Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 /* 38 /* 39 * G4INCLParticle.hh 39 * G4INCLParticle.hh 40 * 40 * 41 * \date Jun 5, 2009 41 * \date Jun 5, 2009 42 * \author Pekka Kaitaniemi 42 * \author Pekka Kaitaniemi 43 */ 43 */ 44 44 45 #ifndef PARTICLE_HH_ 45 #ifndef PARTICLE_HH_ 46 #define PARTICLE_HH_ 46 #define PARTICLE_HH_ 47 47 48 #include "G4INCLThreeVector.hh" 48 #include "G4INCLThreeVector.hh" 49 #include "G4INCLParticleTable.hh" 49 #include "G4INCLParticleTable.hh" 50 #include "G4INCLParticleType.hh" 50 #include "G4INCLParticleType.hh" 51 #include "G4INCLParticleSpecies.hh" 51 #include "G4INCLParticleSpecies.hh" 52 #include "G4INCLLogger.hh" 52 #include "G4INCLLogger.hh" 53 #include "G4INCLUnorderedVector.hh" 53 #include "G4INCLUnorderedVector.hh" 54 #include "G4INCLAllocationPool.hh" 54 #include "G4INCLAllocationPool.hh" 55 #include <sstream> 55 #include <sstream> 56 #include <string> 56 #include <string> 57 57 58 namespace G4INCL { 58 namespace G4INCL { 59 59 60 class Particle; 60 class Particle; 61 61 62 class ParticleList : public UnorderedVector< 62 class ParticleList : public UnorderedVector<Particle*> { 63 public: 63 public: 64 void rotatePositionAndMomentum(const G4d 64 void rotatePositionAndMomentum(const G4double angle, const ThreeVector &axis) const; 65 void rotatePosition(const G4double angle 65 void rotatePosition(const G4double angle, const ThreeVector &axis) const; 66 void rotateMomentum(const G4double angle 66 void rotateMomentum(const G4double angle, const ThreeVector &axis) const; 67 void boost(const ThreeVector &b) const; 67 void boost(const ThreeVector &b) const; 68 G4double getParticleListBias() const; 68 G4double getParticleListBias() const; 69 std::vector<G4int> getParticleListBiasVe 69 std::vector<G4int> getParticleListBiasVector() const; 70 }; 70 }; 71 71 72 typedef ParticleList::const_iterator Particl 72 typedef ParticleList::const_iterator ParticleIter; 73 typedef ParticleList::iterator Particl 73 typedef ParticleList::iterator ParticleMutableIter; 74 74 75 class Particle { 75 class Particle { 76 public: 76 public: 77 Particle(); 77 Particle(); 78 Particle(ParticleType t, G4double energy, 78 Particle(ParticleType t, G4double energy, ThreeVector const &momentum, ThreeVector const &position); 79 Particle(ParticleType t, ThreeVector const 79 Particle(ParticleType t, ThreeVector const &momentum, ThreeVector const &position); 80 virtual ~Particle() {} 80 virtual ~Particle() {} 81 81 82 /** \brief Copy constructor 82 /** \brief Copy constructor 83 * 83 * 84 * Does not copy the particle ID. 84 * Does not copy the particle ID. 85 */ 85 */ 86 Particle(const Particle &rhs) : 86 Particle(const Particle &rhs) : 87 theZ(rhs.theZ), 87 theZ(rhs.theZ), 88 theA(rhs.theA), 88 theA(rhs.theA), 89 theS(rhs.theS), 89 theS(rhs.theS), 90 theParticipantType(rhs.theParticipantTyp 90 theParticipantType(rhs.theParticipantType), 91 theType(rhs.theType), 91 theType(rhs.theType), 92 theEnergy(rhs.theEnergy), 92 theEnergy(rhs.theEnergy), 93 theFrozenEnergy(rhs.theFrozenEnergy), 93 theFrozenEnergy(rhs.theFrozenEnergy), 94 theMomentum(rhs.theMomentum), 94 theMomentum(rhs.theMomentum), 95 theFrozenMomentum(rhs.theFrozenMomentum) 95 theFrozenMomentum(rhs.theFrozenMomentum), 96 thePosition(rhs.thePosition), 96 thePosition(rhs.thePosition), 97 nCollisions(rhs.nCollisions), 97 nCollisions(rhs.nCollisions), 98 nDecays(rhs.nDecays), 98 nDecays(rhs.nDecays), 99 thePotentialEnergy(rhs.thePotentialEnerg 99 thePotentialEnergy(rhs.thePotentialEnergy), 100 rpCorrelated(rhs.rpCorrelated), 100 rpCorrelated(rhs.rpCorrelated), 101 uncorrelatedMomentum(rhs.uncorrelatedMom 101 uncorrelatedMomentum(rhs.uncorrelatedMomentum), 102 theParticleBias(rhs.theParticleBias), 102 theParticleBias(rhs.theParticleBias), 103 theNKaon(rhs.theNKaon), 103 theNKaon(rhs.theNKaon), 104 #ifdef INCLXX_IN_GEANT4_MODE 104 #ifdef INCLXX_IN_GEANT4_MODE 105 theParentResonancePDGCode(rhs.theParentR 105 theParentResonancePDGCode(rhs.theParentResonancePDGCode), 106 theParentResonanceID(rhs.theParentResona 106 theParentResonanceID(rhs.theParentResonanceID), 107 #endif 107 #endif 108 theHelicity(rhs.theHelicity), 108 theHelicity(rhs.theHelicity), 109 emissionTime(rhs.emissionTime), 109 emissionTime(rhs.emissionTime), 110 outOfWell(rhs.outOfWell), 110 outOfWell(rhs.outOfWell), 111 theMass(rhs.theMass) 111 theMass(rhs.theMass) 112 { 112 { 113 if(rhs.thePropagationEnergy == &(rhs.t 113 if(rhs.thePropagationEnergy == &(rhs.theFrozenEnergy)) 114 thePropagationEnergy = &theFrozenEne 114 thePropagationEnergy = &theFrozenEnergy; 115 else 115 else 116 thePropagationEnergy = &theEnergy; 116 thePropagationEnergy = &theEnergy; 117 if(rhs.thePropagationMomentum == &(rhs 117 if(rhs.thePropagationMomentum == &(rhs.theFrozenMomentum)) 118 thePropagationMomentum = &theFrozenM 118 thePropagationMomentum = &theFrozenMomentum; 119 else 119 else 120 thePropagationMomentum = &theMomentu 120 thePropagationMomentum = &theMomentum; 121 // ID intentionally not copied 121 // ID intentionally not copied 122 ID = nextID++; 122 ID = nextID++; 123 123 124 theBiasCollisionVector = rhs.theBiasCo 124 theBiasCollisionVector = rhs.theBiasCollisionVector; 125 } 125 } 126 126 127 protected: 127 protected: 128 /// \brief Helper method for the assignmen 128 /// \brief Helper method for the assignment operator 129 void swap(Particle &rhs) { 129 void swap(Particle &rhs) { 130 std::swap(theZ, rhs.theZ); 130 std::swap(theZ, rhs.theZ); 131 std::swap(theA, rhs.theA); 131 std::swap(theA, rhs.theA); 132 std::swap(theS, rhs.theS); 132 std::swap(theS, rhs.theS); 133 std::swap(theParticipantType, rhs.thePar 133 std::swap(theParticipantType, rhs.theParticipantType); 134 std::swap(theType, rhs.theType); 134 std::swap(theType, rhs.theType); 135 if(rhs.thePropagationEnergy == &(rhs.the 135 if(rhs.thePropagationEnergy == &(rhs.theFrozenEnergy)) 136 thePropagationEnergy = &theFrozenEnerg 136 thePropagationEnergy = &theFrozenEnergy; 137 else 137 else 138 thePropagationEnergy = &theEnergy; 138 thePropagationEnergy = &theEnergy; 139 std::swap(theEnergy, rhs.theEnergy); 139 std::swap(theEnergy, rhs.theEnergy); 140 std::swap(theFrozenEnergy, rhs.theFrozen 140 std::swap(theFrozenEnergy, rhs.theFrozenEnergy); 141 if(rhs.thePropagationMomentum == &(rhs.t 141 if(rhs.thePropagationMomentum == &(rhs.theFrozenMomentum)) 142 thePropagationMomentum = &theFrozenMom 142 thePropagationMomentum = &theFrozenMomentum; 143 else 143 else 144 thePropagationMomentum = &theMomentum; 144 thePropagationMomentum = &theMomentum; 145 std::swap(theMomentum, rhs.theMomentum); 145 std::swap(theMomentum, rhs.theMomentum); 146 std::swap(theFrozenMomentum, rhs.theFroz 146 std::swap(theFrozenMomentum, rhs.theFrozenMomentum); 147 std::swap(thePosition, rhs.thePosition); 147 std::swap(thePosition, rhs.thePosition); 148 std::swap(nCollisions, rhs.nCollisions); 148 std::swap(nCollisions, rhs.nCollisions); 149 std::swap(nDecays, rhs.nDecays); 149 std::swap(nDecays, rhs.nDecays); 150 std::swap(thePotentialEnergy, rhs.thePot 150 std::swap(thePotentialEnergy, rhs.thePotentialEnergy); 151 // ID intentionally not swapped 151 // ID intentionally not swapped 152 152 153 #ifdef INCLXX_IN_GEANT4_MODE 153 #ifdef INCLXX_IN_GEANT4_MODE 154 std::swap(theParentResonancePDGCode, rhs 154 std::swap(theParentResonancePDGCode, rhs.theParentResonancePDGCode); 155 std::swap(theParentResonanceID, rhs.theP 155 std::swap(theParentResonanceID, rhs.theParentResonanceID); 156 #endif 156 #endif 157 157 158 std::swap(theHelicity, rhs.theHelicity); 158 std::swap(theHelicity, rhs.theHelicity); 159 std::swap(emissionTime, rhs.emissionTime 159 std::swap(emissionTime, rhs.emissionTime); 160 std::swap(outOfWell, rhs.outOfWell); 160 std::swap(outOfWell, rhs.outOfWell); 161 161 162 std::swap(theMass, rhs.theMass); 162 std::swap(theMass, rhs.theMass); 163 std::swap(rpCorrelated, rhs.rpCorrelated 163 std::swap(rpCorrelated, rhs.rpCorrelated); 164 std::swap(uncorrelatedMomentum, rhs.unco 164 std::swap(uncorrelatedMomentum, rhs.uncorrelatedMomentum); 165 165 166 std::swap(theParticleBias, rhs.thePartic 166 std::swap(theParticleBias, rhs.theParticleBias); 167 std::swap(theBiasCollisionVector, rhs.th 167 std::swap(theBiasCollisionVector, rhs.theBiasCollisionVector); 168 168 169 } 169 } 170 170 171 public: 171 public: 172 172 173 /** \brief Assignment operator 173 /** \brief Assignment operator 174 * 174 * 175 * Does not copy the particle ID. 175 * Does not copy the particle ID. 176 */ 176 */ 177 Particle &operator=(const Particle &rhs) { 177 Particle &operator=(const Particle &rhs) { 178 Particle temporaryParticle(rhs); 178 Particle temporaryParticle(rhs); 179 swap(temporaryParticle); 179 