Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 33 // 32 // 34 #define INCLXX_IN_GEANT4_MODE 1 33 #define INCLXX_IN_GEANT4_MODE 1 35 34 36 #include "globals.hh" 35 #include "globals.hh" 37 36 38 #ifndef G4INCLParticleTable_hh 37 #ifndef G4INCLParticleTable_hh 39 #define G4INCLParticleTable_hh 1 38 #define G4INCLParticleTable_hh 1 40 39 41 #include <string> 40 #include <string> 42 #include <vector> 41 #include <vector> 43 // #include <cassert> 42 // #include <cassert> 44 43 45 #include "G4INCLParticleType.hh" 44 #include "G4INCLParticleType.hh" 46 #include "G4INCLParticleSpecies.hh" 45 #include "G4INCLParticleSpecies.hh" 47 #include "G4INCLLogger.hh" 46 #include "G4INCLLogger.hh" 48 #include "G4INCLConfig.hh" 47 #include "G4INCLConfig.hh" 49 #include "G4INCLHFB.hh" << 50 48 51 #ifdef INCLXX_IN_GEANT4_MODE 49 #ifdef INCLXX_IN_GEANT4_MODE 52 #include "G4IonTable.hh" 50 #include "G4IonTable.hh" 53 #include "G4ParticleTable.hh" 51 #include "G4ParticleTable.hh" 54 #endif 52 #endif 55 #include "G4INCLGlobals.hh" 53 #include "G4INCLGlobals.hh" 56 #include "G4INCLNaturalIsotopicDistributions.h 54 #include "G4INCLNaturalIsotopicDistributions.hh" 57 55 58 namespace G4INCL { 56 namespace G4INCL { 59 57 60 namespace ParticleTable { 58 namespace ParticleTable { 61 59 62 const G4int maxClusterMass = 12; 60 const G4int maxClusterMass = 12; 63 const G4int maxClusterCharge = 8; 61 const G4int maxClusterCharge = 8; 64 62 65 const G4int clusterTableZSize = maxCluster 63 const G4int clusterTableZSize = maxClusterCharge+1; 66 const G4int clusterTableASize = maxCluster 64 const G4int clusterTableASize = maxClusterMass+1; 67 const G4int clusterTableSSize = 4; << 68 65 69 const G4double effectiveNucleonMass = 938. 66 const G4double effectiveNucleonMass = 938.2796; 70 const G4double effectiveNucleonMass2 = 8.8 67 const G4double effectiveNucleonMass2 = 8.8036860777616e5; 71 const G4double effectiveDeltaMass = 1232.0 68 const G4double effectiveDeltaMass = 1232.0; 72 const G4double effectiveDeltaWidth = 130.0 << 73 const G4double effectivePionMass = 138.0; 69 const G4double effectivePionMass = 138.0; 74 const G4double effectiveLambdaMass = 1115. << 70 extern G4ThreadLocal G4double effectiveDeltaDecayThreshold; 75 const G4double effectiveSigmaMass = 1197.4 << 76 const G4double effectiveXiMass = 1321.71; << 77 const G4double effectiveKaonMass = 497.614 << 78 const G4double effectiveAntiKaonMass = 497 << 79 const G4double effectiveEtaMass = 547.862; << 80 const G4double effectiveOmegaMass = 782.65 << 81 const G4double effectiveEtaPrimeMass = 957 << 82 const G4double effectivePhotonMass = 0.0; << 83 extern G4ThreadLocal G4double minDeltaMass << 84 extern G4ThreadLocal G4double minDeltaMass << 85 extern G4ThreadLocal G4double minDeltaMass << 86 71 87 /// \brief Initialize the particle table 72 /// \brief Initialize the particle table 88 void initialize(Config const * const theCo 73 void initialize(Config const * const theConfig = 0); 89 74 90 /// \brief Get the isospin of a particle 75 /// \brief Get the isospin of a particle 91 G4int getIsospin(const ParticleType t); 76 G4int getIsospin(const ParticleType t); 92 77 93 /// \brief Get the native INCL name of the 78 /// \brief Get the native INCL name of the particle 94 std::string getName(const ParticleType t); 79 std::string getName(const ParticleType t); 95 80 96 /// \brief Get the short INCL name of the 81 /// \brief Get the short INCL name of the particle 97 std::string getShortName(const