Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/utils/include/G4INCLParticleTable.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/inclxx/utils/include/G4INCLParticleTable.hh (Version 11.3.0) and /processes/hadronic/models/inclxx/utils/include/G4INCLParticleTable.hh (Version 11.1.2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // INCL++ intra-nuclear cascade model              26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France               27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium     28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France       29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H     30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France                31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France              32 // Davide Mancusi, CEA-Saclay, France
 33 //                                                 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1                    34 #define INCLXX_IN_GEANT4_MODE 1
 35                                                    35 
 36 #include "globals.hh"                              36 #include "globals.hh"
 37                                                    37 
 38 #ifndef G4INCLParticleTable_hh                     38 #ifndef G4INCLParticleTable_hh
 39 #define G4INCLParticleTable_hh 1                   39 #define G4INCLParticleTable_hh 1
 40                                                    40 
 41 #include <string>                                  41 #include <string>
 42 #include <vector>                                  42 #include <vector>
 43 // #include <cassert>                              43 // #include <cassert>
 44                                                    44 
 45 #include "G4INCLParticleType.hh"                   45 #include "G4INCLParticleType.hh"
 46 #include "G4INCLParticleSpecies.hh"                46 #include "G4INCLParticleSpecies.hh"
 47 #include "G4INCLLogger.hh"                         47 #include "G4INCLLogger.hh"
 48 #include "G4INCLConfig.hh"                         48 #include "G4INCLConfig.hh"
 49 #include "G4INCLHFB.hh"                            49 #include "G4INCLHFB.hh"
 50                                                    50 
 51 #ifdef INCLXX_IN_GEANT4_MODE                       51 #ifdef INCLXX_IN_GEANT4_MODE
 52 #include "G4IonTable.hh"                           52 #include "G4IonTable.hh"
 53 #include "G4ParticleTable.hh"                      53 #include "G4ParticleTable.hh"
 54 #endif                                             54 #endif
 55 #include "G4INCLGlobals.hh"                        55 #include "G4INCLGlobals.hh"
 56 #include "G4INCLNaturalIsotopicDistributions.h     56 #include "G4INCLNaturalIsotopicDistributions.hh"
 57                                                    57 
 58 namespace G4INCL {                                 58 namespace G4INCL {
 59                                                    59 
 60   namespace ParticleTable {                        60   namespace ParticleTable {
 61                                                    61 
 62     const G4int maxClusterMass = 12;               62     const G4int maxClusterMass = 12;
 63     const G4int maxClusterCharge = 8;              63     const G4int maxClusterCharge = 8;
 64                                                    64 
 65     const G4int clusterTableZSize = maxCluster     65     const G4int clusterTableZSize = maxClusterCharge+1;
 66     const G4int clusterTableASize = maxCluster     66     const G4int clusterTableASize = maxClusterMass+1;
 67     const G4int clusterTableSSize = 4;             67     const G4int clusterTableSSize = 4;
 68                                                    68 
 69     const G4double effectiveNucleonMass = 938.     69     const G4double effectiveNucleonMass = 938.2796;
 70     const G4double effectiveNucleonMass2 = 8.8     70     const G4double effectiveNucleonMass2 = 8.8036860777616e5;
 71     const G4double effectiveDeltaMass = 1232.0     71     const G4double effectiveDeltaMass = 1232.0;
 72     const G4double effectiveDeltaWidth = 130.0     72     const G4double effectiveDeltaWidth = 130.0;
 73     const G4double effectivePionMass = 138.0;      73     const G4double effectivePionMass = 138.0;
 74     const G4double effectiveLambdaMass = 1115.     74     const G4double effectiveLambdaMass = 1115.683;
 75     const G4double effectiveSigmaMass = 1197.4     75     const G4double effectiveSigmaMass = 1197.45; // max value
 76     const G4double effectiveXiMass = 1321.71;  << 
 77     const G4double effectiveKaonMass = 497.614     76     const G4double effectiveKaonMass = 497.614; // max value