swap(temporaryParticle); 180 return *this; 180 return *this; 181 } 181 } 182 182 183 /** 183 /** 184 * Get the particle type. 184 * Get the particle type. 185 * @see G4INCL::ParticleType 185 * @see G4INCL::ParticleType 186 */ 186 */ 187 G4INCL::ParticleType getType() const { 187 G4INCL::ParticleType getType() const { 188 return theType; 188 return theType; 189 }; 189 }; 190 190 191 /// \brief Get the particle species 191 /// \brief Get the particle species 192 virtual G4INCL::ParticleSpecies getSpecies 192 virtual G4INCL::ParticleSpecies getSpecies() const { 193 return ParticleSpecies(theType); 193 return ParticleSpecies(theType); 194 }; 194 }; 195 195 196 void setType(ParticleType t) { 196 void setType(ParticleType t) { 197 theType = t; 197 theType = t; 198 switch(theType) 198 switch(theType) 199 { 199 { 200 case DeltaPlusPlus: 200 case DeltaPlusPlus: 201 theA = 1; 201 theA = 1; 202 theZ = 2; 202 theZ = 2; 203 theS = 0; 203 theS = 0; 204 break; 204 break; 205 case Proton: 205 case Proton: 206 case DeltaPlus: 206 case DeltaPlus: 207 theA = 1; 207 theA = 1; 208 theZ = 1; 208 theZ = 1; 209 theS = 0; 209 theS = 0; 210 break; 210 break; 211 case Neutron: 211 case Neutron: 212 case DeltaZero: 212 case DeltaZero: 213 theA = 1; 213 theA = 1; 214 theZ = 0; 214 theZ = 0; 215 theS = 0; 215 theS = 0; 216 break; 216 break; 217 case DeltaMinus: 217 case DeltaMinus: 218 theA = 1; 218 theA = 1; 219 theZ = -1; 219 theZ = -1; 220 theS = 0; 220 theS = 0; 221 break; 221 break; 222 case PiPlus: 222 case PiPlus: 223 theA = 0; 223 theA = 0; 224 theZ = 1; 224 theZ = 1; 225 theS = 0; 225 theS = 0; 226 break; 226 break; 227 case PiZero: 227 case PiZero: 228 case Eta: 228 case Eta: 229 case Omega: 229 case Omega: 230 case EtaPrime: 230 case EtaPrime: 231 case Photon: 231 case Photon: 232 theA = 0; 232 theA = 0; 233 theZ = 0; 233 theZ = 0; 234 theS = 0; 234 theS = 0; 235 break; 235 break; 236 case PiMinus: 236 case PiMinus: 237 theA = 0; 237 theA = 0; 238 theZ = -1; 238 theZ = -1; 239 theS = 0; 239 theS = 0; 240 break; 240 break; 241 case Lambda: 241 case Lambda: 242 theA = 1; 242 theA = 1; 243 theZ = 0; 243 theZ = 0; 244 theS = -1; 244 theS = -1; 245 break; 245 break; 246 case SigmaPlus: 246 case SigmaPlus: 247 theA = 1; 247 theA = 1; 248 theZ = 1; 248 theZ = 1; 249 theS = -1; 249 theS = -1; 250 break; 250 break; 251 case SigmaZero: 251 case SigmaZero: 252 theA = 1; 252 theA = 1; 253 theZ = 0; 253 theZ = 0; 254 theS = -1; 254 theS = -1; 255 break; 255 break; 256 case SigmaMinus: 256 case SigmaMinus: 257 theA = 1; 257 theA = 1; 258 theZ = -1; 258 theZ = -1; 259 theS = -1; 259 theS = -1; 260 break; 260 break; 261 case antiProton: 261 case antiProton: 262 theA = -1; 262 theA = -1; 263 theZ = -1; 263 theZ = -1; 264 theS = 0; 264 theS = 0; 265 break; 265 break; 266 case XiMinus: 266 case XiMinus: 267 theA = 1; 267 theA = 1; 268 theZ = -1; 268 theZ = -1; 269 theS = -2; 269 theS = -2; 270 break; 270 break; 271 case XiZero: 271 case XiZero: 272 theA = 1; 272 theA = 1; 273 theZ = 0; 273 theZ = 0; 274 theS = -2; 274 theS = -2; 275 break; 275 break; 276 case antiNeutron: 276 case antiNeutron: 277 theA = -1; 277 theA = -1; 278 theZ = 0; 278 theZ = 0; 279 theS = 0; 279 theS = 0; 280 break; 280 break; 281 case antiLambda: 281 case antiLambda: 282 theA = -1; 282 theA = -1; 283 theZ = 0; 283 theZ = 0; 284 theS = 1; 284 theS = 1; 285 break; 285 break; 286 case antiSigmaMinus: 286 case antiSigmaMinus: 287 theA = -1; 287 theA = -1; 288 theZ = 1; 288 theZ = 1; 289 theS = 1; 289 theS = 1; 290 break; 290 break; 291 case antiSigmaPlus: 291 case antiSigmaPlus: 292 theA = -1; 292 theA = -1; 293 theZ = -1; 293 theZ = -1; 294 theS = 1; 294 theS = 1; 295 break; 295 break; 296 case antiSigmaZero: 296 case antiSigmaZero: 297 theA = -1; 297 theA = -1; 298 theZ = 0; 298 theZ = 0; 299 theS = 1; 299 theS = 1; 300 break; 300 break; 301 case antiXiMinus: 301 case antiXiMinus: 302 theA = -1; 302 theA = -1; 303 theZ = 1; 303 theZ = 1; 304 theS = 2; 304 theS = 2; 305 break; 305 break; 306 case antiXiZero: 306 case antiXiZero: 307 theA = -1; 307 theA = -1; 308 theZ = 0; 308 theZ = 0; 309 theS = 2; 309 theS = 2; 310 break; 310 break; 311 case KPlus: 311 case KPlus: 312 theA = 0; 312 theA = 0; 313 theZ = 1; 313 theZ = 1; 314 theS = 1; 314 theS = 1; 315 break; 315 break; 316 case KZero: 316 case KZero: 317 theA = 0; 317 theA = 0; 318 theZ = 0; 318 theZ = 0; 319 theS = 1; 319 theS = 1; 320 break; 320 break; 321 case KZeroBar: 321 case KZeroBar: 322 theA = 0; 322 theA = 0; 323 theZ = 0; 323 theZ = 0; 324 theS = -1; 324 theS = -1; 325 break; 325 break; 326 case KShort: 326 case KShort: 327 theA = 0; 327 theA = 0; 328 theZ = 0; 328 theZ = 0; 329 // theS should not be defined 329 // theS should not be defined 330 break; 330 break; 331 case KLong: 331 case KLong: 332 theA = 0; 332 theA = 0; 333 theZ = 0; 333 theZ = 0; 334 // theS should not be defined 334 // theS should not be defined 335 break; 335 break; 336 case KMinus: 336 case KMinus: 337 theA = 0; 337 theA = 0; 338 theZ = -1; 338 theZ = -1; 339 theS = -1; 339 theS = -1; 340 break; 340 break; 341 case Composite: 341 case Composite: 342 // INCL_ERROR("Trying to set particle 342 // INCL_ERROR("Trying to set particle type to Composite! Construct a Cluster object instead" << '\n'); 343 theA = 0; 343 theA = 0; 344 theZ = 0; 344 theZ = 0; 345 theS = 0; 345 theS = 0; 346 break; 346 break; 347 case UnknownParticle: 347 case UnknownParticle: 348 theA = 0; 348 theA = 0; 349 theZ = 0; 349 theZ = 0; 350 theS = 0; 350 theS = 0; 351 INCL_ERROR("Trying to set particle t 351 INCL_ERROR("Trying to set particle type to Unknown!" << '\n'); 352 break; 352 break; 353 } 353 } 354 354 355 if( !isResonance() && t!=Composite ) 355 if( !isResonance() && t!=Composite ) 356 setINCLMass(); 356 setINCLMass(); 357 } 357 } 358 358 359 /** 359 /** 360 * Is this a nucleon? 360 * Is this a nucleon? 361 */ 361 */ 362 G4bool isNucleon() const { 362 G4bool isNucleon() const { 363 if(theType == G4INCL::Proton || theType 363 if(theType == G4INCL::Proton || theType == G4INCL::Neutron) 364 return true; 364 return true; 365 else 365 else 366 return false; 366 return false; 367 }; 367 }; 368 368 369 ParticipantType getParticipantType() const 369 ParticipantType getParticipantType() const { 370 return theParticipantType; 370 return theParticipantType; 371 } 371 } 372 372 373 void setParticipantType(ParticipantType co 373 void setParticipantType(ParticipantType const p) { 374 theParticipantType = p; 374 theParticipantType = p; 375 } 375 } 376 376 377 G4bool isParticipant() const { 377 G4bool isParticipant() const { 378 return (theParticipantType==Participant) 378 return (theParticipantType==Participant); 379 } 379 } 380 380 381 G4bool isTargetSpectator() const { 381 G4bool isTargetSpectator() const { 382 return (theParticipantType==TargetSpecta 382 return (theParticipantType==TargetSpectator); 383 } 383 } 384 384 385 G4bool isProjectileSpectator() const { 385 G4bool isProjectileSpectator() const { 386 return (theParticipantType==ProjectileSp 386 return (theParticipantType==ProjectileSpectator); 387 } 387 } 388 388 389 virtual void makeParticipant() { 389 virtual void makeParticipant() { 390 theParticipantType = Participant; 390 theParticipantType = Participant; 391 } 391 } 392 392 393 virtual void makeTargetSpectator() { 393 virtual void makeTargetSpectator() { 394 theParticipantType = TargetSpectator; 394 theParticipantType = TargetSpectator; 395 } 395 } 396 396 397 virtual void makeProjectileSpectator() { 397 virtual void makeProjectileSpectator() { 398 theParticipantType = ProjectileSpectator 398 theParticipantType = ProjectileSpectator; 399 } 399 } 400 400 401 /** \brief Is this a pion? */ 401 /** \brief Is this a pion? */ 402 G4bool isPion() const { return (theType == 402 G4bool isPion() const { return (theType == PiPlus || theType == PiZero || theType == PiMinus); } 403 403 404 /** \brief Is this an eta? */ 404 /** \brief Is this an eta? */ 405 G4bool isEta() const { return (theType == 405 G4bool isEta() const { return (theType == Eta); } 406 406 407 /** \brief Is this an omega? */ 407 /** \brief Is this an omega? */ 408 G4bool isOmega() const { return (theType = 408 G4bool isOmega() const { return (theType == Omega); } 409 409 410 /** \brief Is this an etaprime? */ 410 /** \brief Is this an etaprime? */ 411 G4bool isEtaPrime() const { return (theTyp 411 G4bool isEtaPrime() const { return (theType == EtaPrime); } 412 412 413 /** \brief Is this a photon? */ 413 /** \brief Is this a photon? */ 414 G4bool isPhoton() const { return (theType 414 G4bool isPhoton() const { return (theType == Photon); } 415 415 416 /** \brief Is it a resonance? */ 416 /** \brief Is it a resonance? */ 