ParticleTyp 82 std::string getShortName(const ParticleType t); 98 83 99 /// \brief Get the native INCL name of the 84 /// \brief Get the native INCL name of the particle 100 std::string getName(const ParticleSpecies 85 std::string getName(const ParticleSpecies &s); 101 86 102 /// \brief Get the short INCL name of the 87 /// \brief Get the short INCL name of the particle 103 std::string getShortName(const ParticleSpe 88 std::string getShortName(const ParticleSpecies &s); 104 89 105 /// \brief Get the native INCL name of the 90 /// \brief Get the native INCL name of the ion 106 std::string getName(const G4int A, const G 91 std::string getName(const G4int A, const G4int Z); 107 92 108 /// \brief Get the native INCL name of the << 109 std::string getName(const G4int A, const G << 110 << 111 /// \brief Get the short INCL name of the 93 /// \brief Get the short INCL name of the ion 112 std::string getShortName(const G4int A, co 94 std::string getShortName(const G4int A, const G4int Z); 113 95 114 /// \brief Get INCL nuclear mass (in MeV/c 96 /// \brief Get INCL nuclear mass (in MeV/c^2) 115 G4double getINCLMass(const G4int A, const << 97 G4double getINCLMass(const G4int A, const G4int Z); 116 98 117 /// \brief Get INCL particle mass (in MeV/ 99 /// \brief Get INCL particle mass (in MeV/c^2) 118 G4double getINCLMass(const ParticleType t) 100 G4double getINCLMass(const ParticleType t); 119 101 120 #ifndef INCLXX_IN_GEANT4_MODE 102 #ifndef INCLXX_IN_GEANT4_MODE 121 /// \brief Do we have this particle mass? 103 /// \brief Do we have this particle mass? 122 G4double hasMassTable(const unsigned int A 104 G4double hasMassTable(const unsigned int A, const unsigned int Z); 123 105 124 /** \brief Weizsaecker mass formula 106 /** \brief Weizsaecker mass formula 125 * 107 * 126 * Return the nuclear mass, as calculated 108 * Return the nuclear mass, as calculated from Weizsaecker's mass formula. 127 * Adapted from the Geant4 source. 109 * Adapted from the Geant4 source. 128 * 110 * 129 * \param A the mass number 111 * \param A the mass number 130 * \param Z the charge number 112 * \param Z the charge number 131 * \return the nuclear mass [MeV/c^2] 113 * \return the nuclear mass [MeV/c^2] 132 */ 114 */ 133 G4double getWeizsaeckerMass(const G4int A, 115 G4double getWeizsaeckerMass(const G4int A, const G4int Z); 134 #endif 116 #endif 135 117 136 ///\brief Get particle mass (in MeV/c^2) 118 ///\brief Get particle mass (in MeV/c^2) 137 G4double getRealMass(const G4INCL::Particl 119 G4double getRealMass(const G4INCL::ParticleType t); 138 ///\brief Get nuclear mass (in MeV/c^2) 120 ///\brief Get nuclear mass (in MeV/c^2) 139 G4double getRealMass(const G4int A, const << 121 G4double getRealMass(const G4int A, const G4int Z); 140 122 141 /**\brief Get Q-value (in MeV/c^2) 123 /**\brief Get Q-value (in MeV/c^2) 142 * 124 * 143 * Uses the getTableMass function to compu 125 * Uses the getTableMass function to compute the Q-value for the 144 * following reaction: 126 * following reaction: 145 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2 127 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_1+A_2,Z_1+Z_2) \f] 146 */ 128 */ 147 G4double getTableQValue(const G4int A1, co << 129 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2); 148 130 149 /**\brief Get Q-value (in MeV/c^2) 131 /**\brief Get Q-value (in MeV/c^2) 150 * 132 * 151 * Uses the getTableMass function to compu 133 * Uses the getTableMass function to compute