Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 #ifndef G4INCLParticleTable_hh 38 #ifndef G4INCLParticleTable_hh 39 #define G4INCLParticleTable_hh 1 39 #define G4INCLParticleTable_hh 1 40 40 41 #include <string> 41 #include <string> 42 #include <vector> 42 #include <vector> 43 // #include <cassert> 43 // #include <cassert> 44 44 45 #include "G4INCLParticleType.hh" 45 #include "G4INCLParticleType.hh" 46 #include "G4INCLParticleSpecies.hh" 46 #include "G4INCLParticleSpecies.hh" 47 #include "G4INCLLogger.hh" 47 #include "G4INCLLogger.hh" 48 #include "G4INCLConfig.hh" 48 #include "G4INCLConfig.hh" 49 #include "G4INCLHFB.hh" << 50 49 51 #ifdef INCLXX_IN_GEANT4_MODE 50 #ifdef INCLXX_IN_GEANT4_MODE 52 #include "G4IonTable.hh" 51 #include "G4IonTable.hh" 53 #include "G4ParticleTable.hh" 52 #include "G4ParticleTable.hh" 54 #endif 53 #endif 55 #include "G4INCLGlobals.hh" 54 #include "G4INCLGlobals.hh" 56 #include "G4INCLNaturalIsotopicDistributions.h 55 #include "G4INCLNaturalIsotopicDistributions.hh" 57 56 58 namespace G4INCL { 57 namespace G4INCL { 59 58 60 namespace ParticleTable { 59 namespace ParticleTable { 61 60 62 const G4int maxClusterMass = 12; 61 const G4int maxClusterMass = 12; 63 const G4int maxClusterCharge = 8; 62 const G4int maxClusterCharge = 8; 64 63 65 const G4int clusterTableZSize = maxCluster 64 const G4int clusterTableZSize = maxClusterCharge+1; 66 const G4int clusterTableASize = maxCluster 65 const G4int clusterTableASize = maxClusterMass+1; 67 const G4int clusterTableSSize = 4; << 68 66 69 const G4double effectiveNucleonMass = 938. 67 const G4double effectiveNucleonMass = 938.2796; 70 const G4double effectiveNucleonMass2 = 8.8 68 const G4double effectiveNucleonMass2 = 8.8036860777616e5; 71 const G4double effectiveDeltaMass = 1232.0 69 const G4double effectiveDeltaMass = 1232.0; 72 const G4double effectiveDeltaWidth = 130.0 70 const G4double effectiveDeltaWidth = 130.0; 73 const G4double effectivePionMass = 138.0; 71 const G4double effectivePionMass = 138.0; 74 const G4double effectiveLambdaMass = 1115. << 75 const G4double effectiveSigmaMass = 1197.4 << 76 const G4double effectiveXiMass = 1321.71; << 77 const G4double effectiveKaonMass = 497.614 << 78 const G4double effectiveAntiKaonMass = 497 << 79 const G4double effectiveEtaMass = 547.862; << 80 const G4double effectiveOmegaMass = 782.65 << 81 const G4double effectiveEtaPrimeMass = 957 << 82 const G4double effectivePhotonMass = 0.0; << 83 extern G4ThreadLocal G4double minDeltaMass 72 extern G4ThreadLocal G4double minDeltaMass; 84 extern G4ThreadLocal G4double minDeltaMass 73 extern G4ThreadLocal G4double minDeltaMass2; 85 extern G4ThreadLocal G4double minDeltaMass 74 extern G4ThreadLocal G4double minDeltaMassRndm; 86 75 87 /// \brief Initialize the particle table 76 /// \brief Initialize the particle table 88 void initialize(Config const * const theCo 77 void initialize(Config const * const theConfig = 0); 89 78 90 /// \brief Get the isospin of a particle 79 /// \brief Get the isospin of a particle 91 G4int getIsospin(const ParticleType t); 80 G4int getIsospin(const ParticleType t); 92 81 93 /// \brief Get the native INCL name of the 82 /// \brief Get the native INCL name of the particle 94 std::string getName(const ParticleType t); 83 std::string getName(const ParticleType t); 95 84 96 /// \brief Get the short INCL name of the 85 /// \brief Get the short INCL name of the particle 97 std::string getShortName(const ParticleTyp 86 std::string getShortName(const ParticleType t); 98 87 99 /// \brief Get the native INCL name of the 88 /// \brief Get the native INCL name of the particle 100 std::string getName(const ParticleSpecies 89 std::string getName(const ParticleSpecies &s); 101 90 102 /// \brief Get the short INCL name of the 91 /// \brief Get the short INCL name of the particle 103 std::string getShortName(const ParticleSpe 92 std::string getShortName(const ParticleSpecies &s); 104 93 105 /// \brief Get the native INCL name of the 94 /// \brief Get the native INCL name of the ion 106 std::string getName(const G4int A, const G 95 std::string getName(const G4int A, const G4int Z); 107 96 108 /// \brief Get the native INCL name of the << 109 std::string getName(const G4int A, const G << 110 << 111 /// \brief Get the short INCL name of the 97 /// \brief Get the short INCL name of the ion 112 