417 inline G4bool isResonance() const { return 417 inline G4bool isResonance() const { return isDelta(); } 418 418 419 /** \brief Is it a Delta? */ 419 /** \brief Is it a Delta? */ 420 inline G4bool isDelta() const { 420 inline G4bool isDelta() const { 421 return (theType==DeltaPlusPlus || theTyp 421 return (theType==DeltaPlusPlus || theType==DeltaPlus || 422 theType==DeltaZero || theType==Delta 422 theType==DeltaZero || theType==DeltaMinus); } 423 423 424 /** \brief Is this a Sigma? */ 424 /** \brief Is this a Sigma? */ 425 G4bool isSigma() const { return (theType = 425 G4bool isSigma() const { return (theType == SigmaPlus || theType == SigmaZero || theType == SigmaMinus); } 426 426 427 /** \brief Is this a Kaon? */ 427 /** \brief Is this a Kaon? */ 428 G4bool isKaon() const { return (theType == 428 G4bool isKaon() const { return (theType == KPlus || theType == KZero); } 429 429 430 /** \brief Is this an antiKaon? */ 430 /** \brief Is this an antiKaon? */ 431 G4bool isAntiKaon() const { return (theTyp 431 G4bool isAntiKaon() const { return (theType == KZeroBar || theType == KMinus); } 432 432 433 /** \brief Is this a Lambda? */ 433 /** \brief Is this a Lambda? */ 434 G4bool isLambda() const { return (theType 434 G4bool isLambda() const { return (theType == Lambda); } 435 435 436 /** \brief Is this a Nucleon or a Lambda? 436 /** \brief Is this a Nucleon or a Lambda? */ 437 G4bool isNucleonorLambda() const { return 437 G4bool isNucleonorLambda() const { return (isNucleon() || isLambda()); } 438 438 439 /** \brief Is this an Hyperon? */ 439 /** \brief Is this an Hyperon? */ 440 G4bool isHyperon() const { return (isLambd 440 G4bool isHyperon() const { return (isLambda() || isSigma() ); } //|| isXi() 441 441 442 /** \brief Is this a Meson? */ 442 /** \brief Is this a Meson? */ 443 G4bool isMeson() const { return (isPion() 443 G4bool isMeson() const { return (isPion() || isKaon() || isAntiKaon() || isEta() || isEtaPrime() || isOmega()); } 444 444 445 /** \brief Is this a Baryon? */ 445 /** \brief Is this a Baryon? */ 446 G4bool isBaryon() const { return (isNucleo 446 G4bool isBaryon() const { return (isNucleon() || isResonance() || isHyperon()); } 447 447 448 /** \brief Is this a Strange? */ 448 /** \brief Is this a Strange? */ 449 G4bool isStrange() const { return (isKaon( 449 G4bool isStrange() const { return (isKaon() || isAntiKaon() || isHyperon()); } 450 450 451 /** \brief Is this a Xi? */ 451 /** \brief Is this a Xi? */ 452 G4bool isXi() const { return (theType == X 452 G4bool isXi() const { return (theType == XiZero || theType == XiMinus); } 453 453 454 /** \brief Is this an antinucleon? */ 454 /** \brief Is this an antinucleon? */ 455 G4bool isAntiNucleon() const { return (the 455 G4bool isAntiNucleon() const { return (theType == antiProton || theType == antiNeutron); } 456 456 457 /** \brief Is this an antiSigma? */ 457 /** \brief Is this an antiSigma? */ 458 G4bool isAntiSigma() const { return (theTy 458 G4bool isAntiSigma() const { return (theType == antiSigmaPlus || theType == antiSigmaZero || theType == antiSigmaMinus); } 459 459 460 /** \brief Is this an antiXi? */ 460 /** \brief Is this an antiXi? */ 461 G4bool isAntiXi() const { return (theType 461 G4bool isAntiXi() const { return (theType == antiXiZero || theType == antiXiMinus); } 462 462 463 /** \brief Is this an antiLambda? */ 463 /** \brief Is this an antiLambda? */ 464 G4bool isAntiLambda() const { return (theT 464 G4bool isAntiLambda() const { return (theType == antiLambda); } 465 465 466 /** \brief Is this an antiHyperon? */ 466 /** \brief Is this an antiHyperon? */ 467 G4bool isAntiHyperon() const { return (isA 467 G4bool isAntiHyperon() const { return (isAntiLambda() || isAntiSigma() || isAntiXi()); } 468 468 469 /** \brief Is this an antiBaryon? */ 469 /** \brief Is this an antiBaryon? */ 470 G4bool isAntiBaryon() const { return (isAn 470 G4bool isAntiBaryon() const { return (isAntiNucleon() || isAntiHyperon()); } 471 471 472 /** \brief Is this an antiNucleon or an an 472 /** \brief Is this an antiNucleon or an antiLambda? */ 473 G4bool isAntiNucleonorAntiLambda() const { 473 G4bool isAntiNucleonorAntiLambda() const { return (isAntiNucleon() || isAntiLambda()); } 474 474 475 /** \brief Returns the baryon number. */ 475 /** \brief Returns the baryon number. */ 476 G4int getA() const { return theA; } 476 G4int getA() const { return theA; } 477 477 478 /** \brief Returns the charge number. */ 478 /** \brief Returns the charge number. */ 479 G4int getZ() const { return theZ; } 479 G4int getZ() const { return theZ; } 480 480 481 /** \brief Returns the strangeness number. 481 /** \brief Returns the strangeness number. */ 482 G4int getS() const { return theS; } 482 G4int getS() const { return theS; } 483 483 484 G4double getBeta() const { 484 G4double getBeta() const { 485 const G4double P = theMomentum.mag(); 485 const G4double P = theMomentum.mag(); 486 return P/theEnergy; 486 return P/theEnergy; 487 } 487 } 488 488 489 /** 489 /** 490 * Returns a three vector we can give to t 490 * Returns a three vector we can give to the boost() -method. 491 * 491 * 492 * In order to go to the particle rest fra 492 * In order to go to the particle rest frame you need to multiply 493 * the boost vector by -1.0. 493 * the boost vector by -1.0. 494 */ 494 */ 495 ThreeVector boostVector() const { 495 ThreeVector boostVector() const { 496 return theMomentum / theEnergy; 496 return theMomentum / theEnergy; 497 } 497 } 498 498 499 /** 499 /** 500 * Boost the particle using a boost vector 500 * Boost the particle using a boost vector. 501 * 501 * 502 * Example (go to the particle rest frame) 502 * Example (go to the particle rest frame): 503 * particle->boost(particle->boostVector() 503 * particle->boost(particle->boostVector()); 504 */ 504 */ 505 void boost(const ThreeVector &aBoostVector 505 void boost(const ThreeVector &aBoostVector) { 506 const G4double beta2 = aBoostVector.mag2 506 const G4double beta2 = aBoostVector.mag2(); 507 const G4double gamma = 1.0 / std::sqrt(1 507 const G4double gamma = 1.0 / std::sqrt(1.0 - beta2); 508 const G4double bp = theMomentum.dot(aBoo 508 const G4double bp = theMomentum.dot(aBoostVector); 509 const G4double alpha = (gamma*gamma)/(1. 509 const G4double alpha = (gamma*gamma)/(1.0 + gamma); 510 510 511 theMomentum = theMomentum + aBoostVector 511 theMomentum = theMomentum + aBoostVector * (alpha * bp - gamma * theEnergy); 512 theEnergy = gamma * (theEnergy - bp); 512 theEnergy = gamma * (theEnergy - bp); 513 } 513 } 514 514 515 /** \brief Lorentz-contract the particle p 515 /** \brief Lorentz-contract the particle position around some center 516 * 516 * 517 * Apply Lorentz contraction to the positi 517 * Apply Lorentz contraction to the position component along the 518 * direction of the boost vector. 518 * direction of the boost vector. 519 * 519 * 520 * \param aBoostVector the boost vector (v 520 * \param aBoostVector the boost vector (velocity) [c] 521 * \param refPos the reference position 521 * \param refPos the reference position 522 */ 522 */ 523 void lorentzContract(const ThreeVector &aB 523 void lorentzContract(const ThreeVector &aBoostVector, const ThreeVector &refPos) { 524 const G4double beta2 = aBoostVector.mag2 524 const G4double beta2 = aBoostVector.mag2(); 525 const G4double gamma = 1.0 / std::sqrt(1 525 const G4double gamma = 1.0 / std::sqrt(1.0 - beta2); 526 const ThreeVector theRelativePosition = 526 const ThreeVector theRelativePosition = thePosition - refPos; 527 const ThreeVector transversePosition = t 527 const ThreeVector transversePosition = theRelativePosition - aBoostVector * (theRelativePosition.dot(aBoostVector) / aBoostVector.mag2()); 528 const ThreeVector longitudinalPosition = 528 const ThreeVector longitudinalPosition = theRelativePosition - transversePosition; 529 529 530 thePosition = refPos + transversePositio 530 thePosition = refPos + transversePosition + longitudinalPosition / gamma; 531 } 531 } 532 532 533 /** \brief Get the cached particle mass. * 533 /** \brief Get the cached particle mass. */ 534 inline G4double getMass() const { return t 534 inline G4double getMass() const { return theMass; } 535 535 536 /** \brief Get the INCL particle mass. */ 536 /** \brief Get the INCL particle mass. */ 537 inline G4double getINCLMass() const { 537 inline G4double getINCLMass() const { 538 switch(theType) { 538 switch(theType) { 539 case Proton: 539 case Proton: 540 case Neutron: 540 case Neutron: 541 case PiPlus: 541 case PiPlus: 542 case PiMinus: 542 case PiMinus: 543 case PiZero: 543 case PiZero: 544 case Lambda: 544 case Lambda: 545 case SigmaPlus: 545 case SigmaPlus: 546 case SigmaZero: 546 case