Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 /* 38 /* 39 * G4INCLParticle.hh 39 * G4INCLParticle.hh 40 * 40 * 41 * \date Jun 5, 2009 41 * \date Jun 5, 2009 42 * \author Pekka Kaitaniemi 42 * \author Pekka Kaitaniemi 43 */ 43 */ 44 44 45 #ifndef PARTICLE_HH_ 45 #ifndef PARTICLE_HH_ 46 #define PARTICLE_HH_ 46 #define PARTICLE_HH_ 47 47 48 #include "G4INCLThreeVector.hh" 48 #include "G4INCLThreeVector.hh" 49 #include "G4INCLParticleTable.hh" 49 #include "G4INCLParticleTable.hh" 50 #include "G4INCLParticleType.hh" 50 #include "G4INCLParticleType.hh" 51 #include "G4INCLParticleSpecies.hh" 51 #include "G4INCLParticleSpecies.hh" 52 #include "G4INCLLogger.hh" 52 #include "G4INCLLogger.hh" 53 #include "G4INCLUnorderedVector.hh" 53 #include "G4INCLUnorderedVector.hh" 54 #include "G4INCLAllocationPool.hh" 54 #include "G4INCLAllocationPool.hh" 55 #include <sstream> 55 #include <sstream> 56 #include <string> 56 #include <string> 57 57 58 namespace G4INCL { 58 namespace G4INCL { 59 59 60 class Particle; 60 class Particle; 61 61 62 class ParticleList : public UnorderedVector< 62 class ParticleList : public UnorderedVector<Particle*> { 63 public: 63 public: 64 void rotatePositionAndMomentum(const G4d 64 void rotatePositionAndMomentum(const G4double angle, const ThreeVector &axis) const; 65 void rotatePosition(const G4double angle 65 void rotatePosition(const G4double angle, const ThreeVector &axis) const; 66 void rotateMomentum(const G4double angle 66 void rotateMomentum(const G4double angle, const ThreeVector &axis) const; 67 void boost(const ThreeVector &b) const; 67 void boost(const ThreeVector &b) const; 68 G4double getParticleListBias() const; 68 G4double getParticleListBias() const; 69 std::vector<G4int> getParticleListBiasVe 69 std::vector<G4int> getParticleListBiasVector() const; 70 }; 70 }; 71 71 72 typedef ParticleList::const_iterator Particl 72 typedef ParticleList::const_iterator ParticleIter; 73 typedef ParticleList::iterator Particl 73 typedef ParticleList::iterator ParticleMutableIter; 74 74 75 class Particle { 75 class Particle { 76 public: 76 public: 77 Particle(); 77 Particle(); 78 Particle(ParticleType t, G4double energy, 78 Particle(ParticleType t, G4double energy, ThreeVector const &momentum, ThreeVector const &position); 79 Particle(ParticleType t, ThreeVector const 79 Particle(ParticleType t, ThreeVector const &momentum, ThreeVector const &position); 80 virtual ~Particle() {} 80 virtual ~Particle() {} 81 81 82 /** \brief Copy constructor 82 /** \brief Copy constructor 83 * 83 * 84 * Does not copy the particle ID. 84 * Does not copy the particle ID. 85 */ 85 */ 86 Particle(const Particle &rhs) : 86 Particle(const Particle &rhs) : 87 theZ(rhs.theZ), 87 theZ(rhs.theZ), 88 theA(rhs.theA), 88 theA(rhs.theA), 89 theS(rhs.theS), 89 theS(rhs.theS), 90 theParticipantType(rhs.theParticipantTyp 90 theParticipantType(rhs.theParticipantType), 91 theType(rhs.theType), 91 theType(rhs.theType), 92 theEnergy(rhs.theEnergy), 92 theEnergy(rhs.theEnergy), 93 theFrozenEnergy(rhs.theFrozenEnergy), 93 theFrozenEnergy(rhs.theFrozenEnergy), 94 theMomentum(rhs.theMomentum), 94 theMomentum(rhs.theMomentum), 95 theFrozenMomentum(rhs.theFrozenMomentum) 95 theFrozenMomentum(rhs.theFrozenMomentum), 