std::string getShortName(const G4int A, co 98 std::string getShortName(const G4int A, const G4int Z); 113 99 114 /// \brief Get INCL nuclear mass (in MeV/c 100 /// \brief Get INCL nuclear mass (in MeV/c^2) 115 G4double getINCLMass(const G4int A, const << 101 G4double getINCLMass(const G4int A, const G4int Z); 116 102 117 /// \brief Get INCL particle mass (in MeV/ 103 /// \brief Get INCL particle mass (in MeV/c^2) 118 G4double getINCLMass(const ParticleType t) 104 G4double getINCLMass(const ParticleType t); 119 105 120 #ifndef INCLXX_IN_GEANT4_MODE 106 #ifndef INCLXX_IN_GEANT4_MODE 121 /// \brief Do we have this particle mass? 107 /// \brief Do we have this particle mass? 122 G4double hasMassTable(const unsigned int A 108 G4double hasMassTable(const unsigned int A, const unsigned int Z); 123 109 124 /** \brief Weizsaecker mass formula 110 /** \brief Weizsaecker mass formula 125 * 111 * 126 * Return the nuclear mass, as calculated 112 * Return the nuclear mass, as calculated from Weizsaecker's mass formula. 127 * Adapted from the Geant4 source. 113 * Adapted from the Geant4 source. 128 * 114 * 129 * \param A the mass number 115 * \param A the mass number 130 * \param Z the charge number 116 * \param Z the charge number 131 * \return the nuclear mass [MeV/c^2] 117 * \return the nuclear mass [MeV/c^2] 132 */ 118 */ 133 G4double getWeizsaeckerMass(const G4int A, 119 G4double getWeizsaeckerMass(const G4int A, const G4int Z); 134 #endif 120 #endif 135 121 136 ///\brief Get particle mass (in MeV/c^2) 122 ///\brief Get particle mass (in MeV/c^2) 137 G4double getRealMass(const G4INCL::Particl 123 G4double getRealMass(const G4INCL::ParticleType t); 138 ///\brief Get nuclear mass (in MeV/c^2) 124 ///\brief Get nuclear mass (in MeV/c^2) 139 G4double getRealMass(const G4int A, const << 125 G4double getRealMass(const G4int A, const G4int Z); 140 126 141 /**\brief Get Q-value (in MeV/c^2) 127 /**\brief Get Q-value (in MeV/c^2) 142 * 128 * 143 * Uses the getTableMass function to compu 129 * Uses the getTableMass function to compute the Q-value for the 144 * following reaction: 130 * following reaction: 145 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2 131 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2,Z_1+Z_2) \f] 146 */ 132 */ 147 G4double getTableQValue(const G4int A1, co << 133 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2); 148 134 149 /**\brief Get Q-value (in MeV/c^2) 135 /**\brief Get Q-value (in MeV/c^2) 150 * 136 * 151 * Uses the getTableMass function to compu 137 * Uses the getTableMass function to compute the Q-value for the 152 * following reaction: 138 * following reaction: 153 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3 139 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3) + (A1+A2-A3,Z1+Z2-Z3) \f] 154 */ 140 */ 155 G4double getTableQValue(const G4int A1, co << 141 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2, const G4int A3, const G4int Z3); 156 142 157 G4double getTableSpeciesMass(const Particl 143 G4double getTableSpeciesMass(const ParticleSpecies &p); 158 144 159 /// \brief Get mass number from particle t 145 /// \brief Get mass number from particle type 160 G4int getMassNumber(const ParticleType t); 146 G4int getMassNumber(const ParticleType t); 161 147 162 /// \brief Get charge number from particle 148 /// \brief Get charge number from particle type 163 G4int getChargeNumber(const ParticleType t 149 G4int getChargeNumber(const ParticleType t); 164 << 165 /// \brief Get strangeness number from par << 166 G4int getStrangenessNumber(const ParticleT << 167 150 168 G4double getNuclearRadius(const ParticleTy 151 G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z); 169 G4double getLargestNuclearRadius(const G4i 152 G4double getLargestNuclearRadius(const G4int A, const G4int Z); 170 G4double getRadiusParameter(const Particle 153 G4double getRadiusParameter(const ParticleType t, const G4int A, const G4int Z); 171 G4double getMaximumNuclearRadius(const Par 154 G4double getMaximumNuclearRadius(const ParticleType t, const G4int A, const G4int Z); 172 G4double getSurfaceDiffuseness(const Parti 155 G4double getSurfaceDiffuseness(const ParticleType t, const G4int A, const G4int Z); 173 156 174 /// \brief Return the RMS of the momentum 157 /// \brief Return the RMS of the momentum distribution (light clusters) 175 G4double