMass = 12; >> 302 static const G4int maxClusterCharge = 8; >> 303 >> 304 const static G4int clusterTableZSize = ParticleTable::maxClusterCharge+1; >> 305 const static G4int clusterTableASize = ParticleTable::maxClusterMass+1; >> 306 const static G4double clusterPosFact[maxClusterMass+1]; >> 307 const static G4double clusterPosFact2[maxClusterMass+1]; >> 308 const static G4int clusterZMin[maxClusterMass+1]; // Lower limit of Z for cluster of mass A >> 309 const static G4int clusterZMax[maxClusterMass+1]; // Upper limit of Z for cluster of mass A >> 310 const static G4double clusterPhaseSpaceCut[maxClusterMass+1]; 240 311 241 /** \brief Return the constant value of th << 312 #ifdef INCLXX_IN_GEANT4_MODE 242 * << 313 static G4IonTable *theG4IonTable; 243 * This function should always return Phys << 314 #else 244 * nuclei, and values from the momentumRMS << 315 static std::vector< std::vector <G4bool> > massTableMask; 245 * << 316 static std::vector< std::vector <G4double> > massTable; 246 * \param A mass number << 317 #endif 247 * \param Z charge number << 248 */ << 249 G4double getFermiMomentumConstantLight(con << 250 318 251 /** \brief Return the value Fermi momentum << 319 // Enumerator for cluster-decay channels 252 * << 320 enum ClusterDecayType { 253 * This function returns a fitted Fermi mo << 321 StableCluster, 254 * et al., Phys. Rev. Lett. 26 (1971) 445. << 322 NeutronDecay, 255 * \f[ << 323 ProtonDecay, 256 * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\ga << 324 AlphaDecay, 257 * \f] << 325 TwoProtonDecay, 258 * with \f$\alpha=259.416\f$ MeV/\f$c\f$, << 326 TwoNeutronDecay, 259 * and \f$\gamma=9.5157\cdot10^{-2}\f$. << 327 ProtonUnbound, 260 * << 328 NeutronUnbound 261 * \param A mass number << 329 }; 262 */ << 330 const static ClusterDecayType clusterDecayMode[clusterTableZSize][clusterTableASize]; 263 G4double getFermiMomentumMassDependent(con << 264 331 265 /** \brief Get the value of the r-p correl << 332 /** \brief Coulomb conversion factor, in MeV*fm. 266 * 333 * 267 * \param t the type of the particle (Prot << 334 * \f[ e^2/(4 pi epsilon_0) \f] 268 * \return the value of the r-p correlatio << 269 */ 335 */ 270 G4double getRPCorrelationCoefficient(const << 336 static const G4double eSquared; 271 << 272 /// \brief Get the thickness of the neutro << 273 G4double getNeutronSkin(); << 274 << 275 /// \brief Get the size of the neutron hal << 276 G4double getNeutronHalo(); << 277 << 278 /// \brief Get the type of pion << 279 ParticleType getPionType(const G4int isosp << 280 << 281 /// \brief Get the type of nucleon << 282 ParticleType getNucleonType(const G4int is << 283 337 284 /// \brief Get the type of delta << 338 static IsotopicDistribution const &getNaturalIsotopicDistribution(const G4int Z) { 285 ParticleType getDeltaType(const G4int isos << 339 return getNaturalIsotopicDistributions()->getIsotopicDistribution(Z); >> 340 } >> 341 >> 342 static G4int drawRandomNaturalIsotope(const G4int Z) { >> 343 return getNaturalIsotopicDistributions()->drawRandomIsotope(Z); >> 344 } >> 345 >> 346 protected: >> 347 ParticleTable() {}; >> 348 ~ParticleTable() {}; >> 349 >> 350 private: >> 351 static const G4double theINCLNucleonMass; >> 352 static const G4double theINCLPionMass; >> 353 static const G4double theINCLNeutronSeparationEnergy; >> 354 static const G4double theINCLProtonSeparationEnergy; >> 355 static G4double protonMass; >> 356 static G4double neutronMass; >> 357 static G4double neutronSeparationEnergy; >> 358 static G4double protonSeparationEnergy; >> 359 static G4double piPlusMass, piMinusMass, piZeroMass; >> 360 static G4double theRealProtonMass; >> 361 static G4double theRealNeutronMass; >> 362 static G4double theRealChargedPiMass; >> 363 static G4double theRealPiZeroMass; >> 364 >> 365 const static G4int mediumNucleiTableSize = 30; >> 366 const static G4double mediumDiffuseness[mediumNucleiTableSize]; >> 367 const static G4double mediumRadius[mediumNucleiTableSize]; >> 368 const static G4double positionRMS[clusterTableZSize][clusterTableASize]; >> 369 const static G4double momentumRMS[clusterTableZSize][clusterTableASize]; 286 370 287 /// \brief Get the type of sigma << 371 const static std::string elementTable[elementTableSize]; 288 ParticleType getSigmaType(const G4int isos << 289 372 290 /// \brief Get the type of kaon << 373 #ifndef INCLXX_IN_GEANT4_MODE 291 ParticleType getKaonType(const G4int isosp << 374 /// \brief Read nuclear masses from a data file 292 << 375 static void readRealMasses(std::string const &path); 293 /// \brief Get the type of antikaon << 376 #endif 294 ParticleType getAntiKaonType(const G4int i << 295 << 296 /// \brief Get the type of xi << 297 ParticleType getXiType(const G4int isosp); << 298 << 299 /// \brief Get the type of antinucleon << 300 ParticleType getAntiNucleonType(const G4in << 301 377 302 /// \brief Get the type of antidelta << 378 const static std::string elementIUPACDigits; 303 ParticleType getAntiXiType(const G4int iso << 304 379 305 /// \brief Get the type of antisigma << 380 /// \brief Transform a IUPAC char to an char representing an integer digit 306 ParticleType getAntiSigmaType(const G4int << 381 static char iupacToInt(char c) { >> 382 return (char)(((G4int)'0')+elementIUPACDigits.find(c)); >> 383 } >> 384 >> 385 /// \brief Transform an integer digit (represented by a char) to a IUPAC char >> 386 static char intToIUPAC(char n) { return elementIUPACDigits.at(n); } >> 387 >> 388 /// \brief Array of natural isotopic distributions >> 389 static const NaturalIsotopicDistributions *theNaturalIsotopicDistributions; >> 390 >> 391 /// \brief Get the singleton instance of the natural isotopic distributions >> 392 static const NaturalIsotopicDistributions *getNaturalIsotopicDistributions() { >> 393 if(!theNaturalIsotopicDistributions) >> 394 theNaturalIsotopicDistributions = new NaturalIsotopicDistributions; >> 395 return theNaturalIsotopicDistributions; >> 396 } 307 397 308 /// \brief Get particle width (in s) << 398 }; 309 G4double getWidth(const ParticleType t); << 310 } << 311 } 399 } 312 400 313 #endif 401 #endif 314 << 315 402