SigmaZero: 547 case SigmaMinus: 547 case SigmaMinus: 548 case antiProton: 548 case antiProton: 549 case XiZero: 549 case XiZero: 550 case XiMinus: 550 case XiMinus: 551 case antiNeutron: 551 case antiNeutron: 552 case antiLambda: 552 case antiLambda: 553 case antiSigmaPlus: 553 case antiSigmaPlus: 554 case antiSigmaZero: 554 case antiSigmaZero: 555 case antiSigmaMinus: 555 case antiSigmaMinus: 556 case antiXiZero: 556 case antiXiZero: 557 case antiXiMinus: 557 case antiXiMinus: 558 case KPlus: 558 case KPlus: 559 case KZero: 559 case KZero: 560 case KZeroBar: 560 case KZeroBar: 561 case KShort: 561 case KShort: 562 case KLong: 562 case KLong: 563 case KMinus: 563 case KMinus: 564 case Eta: 564 case Eta: 565 case Omega: 565 case Omega: 566 case EtaPrime: 566 case EtaPrime: 567 case Photon: 567 case Photon: 568 return ParticleTable::getINCLMass(th 568 return ParticleTable::getINCLMass(theType); 569 break; 569 break; 570 570 571 case DeltaPlusPlus: 571 case DeltaPlusPlus: 572 case DeltaPlus: 572 case DeltaPlus: 573 case DeltaZero: 573 case DeltaZero: 574 case DeltaMinus: 574 case DeltaMinus: 575 return theMass; 575 return theMass; 576 break; 576 break; 577 577 578 case Composite: 578 case Composite: 579 return ParticleTable::getINCLMass(th 579 return ParticleTable::getINCLMass(theA,theZ,theS); 580 break; 580 break; 581 581 582 default: 582 default: 583 INCL_ERROR("Particle::getINCLMass: U 583 INCL_ERROR("Particle::getINCLMass: Unknown particle type." << '\n'); 584 return 0.0; 584 return 0.0; 585 break; 585 break; 586 } 586 } 587 } 587 } 588 588 589 /** \brief Get the tabulated particle mass 589 /** \brief Get the tabulated particle mass. */ 590 inline virtual G4double getTableMass() con 590 inline virtual G4double getTableMass() const { 591 switch(theType) { 591 switch(theType) { 592 case Proton: 592 case Proton: 593 case Neutron: 593 case Neutron: 594 case PiPlus: 594 case PiPlus: 595 case PiMinus: 595 case PiMinus: 596 case PiZero: 596 case PiZero: 597 case Lambda: 597 case Lambda: 598 case SigmaPlus: 598 case SigmaPlus: 599 case SigmaZero: 599 case SigmaZero: 600 case SigmaMinus: 600 case SigmaMinus: 601 case antiProton: 601 case antiProton: 602 case XiZero: 602 case XiZero: 603 case XiMinus: 603 case XiMinus: 604 case antiNeutron: 604 case antiNeutron: 605 case antiLambda: 605 case antiLambda: 606 case antiSigmaPlus: 606 case antiSigmaPlus: 607 case antiSigmaZero: 607 case antiSigmaZero: 608 case antiSigmaMinus: 608 case antiSigmaMinus: 609 case antiXiZero: 609 case antiXiZero: 610 case antiXiMinus: 610 case antiXiMinus: 611 case KPlus: 611 case KPlus: 612 case KZero: 612 case KZero: 613 case KZeroBar: 613 case KZeroBar: 614 case KShort: 614 case KShort: 615 case KLong: 615 case KLong: 616 case KMinus: 616 case KMinus: 617 case Eta: 617 case Eta: 618 case Omega: 618 case Omega: 619 case EtaPrime: 619 case EtaPrime: 620 case Photon: 620 case Photon: 621 return ParticleTable::getTablePartic 621 return ParticleTable::getTableParticleMass(theType); 622 break; 622 break; 623 623 624 case DeltaPlusPlus: 624 case DeltaPlusPlus: 625 case DeltaPlus: 625 case DeltaPlus: 626 case DeltaZero: 626 case DeltaZero: 627 case DeltaMinus: 627 case DeltaMinus: 628 return theMass; 628 return theMass; 629 break; 629 break; 630 630 631 case Composite: 631 case Composite: 632 return ParticleTable::getTableMass(t 632 return ParticleTable::getTableMass(theA,theZ,theS); 633 break; 633 break; 634 634 635 default: 635 default: 636 INCL_ERROR("Particle::getTableMass: 636 INCL_ERROR("Particle::getTableMass: Unknown particle type." << '\n'); 637 return 0.0; 637 return 0.0; 638 break; 638 break; 639 } 639 } 640 } 640 } 641 641 642 /** \brief Get the real particle mass. */ 642 /** \brief Get the real particle mass. */ 643 inline G4double getRealMass() const { 643 inline G4double getRealMass() const { 644 switch(theType) { 644 switch(theType) { 645 case Proton: 645 case Proton: 646 case Neutron: 646 case Neutron: 647 case PiPlus: 647 case PiPlus: 648 case PiMinus: 648 case PiMinus: 649 case PiZero: 649 case PiZero: 650 case Lambda: 650 case Lambda: 651 case SigmaPlus: 651 case SigmaPlus: 652 case SigmaZero: 652 case SigmaZero: 653 case SigmaMinus: 653 case SigmaMinus: 654 case antiProton: 654 case antiProton: 655 case XiZero: 655 case XiZero: 656 case XiMinus: 656 case XiMinus: 657 case antiNeutron: 657 case antiNeutron: 658 case antiLambda: 658 case antiLambda: 659 case antiSigmaPlus: 659 case antiSigmaPlus: 660 case antiSigmaZero: 660 case antiSigmaZero: 661 case antiSigmaMinus: 661 case antiSigmaMinus: 662 case antiXiZero: 662 case antiXiZero: 663 case antiXiMinus: 663 case antiXiMinus: 664 case KPlus: 664 case KPlus: 665 case KZero: 665 case KZero: 666 case KZeroBar: 666 case KZeroBar: 667 case KShort: 667 case KShort: 668 case KLong: 668 case KLong: 669 case KMinus: 669 case KMinus: 670 case Eta: 670 case Eta: 671 case Omega: 671 case Omega: 672 case EtaPrime: 672 case EtaPrime: 673 case Photon: 673 case Photon: 674 return ParticleTable::getRealMass(th 674 return ParticleTable::getRealMass(theType); 675 break; 675 break; 676 676 677 case DeltaPlusPlus: 677 case DeltaPlusPlus: 678 case DeltaPlus: 678 case DeltaPlus: 679 case DeltaZero: 679 case DeltaZero: 680 case DeltaMinus: 680 case DeltaMinus: 681 return theMass; 681 return theMass; 682 break; 682 break; 683 683 684 case Composite: 684 case Composite: 685 return ParticleTable::getRealMass(th 685 return ParticleTable::getRealMass(theA,theZ,theS); 686 break; 686 break; 687 687 688 default: 688 default: 689 INCL_ERROR("Particle::getRealMass: U 689 INCL_ERROR("Particle::getRealMass: Unknown particle type." << '\n'); 690 return 0.0; 690 return 0.0; 691 break; 691 break; 692 } 692 } 693 } 693 } 694 694 695 /// \brief Set the mass of the Particle to 695 /// \brief Set the mass of the Particle to its real mass 696 void setRealMass() { setMass(getRealMass() 696 void setRealMass() { setMass(getRealMass()); } 697 697 698 /// \brief Set the mass of the Particle to 698 /// \brief Set the mass of the Particle to its table mass 699 void setTableMass() { setMass(getTableMass 699 void setTableMass() { setMass(getTableMass()); } 700 700 701 /// \brief Set the mass of the Particle to 701 /// \brief Set the mass of the Particle to its table mass 702 void setINCLMass() { setMass(getINCLMass() 702 void setINCLMass() { setMass(getINCLMass()); } 703 703 704 /**\brief Computes correction on the emiss 704 /**\brief Computes correction on the emission Q-value 705 * 705 * 706 * Computes the correction that must be ap 706 * Computes the correction that must be applied to INCL particles in 707 * order to obtain the correct Q-value for 707 * order to obtain the correct Q-value for particle emission from a given 708 * nucleus. For absorption, the correction 708 * nucleus. For absorption, the correction is obviously equal to minus 709 * the value returned by this function. 709 * the value returned by this function. 710 * 710 * 711 * \param AParent the mass number of the e 711 * \param AParent the mass number of the emitting nucleus 712 * \param ZParent the charge number of the 712 * \param ZParent the charge number of the emitting nucleus 713 * \return the correction 713 * \return the correction 714 */ 714 */ 715 G4double getEmissionQValueCorrection(const 715 G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const { 716 const G4int SParent = 0; 716 const G4int SParent = 0; 717 const G4int ADaughter = AParent - theA; 717 const G4int ADaughter = AParent - theA; 718 const G4int ZDaughter = ZParent - theZ; 718 const G4int ZDaughter = ZParent - theZ; 719 const G4int SDaughter = 0; 719 const G4int SDaughter = 0; 720 720 721 // Note the minus sign here 721 // Note the minus sign here 722 G4double theQValue; 722 G4double theQValue; 723 if(isCluster()) 723 if(isCluster()) 724 theQValue = -ParticleTable::getTableQV 724 theQValue = -ParticleTable::getTableQValue(theA, theZ, theS, ADaughter, ZDaughter, SDaughter); 725 else { 725 else { 726 const G4double massTableParent = Parti 726 const G4double massTableParent = ParticleTable::getTableMass(AParent,ZParent,SParent); 727 const G4double massTableDaughter = Par 727 const G4double massTableDaughter = ParticleTable::getTableMass(ADaughter,ZDaughter,SDaughter); 728 const G4double massTableParticle = get 728 const G4double massTableParticle = getTableMass(); 729 theQValue = massTableParent - massTabl 729 theQValue = massTableParent - massTableDaughter - massTableParticle; 730 } 730 } 731 731 732 const G4double massINCLParent = Particle 732 const G4double massINCLParent = ParticleTable::getINCLMass(AParent,ZParent,SParent); 733 const G4double massINCLDaughter = Partic 733 const G4double