getMomentumRMS(const G4int A, con 158 G4double getMomentumRMS(const G4int A, const G4int Z); 176 159 177 /// \brief Return INCL's default separatio 160 /// \brief Return INCL's default separation energy 178 G4double getSeparationEnergyINCL(const Par 161 G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/); 179 162 180 /// \brief Return the real separation ener 163 /// \brief Return the real separation energy 181 G4double getSeparationEnergyReal(const Par 164 G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z); 182 165 183 /// \brief Return the real separation ener 166 /// \brief Return the real separation energy only for light nuclei 184 G4double getSeparationEnergyRealForLight(c 167 G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z); 185 168 186 /// \brief Getter for protonSeparationEner 169 /// \brief Getter for protonSeparationEnergy 187 G4double getProtonSeparationEnergy(); 170 G4double getProtonSeparationEnergy(); 188 171 189 /// \brief Getter for neutronSeparationEne 172 /// \brief Getter for neutronSeparationEnergy 190 G4double getNeutronSeparationEnergy(); 173 G4double getNeutronSeparationEnergy(); 191 174 192 /// \brief Setter for protonSeparationEner 175 /// \brief Setter for protonSeparationEnergy 193 void setProtonSeparationEnergy(const G4dou 176 void setProtonSeparationEnergy(const G4double s); 194 177 195 /// \brief Setter for protonSeparationEner 178 /// \brief Setter for protonSeparationEnergy 196 void setNeutronSeparationEnergy(const G4do 179 void setNeutronSeparationEnergy(const G4double s); 197 180 198 /// \brief Get the name of the element fro 181 /// \brief Get the name of the element from the atomic number 199 std::string getElementName(const G4int Z); 182 std::string getElementName(const G4int Z); 200 183 201 /// \brief Get the name of an unnamed elem 184 /// \brief Get the name of an unnamed element from the IUPAC convention 202 std::string getIUPACElementName(const G4in 185 std::string getIUPACElementName(const G4int Z); 203 186 204 /// \brief Get the name of the element fro 187 /// \brief Get the name of the element from the atomic number 205 G4int parseElement(std::string pS); 188 G4int parseElement(std::string pS); 206 189 207 /** \brief Parse a IUPAC element name 190 /** \brief Parse a IUPAC element name 208 * 191 * 209 * Note: this function is UGLY. Look at it 192 * Note: this function is UGLY. Look at it at your own peril. 210 * 193 * 211 * \param pS a normalised string (lowercas 194 * \param pS a normalised string (lowercase) 212 * \return the charge number of the nuclid 195 * \return the charge number of the nuclide, or zero on fail 213 */ 196 */ 214 G4int parseIUPACElement(std::string const 197 G4int parseIUPACElement(std::string const &pS); 215 198 216 IsotopicDistribution const &getNaturalIsot 199 IsotopicDistribution const &getNaturalIsotopicDistribution(const G4int Z); 217 200 218 G4int drawRandomNaturalIsotope(const G4int 201 G4int drawRandomNaturalIsotope(const G4int Z); 219 202 220 // Typedefs and pointers for transparent h 203 // Typedefs and pointers for transparent handling of mass functions 221 //typedef G4double (*NuclearMassFn)(const << 204 typedef G4double (*NuclearMassFn)(const G4int, const G4int); 222 typedef G4double (*NuclearMassFn)(const G4 << 223 typedef G4double (*ParticleMassFn)(const P 205 typedef G4double (*ParticleMassFn)(const ParticleType); 224 /// \brief Static pointer to the mass func 206 /// \brief Static pointer to the mass function for nuclei 225 extern G4ThreadLocal NuclearMassFn getTabl 207 extern G4ThreadLocal NuclearMassFn getTableMass; 226 /// \brief Static pointer to the mass func 208 /// \brief Static pointer to the mass function for particles 227 extern G4ThreadLocal ParticleMassFn getTab 209 extern G4ThreadLocal ParticleMassFn getTableParticleMass; 228 210 229 // Typedefs and pointers for transparent h 211 // Typedefs and pointers for transparent handling of separation energies 230 typedef G4double (*SeparationEnergyFn)(con 212 typedef G4double (*SeparationEnergyFn)(const ParticleType, const G4int, const G4int); 231 /// \brief Static pointer to the separatio 213 /// \brief Static pointer to the separation-energy function 232 extern G4ThreadLocal SeparationEnergyFn ge 214 extern G4ThreadLocal SeparationEnergyFn getSeparationEnergy; 233 215 234 // Typedefs and pointers for