 78     const G4double effectiveAntiKaonMass = 497     77     const G4double effectiveAntiKaonMass = 497.614; // max value
 79     const G4double effectiveEtaMass = 547.862;     78     const G4double effectiveEtaMass = 547.862;
 80     const G4double effectiveOmegaMass = 782.65     79     const G4double effectiveOmegaMass = 782.65;
 81     const G4double effectiveEtaPrimeMass = 957     80     const G4double effectiveEtaPrimeMass = 957.78;
 82     const G4double effectivePhotonMass = 0.0;      81     const G4double effectivePhotonMass = 0.0;
 83     extern G4ThreadLocal G4double minDeltaMass     82     extern G4ThreadLocal G4double minDeltaMass;
 84     extern G4ThreadLocal G4double minDeltaMass     83     extern G4ThreadLocal G4double minDeltaMass2;
 85     extern G4ThreadLocal G4double minDeltaMass     84     extern G4ThreadLocal G4double minDeltaMassRndm;
 86                                                    85 
 87     /// \brief Initialize the particle table       86     /// \brief Initialize the particle table
 88     void initialize(Config const * const theCo     87     void initialize(Config const * const theConfig = 0);
 89                                                    88 
 90     /// \brief Get the isospin of a particle       89     /// \brief Get the isospin of a particle
 91     G4int getIsospin(const ParticleType t);        90     G4int getIsospin(const ParticleType t);
 92                                                    91 
 93     /// \brief Get the native INCL name of the     92     /// \brief Get the native INCL name of the particle
 94     std::string getName(const ParticleType t);     93     std::string getName(const ParticleType t);
 95                                                    94 
 96     /// \brief Get the short INCL name of the      95     /// \brief Get the short INCL name of the particle
 97     std::string getShortName(const ParticleTyp     96     std::string getShortName(const ParticleType t);
 98                                                    97 
 99     /// \brief Get the native INCL name of the     98     /// \brief Get the native INCL name of the particle
100     std::string getName(const ParticleSpecies      99     std::string getName(const ParticleSpecies &s);
101                                                   100 
102     /// \brief Get the short INCL name of the     101     /// \brief Get the short INCL name of the particle
103     std::string getShortName(const ParticleSpe    102     std::string getShortName(const ParticleSpecies &s);
104                                                   103 
105     /// \brief Get the native INCL name of the    104     /// \brief Get the native INCL name of the ion
106     std::string getName(const G4int A, const G    105     std::string getName(const G4int A, const G4int Z);
107                                                << 
108     /// \brief Get the native INCL name of the << 
109     std::string getName(const G4int A, const G    106     std::string getName(const G4int A, const G4int Z, const G4int S);
110                                                   107 
111     /// \brief Get the short INCL name of the     108     /// \brief Get the short INCL name of the ion
112     std::string getShortName(const G4int A, co    109     std::string getShortName(const G4int A, const G4int Z);
113                                                   110 
114     /// \brief Get INCL nuclear mass (in MeV/c    111     /// \brief Get INCL nuclear mass (in MeV/c^2)
115     G4double getINCLMass(const G4int A, const     112     G4double getINCLMass(const G4int A, const G4int Z, const G4int S);
116                                                   113 
117     /// \brief Get INCL particle mass (in MeV/    114     /// \brief Get INCL particle mass (in MeV/c^2)
118     G4double getINCLMass(const ParticleType t)    115     G4double getINCLMass(const ParticleType t);
119                                                   116 
120 #ifndef INCLXX_IN_GEANT4_MODE                     117 #ifndef INCLXX_IN_GEANT4_MODE
121     /// \brief Do we have this particle mass?     118     /// \brief Do we have this particle mass?
122     G4double hasMassTable(const unsigned int A    119     G4double hasMassTable(const unsigned int A, const unsigned int Z);
123                                                   120 
124     /** \brief Weizsaecker mass formula           121     /** \brief Weizsaecker mass formula
125      *                                            122      *
126      * Return the nuclear mass, as calculated     123      * Return the nuclear mass, as calculated from Weizsaecker's mass formula.
127      * Adapted from the Geant4 source.            124      * Adapted from the Geant4 source.