massINCLDaughter = ParticleTable::getINCLMass(ADaughter,ZDaughter,SDaughter); 734 const G4double massINCLParticle = getINC 734 const G4double massINCLParticle = getINCLMass(); 735 735 736 // The rhs corresponds to the INCL Q-val 736 // The rhs corresponds to the INCL Q-value 737 return theQValue - (massINCLParent-massI 737 return theQValue - (massINCLParent-massINCLDaughter-massINCLParticle); 738 } 738 } 739 739 740 G4double getEmissionPbarQvalueCorrection(c 740 G4double getEmissionPbarQvalueCorrection(const G4int AParent, const G4int ZParent, const G4bool Victim) const { 741 G4int SParent = 0; 741 G4int SParent = 0; 742 G4int SDaughter = 0; 742 G4int SDaughter = 0; 743 G4int ADaughter = AParent - 1; 743 G4int ADaughter = AParent - 1; 744 G4int ZDaughter; 744 G4int ZDaughter; 745 G4bool isProton = Victim; 745 G4bool isProton = Victim; 746 if(isProton){ //proton is annihilate 746 if(isProton){ //proton is annihilated 747 ZDaughter = ZParent - 1; 747 ZDaughter = ZParent - 1; 748 } 748 } 749 else { //neutron is annihilated 749 else { //neutron is annihilated 750 ZDaughter = ZParent; 750 ZDaughter = ZParent; 751 } 751 } 752 752 753 G4double theQValue; //same procedure as 753 G4double theQValue; //same procedure as for normal case 754 754 755 const G4double massTableParent = Particl 755 const G4double massTableParent = ParticleTable::getTableMass(AParent,ZParent,SParent); 756 const G4double massTableDaughter = Parti 756 const G4double massTableDaughter = ParticleTable::getTableMass(ADaughter,ZDaughter,SDaughter); 757 const G4double massTableParticle = getTa 757 const G4double massTableParticle = getTableMass(); 758 theQValue = massTableParent - massTableD 758 theQValue = massTableParent - massTableDaughter - massTableParticle; 759 759 760 const G4double massINCLParent = Particle 760 const G4double massINCLParent = ParticleTable::getINCLMass(AParent,ZParent,SParent); 761 const G4double massINCLDaughter = Partic 761 const G4double massINCLDaughter = ParticleTable::getINCLMass(ADaughter,ZDaughter,SDaughter); 762 const G4double massINCLParticle = getINC 762 const G4double massINCLParticle = getINCLMass(); 763 763 764 return theQValue - (massINCLParent-massI 764 return theQValue - (massINCLParent-massINCLDaughter-massINCLParticle); 765 } 765 } 766 766 767 /**\brief Computes correction on the trans 767 /**\brief Computes correction on the transfer Q-value 768 * 768 * 769 * Computes the correction that must be ap 769 * Computes the correction that must be applied to INCL particles in 770 * order to obtain the correct Q-value for 770 * order to obtain the correct Q-value for particle transfer from a given 771 * nucleus to another. 771 * nucleus to another. 772 * 772 * 773 * Assumes that the receving nucleus is IN 773 * Assumes that the receving nucleus is INCL's target nucleus, with the 774 * INCL separation energy. 774 * INCL separation energy. 775 * 775 * 776 * \param AFrom the mass number of the don 776 * \param AFrom the mass number of the donating nucleus 777 * \param ZFrom the charge number of the d 777 * \param ZFrom the charge number of the donating nucleus 778 * \param ATo the mass number of the recei 778 * \param ATo the mass number of the receiving nucleus 779 * \param ZTo the charge number of the rec 779 * \param ZTo the charge number of the receiving nucleus 780 * \return the correction 780 * \return the correction 781 */ 781 */ 782 G4double getTransferQValueCorrection(const 782 G4double getTransferQValueCorrection(const G4int AFrom, const G4int ZFrom, const G4int ATo, const G4int ZTo) const { 783 const G4int SFrom = 0; 783 const G4int SFrom = 0; 784 const G4int STo = 0; 784 const G4int STo = 0; 785 const G4int AFromDaughter = AFrom - theA 785 const G4int AFromDaughter = AFrom - theA; 786 const G4int ZFromDaughter = ZFrom - theZ 786 const G4int ZFromDaughter = ZFrom - theZ; 787 const G4int SFromDaughter = 0; 787 const G4int SFromDaughter = 0; 788 const G4int AToDaughter = ATo + theA; 788 const G4int AToDaughter = ATo + theA; 789 const G4int ZToDaughter = ZTo + theZ; 789 const G4int ZToDaughter = ZTo + theZ; 790 const G4int SToDaughter = 0; 790 const G4int SToDaughter = 0; 791 const G4double theQValue = ParticleTable 791 const G4double theQValue = ParticleTable::getTableQValue(AToDaughter,ZToDaughter,SToDaughter,AFromDaughter,ZFromDaughter,SFromDaughter,AFrom,ZFrom,SFrom); 792 792 793 const G4double massINCLTo = ParticleTabl 793 const G4double massINCLTo = ParticleTable::getINCLMass(ATo,ZTo,STo); 794 const G4double massINCLToDaughter = Part 794 const G4double massINCLToDaughter = ParticleTable::getINCLMass(AToDaughter,ZToDaughter,SToDaughter); 795 /* Note that here we have to use the tab 795 /* Note that here we have to use the table mass in the INCL Q-value. We 796 * cannot use theMass, because at this s 796 * cannot use theMass, because at this stage the particle is probably 797 * still off-shell; and we cannot use ge 797 * still off-shell; and we cannot use getINCLMass(), because it leads to 798 * violations of global energy conservat 798 * violations of global energy conservation. 799 */ 799 */ 800 const G4double massINCLParticle = getTab 800 const G4double massINCLParticle = getTableMass(); 801 801 802 // The rhs corresponds to the INCL Q-val 802 // The rhs corresponds to the INCL Q-value for particle absorption 803 return theQValue - (massINCLToDaughter-m 803 return theQValue - (massINCLToDaughter-massINCLTo-massINCLParticle); 804 } 804 } 805 805 806 /**\brief Computes correction on the emiss 806 /**\brief Computes correction on the emission Q-value for hypernuclei 807 * 807 * 808 * Computes the correction that must be ap 808 * Computes the correction that must be applied to INCL particles in 809 * order to obtain the correct Q-value for 809 * order to obtain the correct Q-value for particle emission from a given 810 * nucleus. For absorption, the correction 810 * nucleus. For absorption, the correction is obviously equal to minus 811 * the value returned by this function. 811 * the value returned by this function. 812 * 812 * 813 * \param AParent the mass number of the e 813 * \param AParent the mass number of the emitting nucleus 814 * \param ZParent the charge number of the 814 * \param ZParent the charge number of the emitting nucleus 815 * \param SParent the strangess number of 815 * \param SParent the strangess number of the emitting nucleus 816 * \return the correction 816 * \return the correction 817 */ 817 */ 818 G4double getEmissionQValueCorrection(const 818 G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent, const G4int SParent) const { 819 const G4int ADaughter = AParent - theA; 819 const G4int ADaughter = AParent - theA; 820 const G4int ZDaughter = ZParent - theZ; 820 const G4int ZDaughter = ZParent - theZ; 821 const G4int SDaughter = SParent - theS; 821 const G4int SDaughter = SParent - theS; 822 822 823 // Note the minus sign here 823 // Note the minus sign here 824 G4double theQValue; 824 G4double theQValue; 825 if(isCluster()) 825 if(isCluster()) 826 theQValue = -ParticleTable::getTableQV 826 theQValue = -ParticleTable::getTableQValue(theA, theZ, theS, ADaughter, ZDaughter, SDaughter); 827 else { 827 else { 828 const G4double massTableParent = Parti 828 const G4double massTableParent = ParticleTable::getTableMass(AParent,ZParent,SParent); 829 const G4double massTableDaughter = Par 829 const G4double massTableDaughter = ParticleTable::getTableMass(ADaughter,ZDaughter,SDaughter); 830 const G4double massTableParticle = get 830 const G4double massTableParticle = getTableMass(); 831 theQValue = massTableParent - massTabl 831 theQValue = massTableParent - massTableDaughter - massTableParticle; 832 } 832 } 833 833 834 const G4double massINCLParent = Particle 834 const G4double massINCLParent = ParticleTable::getINCLMass(AParent,ZParent,SParent); 835 const G4double massINCLDaughter = Partic 835 const G4double massINCLDaughter = ParticleTable::getINCLMass(ADaughter,ZDaughter,SDaughter); 836 const G4double massINCLParticle = getINC 836 const G4double massINCLParticle = getINCLMass(); 837 837 838 // The rhs corresponds to the INCL Q-val 838 // The rhs corresponds to the INCL Q-value 839 return theQValue - (massINCLParent-massI 839 return theQValue - (massINCLParent-massINCLDaughter-massINCLParticle); 840 } 840 } 841 841 842 /**\brief Computes correction on the trans 842 /**\brief Computes correction on the transfer Q-value for hypernuclei 843 * 843 * 844 * Computes the correction that must be ap 844 * Computes the correction that must be applied to INCL particles in 845 * order to obtain the correct Q-value for 845 * order to obtain the correct Q-value for particle transfer from a given 846 * nucleus to another. 