transparent h 216 // Typedefs and pointers for transparent handling of Fermi momentum 235 typedef G4double (*FermiMomentumFn)(const 217 typedef G4double (*FermiMomentumFn)(const G4int, const G4int); 236 extern G4ThreadLocal FermiMomentumFn getFe 218 extern G4ThreadLocal FermiMomentumFn getFermiMomentum; 237 219 238 /// \brief Return the constant value of th 220 /// \brief Return the constant value of the Fermi momentum 239 G4double getFermiMomentumConstant(const G4 221 G4double getFermiMomentumConstant(const G4int /*A*/, const G4int /*Z*/); 240 222 241 /** \brief Return the constant value of th 223 /** \brief Return the constant value of the Fermi momentum - special for light 242 * 224 * 243 * This function should always return Phys 225 * This function should always return PhysicalConstants::Pf for heavy 244 * nuclei, and values from the momentumRMS 226 * nuclei, and values from the momentumRMS table for light nuclei. 245 * 227 * 246 * \param A mass number 228 * \param A mass number 247 * \param Z charge number 229 * \param Z charge number 248 */ 230 */ 249 G4double getFermiMomentumConstantLight(con 231 G4double getFermiMomentumConstantLight(const G4int A, const G4int Z); 250 232 251 /** \brief Return the value Fermi momentum 233 /** \brief Return the value Fermi momentum from a fit 252 * 234 * 253 * This function returns a fitted Fermi mo 235 * This function returns a fitted Fermi momentum, based on data from Moniz 254 * et al., Phys. Rev. Lett. 26 (1971) 445. 236 * et al., Phys. Rev. Lett. 26 (1971) 445. The fitted functional form is 255 * \f[ 237 * \f[ 256 * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\ga 238 * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\gamma)} 257 * \f] 239 * \f] 258 * with \f$\alpha=259.416\f$ MeV/\f$c\f$, 240 * with \f$\alpha=259.416\f$ MeV/\f$c\f$, \f$\beta=152.824\f$ MeV/\f$c\f$ 259 * and \f$\gamma=9.5157\cdot10^{-2}\f$. 241 * and \f$\gamma=9.5157\cdot10^{-2}\f$. 260 * 242 * 261 * \param A mass number 243 * \param A mass number 262 */ 244 */ 263 G4double getFermiMomentumMassDependent(con 245 G4double getFermiMomentumMassDependent(const G4int A, const G4int /*Z*/); 264 246 265 /** \brief Get the value of the r-p correl 247 /** \brief Get the value of the r-p correlation coefficient 266 * 248 * 267 * \param t the type of the particle (Prot 249 * \param t the type of the particle (Proton or Neutron) 268 * \return the value of the r-p correlatio 250 * \return the value of the r-p correlation coefficient 269 */ 251 */ 270 G4double getRPCorrelationCoefficient(const 252 G4double getRPCorrelationCoefficient(const ParticleType t); 271 253 272 /// \brief Get the thickness of the neutro 254 /// \brief Get the thickness of the neutron skin 273 G4double getNeutronSkin(); 255 G4double getNeutronSkin(); 274 256 275 /// \brief Get the size of the neutron hal 257 /// \brief Get the size of the neutron halo 276 G4double getNeutronHalo(); 258 G4double getNeutronHalo(); 277 259 278 /// \brief Get the type of pion 260 /// \brief Get the type of pion 279 ParticleType getPionType(const G4int isosp 261 ParticleType getPionType(const G4int isosp); 280 262 281 /// \brief Get the type of nucleon 263 /// \brief Get the type of nucleon 282 ParticleType getNucleonType(const G4int is 264 ParticleType getNucleonType(const G4int isosp); 283 265 284 /// \brief Get the type of delta 266 /// \brief Get the type of delta 285 ParticleType getDeltaType(const G4int isos 267 ParticleType getDeltaType(const G4int isosp); 286 268 287 /// \brief Get the type of sigma << 288 ParticleType getSigmaType(const G4int isos << 289 << 290 /// \brief Get the type of kaon << 291 ParticleType getKaonType(const G4int isosp << 292 << 293 /// \brief Get the type of antikaon << 294 ParticleType getAntiKaonType(const G4int i << 295 << 296 /// \brief Get the type of xi << 297 ParticleType getXiType(const G4int isosp); << 298 << 299 /// \brief Get the type of antinucleon << 300 ParticleType getAntiNucleonType(const G4in << 301 << 302 /// \brief Get the type of antidelta << 303 ParticleType getAntiXiType(const G4int iso << 304 << 305 /// \brief Get the type of antisigma << 306 ParticleType getAntiSigmaType(const G4int << 307 << 308 /// \brief Get particle width (in s) << 309 G4double getWidth(const ParticleType t); << 310 } 269 } 311 } 270 } 312 271 313 #endif 272 #endif 314 273 315 274