128      *                                            125      *
129      * \param A the mass number                   126      * \param A the mass number
130      * \param Z the charge number                 127      * \param Z the charge number
131      * \return the nuclear mass [MeV/c^2]         128      * \return the nuclear mass [MeV/c^2]
132      */                                           129      */
133     G4double getWeizsaeckerMass(const G4int A,    130     G4double getWeizsaeckerMass(const G4int A, const G4int Z);
134 #endif                                            131 #endif
135                                                   132 
136     ///\brief Get particle mass (in MeV/c^2)      133     ///\brief Get particle mass (in MeV/c^2)
137     G4double getRealMass(const G4INCL::Particl    134     G4double getRealMass(const G4INCL::ParticleType t);
138     ///\brief Get nuclear mass (in MeV/c^2)       135     ///\brief Get nuclear mass (in MeV/c^2)
139     G4double getRealMass(const G4int A, const     136     G4double getRealMass(const G4int A, const G4int Z, const G4int S = 0);
140                                                   137 
141     /**\brief Get Q-value (in MeV/c^2)            138     /**\brief Get Q-value (in MeV/c^2)
142      *                                            139      *
143      * Uses the getTableMass function to compu    140      * Uses the getTableMass function to compute the Q-value for the
144      * following reaction:                        141      * following reaction:
145      * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2    142      * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2,Z_1+Z_2) \f]
146      */                                           143      */
147     G4double getTableQValue(const G4int A1, co    144     G4double getTableQValue(const G4int A1, const G4int Z1, const G4int S1, const G4int A2, const G4int Z2, const G4int S2);
148                                                   145 
149     /**\brief Get Q-value (in MeV/c^2)            146     /**\brief Get Q-value (in MeV/c^2)
150      *                                            147      *
151      * Uses the getTableMass function to compu    148      * Uses the getTableMass function to compute the Q-value for the
152      * following reaction:                        149      * following reaction:
153      * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3    150      * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3) + (A1+A2-A3,Z1+Z2-Z3) \f]
154      */                                           151      */
155     G4double getTableQValue(const G4int A1, co    152     G4double getTableQValue(const G4int A1, const G4int Z1, const G4int S1, const G4int A2, const G4int Z2, const G4int S2, const G4int A3, const G4int Z3, const G4int S3);
156                                                   153 
157     G4double getTableSpeciesMass(const Particl    154     G4double getTableSpeciesMass(const ParticleSpecies &p);
158                                                   155 
159     /// \brief Get mass number from particle t    156     /// \brief Get mass number from particle type
160     G4int getMassNumber(const ParticleType t);    157     G4int getMassNumber(const ParticleType t);
161                                                   158 
162     /// \brief Get charge number from particle    159     /// \brief Get charge number from particle type
163     G4int getChargeNumber(const ParticleType t    160     G4int getChargeNumber(const ParticleType t);
164                                                   161     
165     /// \brief Get strangeness number from par    162     /// \brief Get strangeness number from particle type
166     G4int getStrangenessNumber(const ParticleT    163     G4int getStrangenessNumber(const ParticleType t);
167                                                   164 
168     G4double getNuclearRadius(const ParticleTy    165     G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z);
169     G4double getLargestNuclearRadius(const G4i    166     G4double getLargestNuclearRadius(const G4int A, const G4int Z);
170     G4double getRadiusParameter(const Particle    167     G4double getRadiusParameter(const ParticleType t, const G4int A, const G4int Z);
171     G4double getMaximumNuclearRadius(const Par    168     G4double getMaximumNuclearRadius(const ParticleType t, const G4int A, const G4int Z);
172     G4double getSurfaceDiffuseness(const Parti    169     G4double getSurfaceDiffuseness(const ParticleType t, const G4int A, const G4int Z);
173                                                   170 
174     /// \brief Return the RMS of the momentum     171     /// \brief Return the RMS of the momentum distribution (light clusters)
175     G4double getMomentumRMS(const G4int A, con    172     G4double getMomentumRMS(const G4int A, const G4int Z);
176                                                   173 
177     /// \brief Return INCL's default separatio    174     /// \brief Return INCL's default separation energy
178     G4double getSeparationEnergyINCL(const Par    175     G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/);
179                                                   176 
180     /// \brief Return the real separation ener    177     /// \brief Return the real separation energy
181     G4double getSeparationEnergyReal(const Par    178     G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z);
182                                                   179 
183     /// \brief Return the real separation ener    180     /// \brief Return the real separation energy only for light nuclei
184     G4double getSeparationEnergyRealForLight(c    181     G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z);
185                                                   182 
186     /// \brief Getter for protonSeparationEner    183     /// \brief Getter for protonSeparationEnergy
187     G4double getProtonSeparationEnergy();         184     G4double getProtonSeparationEnergy();
188                                                   185 
189     /// \brief Getter for neutronSeparationEne    186     /// \brief Getter for neutronSeparationEnergy
190     G4double getNeutronSeparationEnergy();        187     G4double getNeutronSeparationEnergy();
191                                                   188 
192     /// \brief Setter for protonSeparationEner    189     /// \brief Setter for protonSeparationEnergy
193     void setProtonSeparationEnergy(const G4dou    190     void setProtonSeparationEnergy(const G4double s);
194                                                   191 
195     /// \brief Setter for protonSeparationEner    192     /// \brief Setter for protonSeparationEnergy
196     void setNeutronSeparationEnergy(const G4do    193     void setNeutronSeparationEnergy(const G4double s);
197                                                   194 
198     /// \brief Get the name of the element fro    195     /// \brief Get the name of the element from the atomic number
199     std::string getElementName(const G4int Z);    196     std::string getElementName(const G4int Z);
200                                                   197 
201     /// \brief Get the name of an unnamed elem    198     /// \brief Get the name of an unnamed element from the IUPAC convention
202     std::string getIUPACElementName(const G4in    199     std::string getIUPACElementName(const G4int Z);
203                                                   200 
204     /// \brief Get the name of the element fro    201     /// \brief Get the name of the element from the atomic number
205     G4int parseElement(std::string pS);           202     G4int parseElement(std::string pS);
206                                                   203 
207     /** \brief Parse a IUPAC element name         204     /** \brief Parse a IUPAC element name
208      *                                            205      *
209      * Note: this function is UGLY. Look at it    206      * Note: this function is UGLY. Look at it at your own peril.