96 thePosition(rhs.thePosition), 96 thePosition(rhs.thePosition), 97 nCollisions(rhs.nCollisions), 97 nCollisions(rhs.nCollisions), 98 nDecays(rhs.nDecays), 98 nDecays(rhs.nDecays), 99 thePotentialEnergy(rhs.thePotentialEnerg 99 thePotentialEnergy(rhs.thePotentialEnergy), 100 rpCorrelated(rhs.rpCorrelated), 100 rpCorrelated(rhs.rpCorrelated), 101 uncorrelatedMomentum(rhs.uncorrelatedMom 101 uncorrelatedMomentum(rhs.uncorrelatedMomentum), 102 theParticleBias(rhs.theParticleBias), 102 theParticleBias(rhs.theParticleBias), 103 theNKaon(rhs.theNKaon), << 104 #ifdef INCLXX_IN_GEANT4_MODE << 105 theParentResonancePDGCode(rhs.theParentR << 106 theParentResonanceID(rhs.theParentResona << 107 #endif << 108 theHelicity(rhs.theHelicity), 103 theHelicity(rhs.theHelicity), 109 emissionTime(rhs.emissionTime), 104 emissionTime(rhs.emissionTime), 110 outOfWell(rhs.outOfWell), 105 outOfWell(rhs.outOfWell), 111 theMass(rhs.theMass) 106 theMass(rhs.theMass) 112 { 107 { 113 if(rhs.thePropagationEnergy == &(rhs.t 108 if(rhs.thePropagationEnergy == &(rhs.theFrozenEnergy)) 114 thePropagationEnergy = &theFrozenEne 109 thePropagationEnergy = &theFrozenEnergy; 115 else 110 else 116 thePropagationEnergy = &theEnergy; 111 thePropagationEnergy = &theEnergy; 117 if(rhs.thePropagationMomentum == &(rhs 112 if(rhs.thePropagationMomentum == &(rhs.theFrozenMomentum)) 118 thePropagationMomentum = &theFrozenM 113 thePropagationMomentum = &theFrozenMomentum; 119 else 114 else 120 thePropagationMomentum = &theMomentu 115 thePropagationMomentum = &theMomentum; 121 // ID intentionally not copied 116 // ID intentionally not copied 122 ID = nextID++; 117 ID = nextID++; 123 << 124 theBiasCollisionVector = rhs.theBiasCo << 125 } 118 } 126 119 127 protected: 120 protected: 128 /// \brief Helper method for the assignmen 121 /// \brief Helper method for the assignment operator 129 void swap(Particle &rhs) { 122 void swap(Particle &rhs) { 130 std::swap(theZ, rhs.theZ); 123 std::swap(theZ, rhs.theZ); 131 std::swap(theA, rhs.theA); 124 std::swap(theA, rhs.theA); 132 std::swap(theS, rhs.theS); 125 std::swap(theS, rhs.theS); 133 std::swap(theParticipantType, rhs.thePar 126 std::swap(theParticipantType, rhs.theParticipantType); 134 std::swap(theType, rhs.theType); 127 std::swap(theType, rhs.theType); 135 if(rhs.thePropagationEnergy == &(rhs.the 128 if(rhs.thePropagationEnergy == &(rhs.theFrozenEnergy)) 136 thePropagationEnergy = &theFrozenEnerg 129 thePropagationEnergy = &theFrozenEnergy; 137 else 130 else 138 thePropagationEnergy = &theEnergy; 131 thePropagationEnergy = &theEnergy; 139 std::swap(theEnergy, rhs.theEnergy); 132 std::swap(theEnergy, rhs.theEnergy); 140 std::swap(theFrozenEnergy, rhs.theFrozen 133 std::swap(theFrozenEnergy, rhs.theFrozenEnergy); 141 if(rhs.thePropagationMomentum == &(rhs.t 134 if(rhs.thePropagationMomentum == &(rhs.theFrozenMomentum)) 142 thePropagationMomentum = &theFrozenMom 135 thePropagationMomentum = &theFrozenMomentum; 143 else 136 else 144 thePropagationMomentum = &theMomentum; 137 thePropagationMomentum = &theMomentum; 145 std::swap(theMomentum, rhs.theMomentum); 138 std::swap(theMomentum, rhs.theMomentum); 146 std::swap(theFrozenMomentum, rhs.theFroz 139 