the Q-value for the 152 * following reaction: 134 * following reaction: 153 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3 135 * \f[ (A_1,Z_1) + (A_2, Z_2) --> (A_3,Z_3) + (A1+A2-A3,Z1+Z2-Z3) \f] 154 */ 136 */ 155 G4double getTableQValue(const G4int A1, co << 137 G4double getTableQValue(const G4int A1, const G4int Z1, const G4int A2, const G4int Z2, const G4int A3, const G4int Z3); 156 138 157 G4double getTableSpeciesMass(const Particl 139 G4double getTableSpeciesMass(const ParticleSpecies &p); 158 140 159 /// \brief Get mass number from particle t 141 /// \brief Get mass number from particle type 160 G4int getMassNumber(const ParticleType t); 142 G4int getMassNumber(const ParticleType t); 161 143 162 /// \brief Get charge number from particle 144 /// \brief Get charge number from particle type 163 G4int getChargeNumber(const ParticleType t 145 G4int getChargeNumber(const ParticleType t); 164 << 165 /// \brief Get strangeness number from par << 166 G4int getStrangenessNumber(const ParticleT << 167 146 168 G4double getNuclearRadius(const ParticleTy 147 G4double getNuclearRadius(const ParticleType t, const G4int A, const G4int Z); 169 G4double getLargestNuclearRadius(const G4i 148 G4double getLargestNuclearRadius(const G4int A, const G4int Z); 170 G4double getRadiusParameter(const Particle 149 G4double getRadiusParameter(const ParticleType t, const G4int A, const G4int Z); 171 G4double getMaximumNuclearRadius(const Par 150 G4double getMaximumNuclearRadius(const ParticleType t, const G4int A, const G4int Z); 172 G4double getSurfaceDiffuseness(const Parti 151 G4double getSurfaceDiffuseness(const ParticleType t, const G4int A, const G4int Z); 173 152 174 /// \brief Return the RMS of the momentum 153 /// \brief Return the RMS of the momentum distribution (light clusters) 175 G4double getMomentumRMS(const G4int A, con 154 G4double getMomentumRMS(const G4int A, const G4int Z); 176 155 177 /// \brief Return INCL's default separatio 156 /// \brief Return INCL's default separation energy 178 G4double getSeparationEnergyINCL(const Par 157 G4double getSeparationEnergyINCL(const ParticleType t, const G4int /*A*/, const G4int /*Z*/); 179 158 180 /// \brief Return the real separation ener 159 /// \brief Return the real separation energy 181 G4double getSeparationEnergyReal(const Par 160 G4double getSeparationEnergyReal(const ParticleType t, const G4int A, const G4int Z); 182 161 183 /// \brief Return the real separation ener 162 /// \brief Return the real separation energy only for light nuclei 184 G4double getSeparationEnergyRealForLight(c 163 G4double getSeparationEnergyRealForLight(const ParticleType t, const G4int A, const G4int Z); 185 164 186 /// \brief Getter for protonSeparationEner 165 /// \brief Getter for protonSeparationEnergy 187 G4double getProtonSeparationEnergy(); 166 G4double getProtonSeparationEnergy(); 188 167 189 /// \brief Getter for neutronSeparationEne 168 /// \brief Getter for neutronSeparationEnergy 190 G4double getNeutronSeparationEnergy(); 169 G4double getNeutronSeparationEnergy(); 191 170 192 /// \brief Setter for protonSeparationEner 171 /// \brief Setter for protonSeparationEnergy 193 void setProtonSeparationEnergy(const G4dou 172 void setProtonSeparationEnergy(const G4double s); 194 173 195 /// \brief Setter for protonSeparationEner 174 /// \brief Setter for protonSeparationEnergy 196 void setNeutronSeparationEnergy(const G4do 175 void setNeutronSeparationEnergy(const G4double s); 197 