210      *                                            207      *
211      * \param pS a normalised string (lowercas    208      * \param pS a normalised string (lowercase)
212      * \return the charge number of the nuclid    209      * \return the charge number of the nuclide, or zero on fail
213      */                                           210      */
214     G4int parseIUPACElement(std::string const     211     G4int parseIUPACElement(std::string const &pS);
215                                                   212 
216     IsotopicDistribution const &getNaturalIsot    213     IsotopicDistribution const &getNaturalIsotopicDistribution(const G4int Z);
217                                                   214 
218     G4int drawRandomNaturalIsotope(const G4int    215     G4int drawRandomNaturalIsotope(const G4int Z);
219                                                   216 
220     // Typedefs and pointers for transparent h    217     // Typedefs and pointers for transparent handling of mass functions
221     //typedef G4double (*NuclearMassFn)(const     218     //typedef G4double (*NuclearMassFn)(const G4int, const G4int);
222     typedef G4double (*NuclearMassFn)(const G4    219     typedef G4double (*NuclearMassFn)(const G4int, const G4int, const G4int);
223     typedef G4double (*ParticleMassFn)(const P    220     typedef G4double (*ParticleMassFn)(const ParticleType);
224     /// \brief Static pointer to the mass func    221     /// \brief Static pointer to the mass function for nuclei
225     extern G4ThreadLocal NuclearMassFn getTabl    222     extern G4ThreadLocal NuclearMassFn getTableMass;
226     /// \brief Static pointer to the mass func    223     /// \brief Static pointer to the mass function for particles
227     extern G4ThreadLocal ParticleMassFn getTab    224     extern G4ThreadLocal ParticleMassFn getTableParticleMass;
228                                                   225 
229     // Typedefs and pointers for transparent h    226     // Typedefs and pointers for transparent handling of separation energies
230     typedef G4double (*SeparationEnergyFn)(con    227     typedef G4double (*SeparationEnergyFn)(const ParticleType, const G4int, const G4int);
231     /// \brief Static pointer to the separatio    228     /// \brief Static pointer to the separation-energy function
232     extern G4ThreadLocal SeparationEnergyFn ge    229     extern G4ThreadLocal SeparationEnergyFn getSeparationEnergy;
233                                                   230 
234     // Typedefs and pointers for transparent h    231     // Typedefs and pointers for transparent handling of Fermi momentum
235     typedef G4double (*FermiMomentumFn)(const     232     typedef G4double (*FermiMomentumFn)(const G4int, const G4int);
236     extern G4ThreadLocal FermiMomentumFn getFe    233     extern G4ThreadLocal FermiMomentumFn getFermiMomentum;
237                                                   234 
238     /// \brief Return the constant value of th    235     /// \brief Return the constant value of the Fermi momentum
239     G4double getFermiMomentumConstant(const G4    236     G4double getFermiMomentumConstant(const G4int /*A*/, const G4int /*Z*/);
240                                                   237 
241     /** \brief Return the constant value of th    238     /** \brief Return the constant value of the Fermi momentum - special for light
242      *                                            239      *
243      * This function should always return Phys    240      * This function should always return PhysicalConstants::Pf for heavy
244      * nuclei, and values from the momentumRMS    241      * nuclei, and values from the momentumRMS table for light nuclei.