std::swap(theFrozenMomentum, rhs.theFrozenMomentum); 147 std::swap(thePosition, rhs.thePosition); 140 std::swap(thePosition, rhs.thePosition); 148 std::swap(nCollisions, rhs.nCollisions); 141 std::swap(nCollisions, rhs.nCollisions); 149 std::swap(nDecays, rhs.nDecays); 142 std::swap(nDecays, rhs.nDecays); 150 std::swap(thePotentialEnergy, rhs.thePot 143 std::swap(thePotentialEnergy, rhs.thePotentialEnergy); 151 // ID intentionally not swapped 144 // ID intentionally not swapped 152 145 153 #ifdef INCLXX_IN_GEANT4_MODE << 154 std::swap(theParentResonancePDGCode, rhs << 155 std::swap(theParentResonanceID, rhs.theP << 156 #endif << 157 << 158 std::swap(theHelicity, rhs.theHelicity); 146 std::swap(theHelicity, rhs.theHelicity); 159 std::swap(emissionTime, rhs.emissionTime 147 std::swap(emissionTime, rhs.emissionTime); 160 std::swap(outOfWell, rhs.outOfWell); 148 std::swap(outOfWell, rhs.outOfWell); 161 149 162 std::swap(theMass, rhs.theMass); 150 std::swap(theMass, rhs.theMass); 163 std::swap(rpCorrelated, rhs.rpCorrelated 151 std::swap(rpCorrelated, rhs.rpCorrelated); 164 std::swap(uncorrelatedMomentum, rhs.unco 152 std::swap(uncorrelatedMomentum, rhs.uncorrelatedMomentum); 165 << 166 std::swap(theParticleBias, rhs.thePartic << 167 std::swap(theBiasCollisionVector, rhs.th << 168 << 169 } 153 } 170 154 171 public: 155 public: 172 156 173 /** \brief Assignment operator 157 /** \brief Assignment operator 174 * 158 * 175 * Does not copy the particle ID. 159 * Does not copy the particle ID. 176 */ 160 */ 177 Particle &operator=(const Particle &rhs) { 161 Particle &operator=(const Particle &rhs) { 178 Particle temporaryParticle(rhs); 162 Particle temporaryParticle(rhs); 179 swap(temporaryParticle); 163 swap(temporaryParticle); 180 return *this; 164 return *this; 181 } 165 } 182 166 183 /** 167 /** 184 * Get the particle type. 168 * Get the particle type. 185 * @see G4INCL::ParticleType 169 * @see G4INCL::ParticleType 186 */ 170 */ 187 G4INCL::ParticleType getType() const { 171 G4INCL::ParticleType getType() const { 188 return theType; 172 return theType; 189 }; 173 }; 190 174 191 /// \brief Get the particle species 175 /// \brief Get the particle species 192 virtual G4INCL::ParticleSpecies getSpecies 176 virtual G4INCL::ParticleSpecies getSpecies() const { 193 return ParticleSpecies(theType); 177 return ParticleSpecies(theType); 194 }; 178 }; 195 179 196 void setType(ParticleType t) { 180 void setType(ParticleType t) { 197 theType = t; 181 theType = t; 198 switch(theType) 182 switch(theType) 199 { 183 { 200 case DeltaPlusPlus: 184 case DeltaPlusPlus: 201 theA = 1; 185 theA = 1; 202 theZ = 2; 186 theZ = 2; 203 theS = 0; 187 theS = 0; 204 break; 188 break; 205 case Proton: 189 case Proton: 206 case DeltaPlus: 190 case DeltaPlus: 207 theA = 1; 191 theA = 1; 208 theZ = 1; 192 theZ = 1; 209 theS = 0; 193 theS = 0; 210 break; 194 break; 211 case Neutron: 195 case Neutron: 212 case DeltaZero: 196 case DeltaZero: 213 theA = 1; 197 theA = 1; 214 theZ = 0; 198 theZ = 0; 215 theS = 0; 199 theS = 0; 216 break; 200 break; 217 case DeltaMinus: 201 case DeltaMinus: 218 theA = 1; 202 theA = 1; 219 theZ = -1; 203 theZ = -1; 220 theS = 0; 204 theS = 0; 221 break; 205 break; 222 case PiPlus: 206 case PiPlus: 223 theA = 