176 198 /// \brief Get the name of the element fro 177 /// \brief Get the name of the element from the atomic number 199 std::string getElementName(const G4int Z); 178 std::string getElementName(const G4int Z); 200 179 201 /// \brief Get the name of an unnamed elem 180 /// \brief Get the name of an unnamed element from the IUPAC convention 202 std::string getIUPACElementName(const G4in 181 std::string getIUPACElementName(const G4int Z); 203 182 204 /// \brief Get the name of the element fro 183 /// \brief Get the name of the element from the atomic number 205 G4int parseElement(std::string pS); 184 G4int parseElement(std::string pS); 206 185 207 /** \brief Parse a IUPAC element name 186 /** \brief Parse a IUPAC element name 208 * 187 * 209 * Note: this function is UGLY. Look at it 188 * Note: this function is UGLY. Look at it at your own peril. 210 * 189 * 211 * \param pS a normalised string (lowercas 190 * \param pS a normalised string (lowercase) 212 * \return the charge number of the nuclid 191 * \return the charge number of the nuclide, or zero on fail 213 */ 192 */ 214 G4int parseIUPACElement(std::string const 193 G4int parseIUPACElement(std::string const &pS); 215 194 216 IsotopicDistribution const &getNaturalIsot 195 IsotopicDistribution const &getNaturalIsotopicDistribution(const G4int Z); 217 196 218 G4int drawRandomNaturalIsotope(const G4int 197 G4int drawRandomNaturalIsotope(const G4int Z); 219 198 220 // Typedefs and pointers for transparent h 199 // Typedefs and pointers for transparent handling of mass functions 221 //typedef G4double (*NuclearMassFn)(const << 200 typedef G4double (*NuclearMassFn)(const G4int, const G4int); 222 typedef G4double (*NuclearMassFn)(const G4 << 223 typedef G4double (*ParticleMassFn)(const P 201 typedef G4double (*ParticleMassFn)(const ParticleType); 224 /// \brief Static pointer to the mass func 202 /// \brief Static pointer to the mass function for nuclei 225 extern G4ThreadLocal NuclearMassFn getTabl 203 extern G4ThreadLocal NuclearMassFn getTableMass; 226 /// \brief Static pointer to the mass func 204 /// \brief Static pointer to the mass function for particles 227 extern G4ThreadLocal ParticleMassFn getTab 205 extern G4ThreadLocal ParticleMassFn getTableParticleMass; 228 206 229 // Typedefs and pointers for transparent h 207 // Typedefs and pointers for transparent handling of separation energies 230 typedef G4double (*SeparationEnergyFn)(con 208 typedef G4double (*SeparationEnergyFn)(const ParticleType, const G4int, const G4int); 231 /// \brief Static pointer to the separatio 209 /// \brief Static pointer to the separation-energy function 232 extern G4ThreadLocal SeparationEnergyFn ge 210 extern G4ThreadLocal SeparationEnergyFn getSeparationEnergy; 233 211 234 // Typedefs and pointers for transparent h 212 // Typedefs and pointers for transparent handling of Fermi momentum 235 typedef G4double (*FermiMomentumFn)(const 213 typedef G4double (*FermiMomentumFn)(const G4int, const G4int); 236 extern G4ThreadLocal FermiMomentumFn getFe 214 extern G4ThreadLocal FermiMomentumFn getFermiMomentum; 237 215 238 /// \brief Return the constant value of th 216 /// \brief Return the constant value of the Fermi momentum 239 G4double getFermiMomentumConstant(const G4 217 G4double getFermiMomentumConstant(const G4int /*A*/, const G4int /*Z*/); 240 218 241 /** \brief Return the constant value of th 219 /** \brief Return the constant value of the Fermi momentum - special for light 242 * 220 * 243 * This function should always return Phys 221 * This function should always return PhysicalConstants::Pf for heavy 244 * nuclei, and values from the momentumRMS 222 * nuclei, and values from the momentumRMS table for light nuclei. 