846 * nucleus to another. 847 * 847 * 848 * Assumes that the receving nucleus is IN 848 * Assumes that the receving nucleus is INCL's target nucleus, with the 849 * INCL separation energy. 849 * INCL separation energy. 850 * 850 * 851 * \param AFrom the mass number of the don 851 * \param AFrom the mass number of the donating nucleus 852 * \param ZFrom the charge number of the d 852 * \param ZFrom the charge number of the donating nucleus 853 * \param SFrom the strangess number of th 853 * \param SFrom the strangess number of the donating nucleus 854 * \param ATo the mass number of the recei 854 * \param ATo the mass number of the receiving nucleus 855 * \param ZTo the charge number of the rec 855 * \param ZTo the charge number of the receiving nucleus 856 * \param STo the strangess number of the 856 * \param STo the strangess number of the receiving nucleus 857 * \return the correction 857 * \return the correction 858 */ 858 */ 859 G4double getTransferQValueCorrection(const 859 G4double getTransferQValueCorrection(const G4int AFrom, const G4int ZFrom, const G4int SFrom, const G4int ATo, const G4int ZTo , const G4int STo) const { 860 const G4int AFromDaughter = AFrom - theA 860 const G4int AFromDaughter = AFrom - theA; 861 const G4int ZFromDaughter = ZFrom - theZ 861 const G4int ZFromDaughter = ZFrom - theZ; 862 const G4int SFromDaughter = SFrom - theS 862 const G4int SFromDaughter = SFrom - theS; 863 const G4int AToDaughter = ATo + theA; 863 const G4int AToDaughter = ATo + theA; 864 const G4int ZToDaughter = ZTo + theZ; 864 const G4int ZToDaughter = ZTo + theZ; 865 const G4int SToDaughter = STo + theS; 865 const G4int SToDaughter = STo + theS; 866 const G4double theQValue = ParticleTable 866 const G4double theQValue = ParticleTable::getTableQValue(AToDaughter,ZToDaughter,SFromDaughter,AFromDaughter,ZFromDaughter,SToDaughter,AFrom,ZFrom,SFrom); 867 867 868 const G4double massINCLTo = ParticleTabl 868 const G4double massINCLTo = ParticleTable::getINCLMass(ATo,ZTo,STo); 869 const G4double massINCLToDaughter = Part 869 const G4double massINCLToDaughter = ParticleTable::getINCLMass(AToDaughter,ZToDaughter,SToDaughter); 870 /* Note that here we have to use the tab 870 /* Note that here we have to use the table mass in the INCL Q-value. We 871 * cannot use theMass, because at this s 871 * cannot use theMass, because at this stage the particle is probably 872 * still off-shell; and we cannot use ge 872 * still off-shell; and we cannot use getINCLMass(), because it leads to 873 * violations of global energy conservat 873 * violations of global energy conservation. 874 */ 874 */ 875 const G4double massINCLParticle = getTab 875 const G4double massINCLParticle = getTableMass(); 876 876 877 // The rhs corresponds to the INCL Q-val 877 // The rhs corresponds to the INCL Q-value for particle absorption 878 return theQValue - (massINCLToDaughter-m 878 return theQValue - (massINCLToDaughter-massINCLTo-massINCLParticle); 879 } 879 } 880 880 881 881 882 882 883 /** \brief Get the the particle invariant 883 /** \brief Get the the particle invariant mass. 884 * 884 * 885 * Uses the relativistic invariant 885 * Uses the relativistic invariant 886 * \f[ m = \sqrt{E^2 - {\vec p}^2}\f] 886 * \f[ m = \sqrt{E^2 - {\vec p}^2}\f] 887 **/ 887 **/ 888 G4double getInvariantMass() const { 888 G4double getInvariantMass() const { 889 const G4double mass = std::pow(theEnergy 889 const G4double mass = std::pow(theEnergy, 2) - theMomentum.dot(theMomentum); 890 if(mass < 0.0) { 890 if(mass < 0.0) { 891 INCL_ERROR("E*E - p*p is negative." << 891 INCL_ERROR("E*E - p*p is negative." << '\n'); 892 return 0.0; 892 return 0.0; 893 } else { 893 } else { 894 return std::sqrt(mass); 894 return std::sqrt(mass); 895 } 895 } 896 }; 896 }; 897 897 898 /// \brief Get the particle kinetic energy 898 /// \brief Get the particle kinetic energy. 899 inline G4double getKineticEnergy() const { 899 inline G4double getKineticEnergy() const { return theEnergy - theMass; } 900 900 901 /// \brief Get the particle potential ener 901 /// \brief Get the particle potential energy. 902 inline G4double getPotentialEnergy() const 902 inline G4double getPotentialEnergy() const { return thePotentialEnergy; } 903 903 904 /// \brief Set the particle potential ener 904 /// \brief Set the particle potential energy. 905 inline void setPotentialEnergy(G4double v) 905 inline void setPotentialEnergy(G4double v) { thePotentialEnergy = v; } 906 906 907 /** 907 /** 908 * Get the energy of the particle in MeV. 908 * Get the energy of the particle in MeV. 909 */ 909 */ 910 G4double getEnergy() const 910 G4double getEnergy() const 911 { 911 { 912 return theEnergy; 912 return theEnergy; 913 }; 913 }; 914 914 915 /** 915 /** 916 * Set the mass of the particle in MeV/c^2 916 * Set the mass of the particle in MeV/c^2. 917 */ 917 */ 918 void setMass(G4double mass) 918 void setMass(G4double mass) 919 { 919 { 920 this->theMass = mass; 920 this->theMass = mass; 921 } 921 } 922 922 923 /** 923 /** 924 * Set the energy of the particle in MeV. 924 * Set the energy of the particle in MeV. 925 */ 925 */ 926 void setEnergy(G4double energy) 926 void setEnergy(G4double energy) 927 { 927 { 928 this->theEnergy = energy; 928 this->theEnergy = energy; 929 }; 929 }; 930 930 931 /** 931 /** 932 * Get the momentum vector. 932 * Get the momentum vector. 933 */ 933 */ 934 const G4INCL::ThreeVector &getMomentum() c 934 const G4INCL::ThreeVector &getMomentum() const 935 { 935 { 936 return theMomentum; 936 return theMomentum; 937 }; 937 }; 938 938 939 /** Get the angular momentum w.r.t. the or 939 /** Get the angular momentum w.r.t. the origin */ 940 virtual G4INCL::ThreeVector getAngularMome 940 virtual G4INCL::ThreeVector getAngularMomentum() const 941 { 941 { 942 return thePosition.vector(theMomentum); 942 return thePosition.vector(theMomentum); 943 }; 943 }; 944 944 945 /** 945 /** 946 * Set the momentum vector. 946 * Set the momentum vector. 947 */ 947 */ 948 virtual void setMomentum(const G4INCL::Thr 948 virtual void setMomentum(const G4INCL::ThreeVector &momentum) 949 { 949 { 950 this->theMomentum = momentum; 950 this->theMomentum = momentum; 951 }; 951 }; 952 952 953 /** 953 /** 954 * Set the position vector. 954 * Set the position vector. 955 */ 955 */ 956 const G4INCL::ThreeVector &getPosition() c 956 const G4INCL::ThreeVector &getPosition() const 957 { 957 { 958 return thePosition; 958 return thePosition; 959 }; 959 }; 960 960 961 virtual void setPosition(const G4INCL::Thr 961 virtual void setPosition(const G4INCL::ThreeVector &position) 962 { 962 { 963 this->thePosition = position; 963 this->thePosition = position; 964 }; 964 }; 965 965 966 G4double getHelicity() { return theHelicit 966 G4double getHelicity() { return theHelicity; }; 967 void setHelicity(G4double h) { theHelicity 967 void setHelicity(G4double h) { theHelicity = h; }; 968 968 969 void propagate(G4double step) { 969 void propagate(G4double step) { 970 thePosition += ((*thePropagationMomentum 970 thePosition += ((*thePropagationMomentum)*(step/(*thePropagationEnergy))); 971 }; 971 }; 972 972 973 /** \brief Return the number of collisions 973 /** \brief Return the number of collisions undergone by the particle. **/ 974 G4int getNumberOfCollisions() const { retu 974 G4int getNumberOfCollisions() const { return nCollisions; } 975 975 976 /** \brief Set the number of collisions un 976 /** \brief Set the number of collisions undergone by the particle. **/ 977 void setNumberOfCollisions(G4int n) { nCol 977 void setNumberOfCollisions(G4int n) { nCollisions = n; } 978 978 979 /** \brief Increment the number of collisi 979 /** \brief Increment the number of collisions undergone by the particle. **/ 980 void incrementNumberOfCollisions() { nColl 980 void incrementNumberOfCollisions() { nCollisions++; } 981 981 982 /** \brief Return the number of decays und 982 /** \brief Return the number of decays undergone by the particle. **/ 983 G4int getNumberOfDecays() const { return n 983 G4int getNumberOfDecays() const { return nDecays; } 984 984 985 /** \brief Set the number of decays underg 985 /** \brief Set the number of decays undergone by the particle. **/ 986 void setNumberOfDecays(G4int n) { nDecays 986 void setNumberOfDecays(G4int n) { nDecays = n; } 987 987 988 /** \brief Increment the number of decays 988 /** \brief Increment the number of decays undergone by the particle. **/ 989 void incrementNumberOfDecays() { nDecays++ 989 void incrementNumberOfDecays() { nDecays++; } 990 990 991 /** \brief Mark the particle as out of its 991 /** \brief Mark the particle as out of its potential well 992 * 992 * 993 * This flag is used to control pions crea 993 * This flag is used to control pions created outside their potential well 994 * in delta decay. The pion potential chec 994 * in delta decay. The pion potential checks it and returns zero if it is 995 * true (necessary in order to correctly e 995 * true (necessary in order to correctly enforce energy conservation). The 996 * Nucleus::applyFinalState() method uses 996 * Nucleus::applyFinalState() method uses it to determine whether new 997 * avatars should be generated for the par 997 * avatars should be generated for the particle. 