0; 207 theA = 0; 224 theZ = 1; 208 theZ = 1; 225 theS = 0; 209 theS = 0; 226 break; 210 break; 227 case PiZero: 211 case PiZero: 228 case Eta: 212 case Eta: 229 case Omega: 213 case Omega: 230 case EtaPrime: 214 case EtaPrime: 231 case Photon: 215 case Photon: 232 theA = 0; 216 theA = 0; 233 theZ = 0; 217 theZ = 0; 234 theS = 0; 218 theS = 0; 235 break; 219 break; 236 case PiMinus: 220 case PiMinus: 237 theA = 0; 221 theA = 0; 238 theZ = -1; 222 theZ = -1; 239 theS = 0; 223 theS = 0; 240 break; 224 break; 241 case Lambda: 225 case Lambda: 242 theA = 1; 226 theA = 1; 243 theZ = 0; 227 theZ = 0; 244 theS = -1; 228 theS = -1; 245 break; 229 break; 246 case SigmaPlus: 230 case SigmaPlus: 247 theA = 1; 231 theA = 1; 248 theZ = 1; 232 theZ = 1; 249 theS = -1; 233 theS = -1; 250 break; 234 break; 251 case SigmaZero: 235 case SigmaZero: 252 theA = 1; 236 theA = 1; 253 theZ = 0; 237 theZ = 0; 254 theS = -1; 238 theS = -1; 255 break; 239 break; 256 case SigmaMinus: 240 case SigmaMinus: 257 theA = 1; 241 theA = 1; 258 theZ = -1; 242 theZ = -1; 259 theS = -1; 243 theS = -1; 260 break; << 261 case antiProton: << 262 theA = -1; << 263 theZ = -1; << 264 theS = 0; << 265 break; << 266 case XiMinus: << 267 theA = 1; << 268 theZ = -1; << 269 theS = -2; << 270 break; << 271 case XiZero: << 272 theA = 1; << 273 theZ = 0; << 274 theS = -2; << 275 break; << 276 case antiNeutron: << 277 theA = -1; << 278 theZ = 0; << 279 theS = 0; << 280 break; 244 break; 281 case antiLambda: << 282 theA = -1; << 283 theZ = 0; << 284 theS = 1; << 285 break; << 286 case antiSigmaMinus: << 287 theA = -1; << 288 theZ = 1; << 289 theS = 1; << 290 break; << 291 case antiSigmaPlus: << 292 theA = -1; << 293 theZ = -1; << 294 theS = 1; << 295 break; << 296 case antiSigmaZero: << 297 theA = -1; << 298 theZ = 0; << 299 theS = 1; << 300 break; << 301 case antiXiMinus: << 302 theA = -1; << 303 theZ = 1; << 304 theS = 2; << 305 break; << 306 case antiXiZero: << 307 theA = -1; << 308 theZ = 0; << 309 theS = 2; << 310 break; << 311 case KPlus: 245 case KPlus: 312 theA = 0; 246 theA = 0; 313 theZ = 1; 247 theZ = 1; 314 theS = 1; 248 theS = 1; 315 break; 249 break; 316 case KZero: 250 case KZero: 317 theA = 0; 251 theA = 0; 318 theZ = 0; 252 theZ = 0; 319 theS = 1; 253 theS = 1; 320 break; 254 break; 321 case KZeroBar: 255 case KZeroBar: 322 theA = 0; 256 theA = 0; 323 theZ = 0; 257 theZ = 0; 324 theS = -1; 258 theS = -1; 325 break; 259 break; 326 case KShort: 260 case KShort: 327 theA = 0; 261 theA = 0; 328 theZ = 0; 262 theZ = 0; 329 // theS should not be defined << 263 theS = -99; 330 break; 264 break; 331 case KLong: 265 case KLong: 332 theA = 0; 266 theA = 0; 333 theZ = 0; 267 theZ = 0; 334 // theS should not be defined << 268 theS = 99; 335 break; 269 break; 336 case KMinus: 270 case KMinus: 337 theA = 0; 271 theA = 0; 338 theZ = -1; 272 theZ = -1; 339 theS = -1; 273 theS = -1; 340 break; 274 break; 341 case Composite: 275 case Composite: 342 // INCL_ERROR("Trying to set particle 276 // INCL_ERROR("Trying to set particle type to Composite! Construct a Cluster object instead" << '\n'); 343 theA = 0; 277 theA = 0; 344 theZ = 0; 278 theZ = 0; 345 theS = 0; 279 theS = 0; 346 break; << 280 break; 347 case UnknownParticle: 281 case UnknownParticle: 348 theA = 0; 282 theA = 0; 349 theZ = 0; 283 theZ = 0; 350 theS = 0; 284 theS = 0; 351 INCL_ERROR("Trying to set particle t 285 INCL_ERROR("Trying to set particle type to Unknown!" << '\n'); 352 break; 286 break; 353 } 287 } 354 288 355 if( !isResonance() && t!