245 * 223 * 246 * \param A mass number 224 * \param A mass number 247 * \param Z charge number 225 * \param Z charge number 248 */ 226 */ 249 G4double getFermiMomentumConstantLight(con 227 G4double getFermiMomentumConstantLight(const G4int A, const G4int Z); 250 228 251 /** \brief Return the value Fermi momentum 229 /** \brief Return the value Fermi momentum from a fit 252 * 230 * 253 * This function returns a fitted Fermi mo 231 * This function returns a fitted Fermi momentum, based on data from Moniz 254 * et al., Phys. Rev. Lett. 26 (1971) 445. 232 * et al., Phys. Rev. Lett. 26 (1971) 445. The fitted functional form is 255 * \f[ 233 * \f[ 256 * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\ga 234 * p_F(A)=\alpha-\beta\cdot e^{(-A\cdot\gamma)} 257 * \f] 235 * \f] 258 * with \f$\alpha=259.416\f$ MeV/\f$c\f$, 236 * with \f$\alpha=259.416\f$ MeV/\f$c\f$, \f$\beta=152.824\f$ MeV/\f$c\f$ 259 * and \f$\gamma=9.5157\cdot10^{-2}\f$. 237 * and \f$\gamma=9.5157\cdot10^{-2}\f$. 260 * 238 * 261 * \param A mass number 239 * \param A mass number 262 */ 240 */ 263 G4double getFermiMomentumMassDependent(con 241 G4double getFermiMomentumMassDependent(const G4int A, const G4int /*Z*/); 264 242 265 /** \brief Get the value of the r-p correl 243 /** \brief Get the value of the r-p correlation coefficient 266 * 244 * 267 * \param t the type of the particle (Prot 245 * \param t the type of the particle (Proton or Neutron) 268 * \return the value of the r-p correlatio 246 * \return the value of the r-p correlation coefficient 269 */ 247 */ 270 G4double getRPCorrelationCoefficient(const 248 G4double getRPCorrelationCoefficient(const ParticleType t); 271 249 272 /// \brief Get the thickness of the neutro << 250 /// \brief Get the value of the neutron skin thickness 273 G4double getNeutronSkin(); << 251 G4double getNeutronSkinThickness(); 274 << 275 /// \brief Get the size of the neutron hal << 276 G4double getNeutronHalo(); << 277 << 278 /// \brief Get the type of pion << 279 ParticleType getPionType(const G4int isosp << 280 << 281 /// \brief Get the type of nucleon << 282 ParticleType getNucleonType(const G4int is << 283 << 284 /// \brief Get the type of delta << 285 ParticleType getDeltaType(const G4int isos << 286 << 287 /// \brief Get the type of sigma << 288 ParticleType getSigmaType(const G4int isos << 289 << 290 /// \brief Get the type of kaon << 291 ParticleType getKaonType(const G4int isosp << 292 << 293 /// \brief Get the type of antikaon << 294 ParticleType getAntiKaonType(const G4int i << 295 << 296 /// \brief Get the type of xi << 297 ParticleType getXiType(const G4int isosp); << 298 << 299 /// \brief Get the type of antinucleon << 300 ParticleType getAntiNucleonType(const G4in << 301 << 302 /// \brief Get the type of antidelta << 303 ParticleType getAntiXiType(const G4int iso << 304 252 305 /// \brief Get the type of antisigma << 253 /// \brief Get the value of the additional neutron skin diffuseness 306 ParticleType getAntiSigmaType(const G4int << 254 G4double getNeutronSkinAdditionalDiffuseness(); 307 255 308 /// \brief Get particle width (in s) << 309 G4double getWidth(const ParticleType t); << 310 } 256 } 311 } 257 } 312 258 313 #endif 259 #endif 314 260 315 261