998 */ 998 */ 999 void setOutOfWell() { outOfWell = true; } 999 void setOutOfWell() { outOfWell = true; } 1000 1000 1001 /// \brief Check if the particle is out o 1001 /// \brief Check if the particle is out of its potential well 1002 G4bool isOutOfWell() const { return outOf 1002 G4bool isOutOfWell() const { return outOfWell; } 1003 1003 1004 void setEmissionTime(G4double t) { emissi 1004 void setEmissionTime(G4double t) { emissionTime = t; } 1005 G4double getEmissionTime() { return emiss 1005 G4double getEmissionTime() { return emissionTime; }; 1006 1006 1007 /** \brief Transverse component of the po 1007 /** \brief Transverse component of the position w.r.t. the momentum. */ 1008 ThreeVector getTransversePosition() const 1008 ThreeVector getTransversePosition() const { 1009 return thePosition - getLongitudinalPos 1009 return thePosition - getLongitudinalPosition(); 1010 } 1010 } 1011 1011 1012 /** \brief Longitudinal component of the 1012 /** \brief Longitudinal component of the position w.r.t. the momentum. */ 1013 ThreeVector getLongitudinalPosition() con 1013 ThreeVector getLongitudinalPosition() const { 1014 return *thePropagationMomentum * (thePo 1014 return *thePropagationMomentum * (thePosition.dot(*thePropagationMomentum)/thePropagationMomentum->mag2()); 1015 } 1015 } 1016 1016 1017 /** \brief Rescale the momentum to match 1017 /** \brief Rescale the momentum to match the total energy. */ 1018 const ThreeVector &adjustMomentumFromEner 1018 const ThreeVector &adjustMomentumFromEnergy(); 1019 1019 1020 /** \brief Recompute the energy to match 1020 /** \brief Recompute the energy to match the momentum. */ 1021 G4double adjustEnergyFromMomentum(); 1021 G4double adjustEnergyFromMomentum(); 1022 1022 1023 G4bool isCluster() const { 1023 G4bool isCluster() const { 1024 return (theType == Composite); 1024 return (theType == Composite); 1025 } 1025 } 1026 1026 1027 /// \brief Set the frozen particle moment 1027 /// \brief Set the frozen particle momentum 1028 void setFrozenMomentum(const ThreeVector 1028 void setFrozenMomentum(const ThreeVector &momentum) { theFrozenMomentum = momentum; } 1029 1029 1030 /// \brief Set the frozen particle moment 1030 /// \brief Set the frozen particle momentum 1031 void setFrozenEnergy(const G4double energ 1031 void setFrozenEnergy(const G4double energy) { theFrozenEnergy = energy; } 1032 1032 1033 /// \brief Get the frozen particle moment 1033 /// \brief Get the frozen particle momentum 1034 ThreeVector getFrozenMomentum() const { r 1034 ThreeVector getFrozenMomentum() const { return theFrozenMomentum; } 1035 1035 1036 /// \brief Get the frozen particle moment 1036 /// \brief Get the frozen particle momentum 1037 G4double getFrozenEnergy() const { return 1037 G4double getFrozenEnergy() const { return theFrozenEnergy; } 1038 1038 1039 /// \brief Get the propagation velocity o 1039 /// \brief Get the propagation velocity of the particle 1040 ThreeVector getPropagationVelocity() cons 1040 ThreeVector getPropagationVelocity() const { return (*thePropagationMomentum)/(*thePropagationEnergy); } 1041 1041 1042 /** \brief Freeze particle propagation 1042 /** \brief Freeze particle propagation 1043 * 1043 * 1044 * Make the particle use theFrozenMomentu 1044 * Make the particle use theFrozenMomentum and theFrozenEnergy for 1045 * propagation. The normal state can be r 1045 * propagation. The normal state can be restored by calling the 1046 * thawPropagation() method. 1046 * thawPropagation() method. 1047 */ 1047 */ 1048 void freezePropagation() { 1048 void freezePropagation() { 1049 thePropagationMomentum = &theFrozenMome 1049 thePropagationMomentum = &theFrozenMomentum; 1050 thePropagationEnergy = &theFrozenEnergy 1050 thePropagationEnergy = &theFrozenEnergy; 1051 } 1051 } 1052 1052 1053 /** \brief Unfreeze particle propagation 1053 /** \brief Unfreeze particle propagation 1054 * 1054 * 1055 * Make the particle use theMomentum and 1055 * Make the particle use theMomentum and theEnergy for propagation. Call 1056 * this method to restore the normal prop 1056 * this method to restore the normal propagation if the 1057 * freezePropagation() method has been ca 1057 * freezePropagation() method has been called. 1058 */ 1058 */ 1059 void thawPropagation() { 1059 void thawPropagation() { 1060 thePropagationMomentum = &theMomentum; 1060 thePropagationMomentum = &theMomentum; 1061 thePropagationEnergy = &theEnergy; 1061 thePropagationEnergy = &theEnergy; 1062 } 1062 } 1063 1063 1064 /** \brief Rotate the particle position a 1064 /** \brief Rotate the particle position and momentum 1065 * 1065 * 1066 * \param angle the rotation angle 1066 * \param angle the rotation angle 1067 * \param axis a unit vector representing 1067 * \param axis a unit vector representing the rotation axis 1068 */ 1068 */ 1069 virtual void rotatePositionAndMomentum(co 1069 virtual void rotatePositionAndMomentum(const G4double angle, const ThreeVector &axis) { 1070 rotatePosition(angle, axis); 1070 rotatePosition(angle, axis); 1071 rotateMomentum(angle, axis); 1071 rotateMomentum(angle, axis); 1072 } 1072 } 1073 1073 1074 /** \brief Rotate the particle position 1074 /** \brief Rotate the particle position 1075 * 1075 * 1076 * \param angle the rotation angle 1076 * \param angle the rotation angle 1077 * \param axis a unit vector representing 1077 * \param axis a unit vector representing the rotation axis 1078 */ 1078 */ 1079 virtual void rotatePosition(const G4doubl 1079 virtual void rotatePosition(const G4double angle, const ThreeVector &axis) { 1080 thePosition.rotate(angle, axis); 1080 thePosition.rotate(angle, axis); 1081 } 1081 } 1082 1082 1083 /** \brief Rotate the particle momentum 1083 /** \brief Rotate the particle momentum 1084 * 1084 * 1085 * \param angle the rotation angle 1085 * \param angle the rotation angle 1086 * \param axis a unit vector representing 1086 * \param axis a unit vector representing the rotation axis 1087 */ 1087 */ 1088 virtual void rotateMomentum(const G4doubl 1088 virtual void rotateMomentum(const G4double angle, const ThreeVector &axis) { 1089 theMomentum.rotate(angle, axis); 1089 theMomentum.rotate(angle, axis); 1090 theFrozenMomentum.rotate(angle, axis); 1090 theFrozenMomentum.rotate(angle, axis); 1091 } 1091 } 1092 1092 1093 std::string print() const { 1093 std::string print() const { 1094 std::stringstream ss; 1094 std::stringstream ss; 1095 ss << "Particle (ID = " << ID << ") typ 1095 ss << "Particle (ID = " << ID << ") type = "; 1096 ss << ParticleTable::getName(theType); 1096 ss << ParticleTable::getName(theType); 1097 ss << '\n' 1097 ss << '\n' 1098 << " energy = " << theEnergy << '\n 1098 << " energy = " << theEnergy << '\n' 1099 << " momentum = " 1099 << " momentum = " 1100 << theMomentum.print() 1100 << theMomentum.print() 1101 << '\n' 1101 << '\n' 1102 << " position = " 1102 << " position = " 1103 << thePosition.print() 1103 << thePosition.print() 1104 << '\n'; 1104 << '\n'; 1105 return ss.str(); 1105 return ss.str(); 1106 }; 1106 }; 1107 1107 1108 std::string dump() const { 1108 std::string dump() const { 1109 std::stringstream ss; 1109 std::stringstream ss; 1110 ss << "(particle " << ID << " "; 1110 ss << "(particle " << ID << " "; 1111 ss << ParticleTable::getName(theType); 1111 ss << ParticleTable::getName(theType); 1112 ss << '\n' 1112 ss << '\n' 1113 << thePosition.dump() 1113 << thePosition.dump() 1114 << '\n' 1114 << '\n' 1115 << theMomentum.dump() 1115 << theMomentum.dump() 1116 << '\n' 1116 << '\n' 1117 << theEnergy << ")" << '\n'; 1117 << theEnergy << ")" << '\n'; 1118 return ss.str(); 1118 return ss.str(); 1119 }; 1119 }; 1120 1120 1121 long getID() const { return ID; }; 1121 long getID() const { return ID; }; 1122 1122 1123 /** 1123 /** 1124 * Return a NULL pointer 1124 * Return a NULL pointer 1125 */ 1125 */ 1126 ParticleList const *getParticles() const 1126 ParticleList const *getParticles() const { 1127 INCL_WARN("Particle::getParticles() met 1127 INCL_WARN("Particle::getParticles() method was called on a Particle object" << '\n'); 1128 return 0; 1128 return 0; 1129 } 1129 } 1130 1130 1131 /** \brief Return the reflection momentum 1131 /** \brief Return the reflection momentum 1132 * 1132 * 1133 * The reflection momentum is used by cal 1133 * The reflection momentum is used by calls to getSurfaceRadius to compute 1134 * the radius of the sphere where the nuc 1134 * the radius of the sphere where the nucleon moves. It is necessary to 1135 * introduce fuzzy r-p correlations. 