=Composite ) 289 if( !isResonance() && t!=Composite ) 356 setINCLMass(); 290 setINCLMass(); 357 } 291 } 358 292 359 /** 293 /** 360 * Is this a nucleon? 294 * Is this a nucleon? 361 */ 295 */ 362 G4bool isNucleon() const { 296 G4bool isNucleon() const { 363 if(theType == G4INCL::Proton || theType 297 if(theType == G4INCL::Proton || theType == G4INCL::Neutron) 364 return true; 298 return true; 365 else 299 else 366 return false; 300 return false; 367 }; 301 }; 368 302 369 ParticipantType getParticipantType() const 303 ParticipantType getParticipantType() const { 370 return theParticipantType; 304 return theParticipantType; 371 } 305 } 372 306 373 void setParticipantType(ParticipantType co 307 void setParticipantType(ParticipantType const p) { 374 theParticipantType = p; 308 theParticipantType = p; 375 } 309 } 376 310 377 G4bool isParticipant() const { 311 G4bool isParticipant() const { 378 return (theParticipantType==Participant) 312 return (theParticipantType==Participant); 379 } 313 } 380 314 381 G4bool isTargetSpectator() const { 315 G4bool isTargetSpectator() const { 382 return (theParticipantType==TargetSpecta 316 return (theParticipantType==TargetSpectator); 383 } 317 } 384 318 385 G4bool isProjectileSpectator() const { 319 G4bool isProjectileSpectator() const { 386 return (theParticipantType==ProjectileSp 320 return (theParticipantType==ProjectileSpectator); 387 } 321 } 388 322 389 virtual void makeParticipant() { 323 virtual void makeParticipant() { 390 theParticipantType = Participant; 324 theParticipantType = Participant; 391 } 325 } 392 326 393 virtual void makeTargetSpectator() { 327 virtual void makeTargetSpectator() { 394 theParticipantType = TargetSpectator; 328 theParticipantType = TargetSpectator; 395 } 329 } 396 330 397 virtual void makeProjectileSpectator() { 331 virtual void makeProjectileSpectator() { 398 theParticipantType = ProjectileSpectator 332 theParticipantType = ProjectileSpectator; 399 } 333 } 400 334 401 /** \brief Is this a pion? */ 335 /** \brief Is this a pion? */ 402 G4bool isPion() const { return (theType == 336 G4bool isPion() const { return (theType == PiPlus || theType == PiZero || theType == PiMinus); } 403 337 404 /** \brief Is this an eta? */ 338 /** \brief Is this an eta? */ 405 G4bool isEta() const { return (theType == 339 G4bool isEta() const { return (theType == Eta); } 406 340 407 /** \brief Is this an omega? */ 341 /** \brief Is this an omega? */ 408 G4bool isOmega() const { return (theType = 342 G4bool isOmega() const { return (theType == Omega); } 409 343 410 /** \brief Is this an etaprime? */ 344 /** \brief Is this an etaprime? */ 411 G4bool isEtaPrime() const { return (theTyp 345 G4bool isEtaPrime() const { return (theType == EtaPrime); } 412 346 413 /** \brief Is this a photon? */ 347 /** \brief Is this a photon? */ 414 G4bool isPhoton() const { return (theType 348 G4bool isPhoton() const { return (theType == Photon); } 415 349 416 /** \brief