245      *                                            242      *
246      * \param A mass number                       243      * \param A mass number
247      * \param Z charge number                     244      * \param Z charge number
248      */                                           245      */
249     G4double getFermiMomentumConstantLight(con    246     G4double getFermiMomentumConstantLight(const G4int A, const G4int Z);
250                                                   247 
251     /** \brief Return the value Fermi momentum    248     /** \brief Return the value Fermi momentum from a fit
252      *                                            249      *
253      * This function returns a fitted Fermi mo    250      * This function returns a fitted Fermi momentum, based on data from Moniz
254      * et al., Phys. Rev. Lett. 26 (1971) 445.    251      * et al., Phys. Rev. Lett. 26 (1971) 445. The fitted functional form is
255      * \f[                                        252      * \f[
256      * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\ga    253      * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\gamma)}
257      * \f]                                        254      * \f]
258      * with \f$\alpha=259.416\f$ MeV/\f$c\f$,     255      * with \f$\alpha=259.416\f$ MeV/\f$c\f$, \f$\beta=152.824\f$ MeV/\f$c\f$
259      * and \f$\gamma=9.5157\cdot10^{-2}\f$.       256      * and \f$\gamma=9.5157\cdot10^{-2}\f$.
260      *                                            257      *
261      * \param A mass number                       258      * \param A mass number
262      */                                           259      */
263     G4double getFermiMomentumMassDependent(con    260     G4double getFermiMomentumMassDependent(const G4int A, const G4int /*Z*/);
264                                                   261 
265     /** \brief Get the value of the r-p correl    262     /** \brief Get the value of the r-p correlation coefficient
266      *                                            263      *
267      * \param t the type of the particle (Prot    264      * \param t the type of the particle (Proton or Neutron)
268      * \return the value of the r-p correlatio    265      * \return the value of the r-p correlation coefficient
269      */                                           266      */
270     G4double getRPCorrelationCoefficient(const    267     G4double getRPCorrelationCoefficient(const ParticleType t);
271                                                   268 
272     /// \brief Get the thickness of the neutro    269     /// \brief Get the thickness of the neutron skin
273     G4double getNeutronSkin();                    270     G4double getNeutronSkin();
274                                                   271 
275     /// \brief Get the size of the neutron hal    272     /// \brief Get the size of the neutron halo
276     G4double getNeutronHalo();                    273     G4double getNeutronHalo();
277                                                   274 
278     /// \brief Get the type of pion               275     /// \brief Get the type of pion
279     ParticleType getPionType(const G4int isosp    276     ParticleType getPionType(const G4int isosp);
280                                                   277 
281     /// \brief Get the type of nucleon            278     /// \brief Get the type of nucleon
282     ParticleType getNucleonType(const G4int is    279     ParticleType getNucleonType(const G4int isosp);
283                                                   280 
284     /// \brief Get the type of delta              281     /// \brief Get the type of delta
285     ParticleType getDeltaType(const G4int isos    282     ParticleType getDeltaType(const G4int isosp);
286                                                   283 
287     /// \brief Get the type of sigma              284     /// \brief Get the type of sigma
288     ParticleType getSigmaType(const G4int isos    285     ParticleType getSigmaType(const G4int isosp);
289                                                << 286 
290     /// \brief Get the type of kaon               287     /// \brief Get the type of kaon
291     ParticleType getKaonType(const G4int isosp    288     ParticleType getKaonType(const G4int isosp);
292                                                   289 
293     /// \brief Get the type of antikaon           290     /// \brief Get the type of antikaon
294     ParticleType getAntiKaonType(const G4int i    291     ParticleType getAntiKaonType(const G4int isosp);
295                                                << 
296     /// \brief Get the type of xi              << 
297     ParticleType getXiType(const G4int isosp); << 
298                                                << 
299     /// \brief Get the type of antinucleon     << 
300     ParticleType getAntiNucleonType(const G4in << 
301                                                << 
302     /// \brief Get the type of antidelta       << 
303     ParticleType getAntiXiType(const G4int iso << 
304                                                << 
305     /// \brief Get the type of antisigma       << 
306     ParticleType getAntiSigmaType(const G4int  << 
307                                                   292 
308     /// \brief Get particle width (in s)          293     /// \brief Get particle width (in s)
309     G4double getWidth(const ParticleType t);      294     G4double getWidth(const ParticleType t);
310   }                                               295   }
311 }                                                 296 }
312                                                   297 
313 #endif                                            298 #endif
314                                                   299 
315                                                   300