1135 * introduce fuzzy r-p correlations. 1136 */ 1136 */ 1137 G4double getReflectionMomentum() const { 1137 G4double getReflectionMomentum() const { 1138 if(rpCorrelated) 1138 if(rpCorrelated) 1139 return theMomentum.mag(); 1139 return theMomentum.mag(); 1140 else 1140 else 1141 return uncorrelatedMomentum; 1141 return uncorrelatedMomentum; 1142 } 1142 } 1143 1143 1144 /// \brief Set the uncorrelated momentum 1144 /// \brief Set the uncorrelated momentum 1145 void setUncorrelatedMomentum(const G4doub 1145 void setUncorrelatedMomentum(const G4double p) { uncorrelatedMomentum = p; } 1146 1146 1147 /// \brief Make the particle follow a str 1147 /// \brief Make the particle follow a strict r-p correlation 1148 void rpCorrelate() { rpCorrelated = true; 1148 void rpCorrelate() { rpCorrelated = true; } 1149 1149 1150 /// \brief Make the particle not follow a 1150 /// \brief Make the particle not follow a strict r-p correlation 1151 void rpDecorrelate() { rpCorrelated = fal 1151 void rpDecorrelate() { rpCorrelated = false; } 1152 1152 1153 /// \brief Get the cosine of the angle be 1153 /// \brief Get the cosine of the angle between position and momentum 1154 G4double getCosRPAngle() const { 1154 G4double getCosRPAngle() const { 1155 const G4double norm = thePosition.mag2( 1155 const G4double norm = thePosition.mag2()*thePropagationMomentum->mag2(); 1156 if(norm>0.) 1156 if(norm>0.) 1157 return thePosition.dot(*thePropagatio 1157 return thePosition.dot(*thePropagationMomentum) / std::sqrt(norm); 1158 else 1158 else 1159 return 1.; 1159 return 1.; 1160 } 1160 } 1161 1161 1162 /// \brief General bias vector function 1162 /// \brief General bias vector function 1163 static G4double getTotalBias(); 1163 static G4double getTotalBias(); 1164 static void setINCLBiasVector(std::vector 1164 static void setINCLBiasVector(std::vector<G4double> NewVector); 1165 static void FillINCLBiasVector(G4double n 1165 static void FillINCLBiasVector(G4double newBias); 1166 static G4double getBiasFromVector(std::ve 1166 static G4double getBiasFromVector(std::vector<G4int> VectorBias); 1167 1167 1168 static std::vector<G4int> MergeVectorBias 1168 static std::vector<G4int> MergeVectorBias(Particle const * const p1, Particle const * const p2); 1169 static std::vector<G4int> MergeVectorBias 1169 static std::vector<G4int> MergeVectorBias(std::vector<G4int> p1, Particle const * const p2); 1170 1170 1171 /// \brief Get the particle bias. 1171 /// \brief Get the particle bias. 1172 G4double getParticleBias() const { return 1172 G4double getParticleBias() const { return theParticleBias; }; 1173 1173 1174 /// \brief Set the particle bias. 1174 /// \brief Set the particle bias. 1175 void setParticleBias(G4double ParticleBia 1175 void setParticleBias(G4double ParticleBias) { this->theParticleBias = ParticleBias; } 1176 1176 1177 /// \brief Get the vector list of biased 1177 /// \brief Get the vector list of biased vertices on the particle path. 1178 std::vector<G4int> getBiasCollisionVector 1178 std::vector<G4int> getBiasCollisionVector() const { return theBiasCollisionVector; } 1179 1179 1180 /// \brief Set the vector list of biased 1180 /// \brief Set the vector list of biased vertices on the particle path. 1181 void setBiasCollisionVector(std::vector<G 1181 void setBiasCollisionVector(std::vector<G4int> BiasCollisionVector) { 1182 this->theBiasCollisionVector = BiasCollis 1182 this->theBiasCollisionVector = BiasCollisionVector; 1183 this->setParticleBias(Particle::getBiasFr << 1183 this->setParticleBias(Particle::getBiasFromVector(BiasCollisionVector)); 1184 } 1184 } 1185 1185 1186 /** \brief Number of Kaon inside de nucle 1186 /** \brief Number of Kaon inside de nucleus 1187 * 1187 * 1188 * Put in the Particle class in order to 1188 * Put in the Particle class in order to calculate the 1189 * "correct" mass of composit particle. 1189 * "correct" mass of composit particle. 1190 * 1190 * 1191 */ 1191 */ 1192 1192 1193 G4int getNumberOfKaon() const { return th 1193 G4int getNumberOfKaon() const { return theNKaon; }; 1194 void setNumberOfKaon(const G4int NK) { th 1194 void setNumberOfKaon(const G4int NK) { theNKaon = NK; } 1195 1195 1196 #ifdef INCLXX_IN_GEANT4_MODE 1196 #ifdef INCLXX_IN_GEANT4_MODE 1197 G4int getParentResonancePDGCode() const { 1197 G4int getParentResonancePDGCode() const { return theParentResonancePDGCode; }; 1198 void setParentResonancePDGCode(const G4in 1198 void setParentResonancePDGCode(const G4int parentPDGCode) { theParentResonancePDGCode = parentPDGCode; }; 1199 G4int getParentResonanceID() const { retu 1199 G4int getParentResonanceID() const { return theParentResonanceID; }; 1200 void setParentResonanceID(const G4int par 1200 void setParentResonanceID(const G4int parentID) { theParentResonanceID = parentID; }; 1201 #endif 1201 #endif 1202 1202 1203 public: 1203 public: 1204 /** \brief Time ordered vector of all bia 1204 /** \brief Time ordered vector of all bias applied 1205 * 1205 * 1206 * /!\ Caution /!\ 1206 * /!\ Caution /!\ 1207 * methods Assotiated to G4VectorCache<T> 1207 * methods Assotiated to G4VectorCache<T> are: 1208 * Push_back(…), 1208 * Push_back(…), 1209 * operator[], 1209 * operator[], 1210 * Begin(), 1210 * Begin(), 1211 * End(), 1211 * End(), 1212 * Clear(), 1212 * Clear(), 1213 * Size() and 1213 * Size() and 1214 * Pop_back() 1214 * Pop_back() 1215 * 1215 * 1216 */ 1216 */ 1217 #ifdef INCLXX_IN_GEANT4_MODE 1217 #ifdef INCLXX_IN_GEANT4_MODE 1218 static std::vector<G4double> INCLBiasVe 1218 static std::vector<G4double> INCLBiasVector; 1219 //static G4VectorCache<G4double> INCLBi 1219 //static G4VectorCache<G4double> INCLBiasVector; 1220 #else 1220 #else 1221 static G4ThreadLocal std::vector<G4doub 1221 static G4ThreadLocal std::vector<G4double> INCLBiasVector; 1222 //static G4VectorCache<G4double> INCLBi 1222 //static G4VectorCache<G4double> INCLBiasVector; 1223 #endif 1223 #endif 1224 static G4ThreadLocal G4int nextBiasedColl 1224 static G4ThreadLocal G4int nextBiasedCollisionID; 1225 1225 1226 protected: 1226 protected: 1227 G4int theZ, theA, theS; 1227 G4int theZ, theA, theS; 1228 ParticipantType theParticipantType; 1228 ParticipantType theParticipantType; 1229 G4INCL::ParticleType theType; 1229 G4INCL::ParticleType theType; 1230 G4double theEnergy; 1230 G4double theEnergy; 1231 G4double *thePropagationEnergy; 1231 G4double *thePropagationEnergy; 1232 G4double theFrozenEnergy; 1232 G4double theFrozenEnergy; 1233 G4INCL::ThreeVector theMomentum; 1233 G4INCL::ThreeVector theMomentum; 1234 G4INCL::ThreeVector *thePropagationMoment 1234 G4INCL::ThreeVector *thePropagationMomentum; 1235 G4INCL::ThreeVector theFrozenMomentum; 1235 G4INCL::ThreeVector theFrozenMomentum; 1236 G4INCL::ThreeVector thePosition; 1236 G4INCL::ThreeVector thePosition; 1237 G4int nCollisions; 1237 G4int nCollisions; 1238 G4int nDecays; 1238 G4int nDecays; 1239 G4double thePotentialEnergy; 1239 G4double thePotentialEnergy; 1240 long ID; 1240 long ID; 1241 1241 1242 G4bool rpCorrelated; 1242 G4bool rpCorrelated; 1243 G4double uncorrelatedMomentum; 1243 G4double uncorrelatedMomentum; 1244 1244 1245 G4double theParticleBias; 1245 G4double theParticleBias; 1246 /// \brief The number of Kaons inside the 1246 /// \brief The number of Kaons inside the nucleus (update during the cascade) 1247 G4int theNKaon; 1247 G4int theNKaon; 1248 1248 1249 #ifdef INCLXX_IN_GEANT4_MODE 1249 #ifdef INCLXX_IN_GEANT4_MODE 1250 G4int theParentResonancePDGCode; 1250 G4int theParentResonancePDGCode; 1251 G4int theParentResonanceID; 1251 G4int theParentResonanceID; 1252 #endif 1252 #endif 1253 1253 1254 private: 1254 private: 1255 G4double theHelicity; 1255 G4double theHelicity; 1256 G4double emissionTime; 1256 G4double emissionTime; 1257 G4bool outOfWell; 1257 G4bool outOfWell; 1258 1258 1259 /// \brief Time ordered vector of all bia 1259 /// \brief Time ordered vector of all biased vertices on the particle path 1260 std::vector<G4int> theBiasCollisionVector 1260 std::vector<G4int> theBiasCollisionVector; 1261 1261 1262 G4double theMass; 1262 G4double theMass; 1263 static G4ThreadLocal long nextID; 1263 static G4ThreadLocal long nextID; 1264 1264 1265 INCL_DECLARE_ALLOCATION_POOL(Particle) 1265 INCL_DECLARE_ALLOCATION_POOL(Particle) 1266 }; 1266 }; 1267 } 1267 } 1268 1268 1269 #endif /* PARTICLE_HH_ */ 1269 #endif /* PARTICLE_HH_ */ 1270 1270