Is it a resonance? */ 350 /** \brief Is it a resonance? */ 417 inline G4bool isResonance() const { return 351 inline G4bool isResonance() const { return isDelta(); } 418 352 419 /** \brief Is it a Delta? */ 353 /** \brief Is it a Delta? */ 420 inline G4bool isDelta() const { 354 inline G4bool isDelta() const { 421 return (theType==DeltaPlusPlus || theTyp 355 return (theType==DeltaPlusPlus || theType==DeltaPlus || 422 theType==DeltaZero || theType==Delta 356 theType==DeltaZero || theType==DeltaMinus); } 423 357 424 /** \brief Is this a Sigma? */ 358 /** \brief Is this a Sigma? */ 425 G4bool isSigma() const { return (theType = << 359 G4bool isSigma() const { return (theType == SigmaPlus || theType == SigmaZero || theType == SigmaMinus); } 426 360 427 /** \brief Is this a Kaon? */ 361 /** \brief Is this a Kaon? */ 428 G4bool isKaon() const { return (theType == << 362 G4bool isKaon() const { return (theType == KPlus || theType == KZero); } 429 363 430 /** \brief Is this an antiKaon? */ 364 /** \brief Is this an antiKaon? */ 431 G4bool isAntiKaon() const { return (theTyp 365 G4bool isAntiKaon() const { return (theType == KZeroBar || theType == KMinus); } 432 366 433 /** \brief Is this a Lambda? */ 367 /** \brief Is this a Lambda? */ 434 G4bool isLambda() const { return (theType 368 G4bool isLambda() const { return (theType == Lambda); } 435 369 436 /** \brief Is this a Nucleon or a Lambda? 370 /** \brief Is this a Nucleon or a Lambda? */ 437 G4bool isNucleonorLambda() const { return 371 G4bool isNucleonorLambda() const { return (isNucleon() || isLambda()); } 438 372 439 /** \brief Is this an Hyperon? */ 373 /** \brief Is this an Hyperon? */ 440 G4bool isHyperon() const { return (isLambd << 374 G4bool isHyperon() const { return (isLambda() || isSigma()); } 441 375 442 /** \brief Is this a Meson? */ 376 /** \brief Is this a Meson? */ 443 G4bool isMeson() const { return (isPion() 377 G4bool isMeson() const { return (isPion() || isKaon() || isAntiKaon() || isEta() || isEtaPrime() || isOmega()); } 444 378 445 /** \brief Is this a Baryon? */ 379 /** \brief Is this a Baryon? */ 446 G4bool isBaryon() const { return (isNucleo 380 G4bool isBaryon() const { return (isNucleon() || isResonance() || isHyperon()); } 447 381 448 /** \brief Is this a Strange? */ << 382 /** \brief Is this an Strange? */ 449 G4bool isStrange() const { return (isKaon( 383 G4bool isStrange() const { return (isKaon() || isAntiKaon() || isHyperon()); } 450 << 451 /** \brief Is this a Xi? */ << 452 G4bool isXi() const { return (theType == X << 453 << 454 /** \brief Is this an antinucleon? */ << 455 G4bool isAntiNucleon() const { return (the << 456 << 457 /** \brief Is this an antiSigma? */ << 458 G4bool isAntiSigma() const { return (theTy << 459 << 460 /** \brief Is this an antiXi? */ << 461 G4bool isAntiXi() const { return (theType << 462 << 463 /** \brief Is this an antiLambda? */ << 464 G4bool isAntiLambda() const { return (theT << 465 << 466 /** \brief Is this an antiHyperon? */ << 467 G4bool isAntiHyperon() const { return (isA << 468 << 469 /** \brief Is this an antiBaryon? */ << 470 G4bool isAntiBaryon() const { return (isAn << 471 << 472 /** \brief Is this an antiNucleon or an an << 473 G4bool isAntiNucleonorAntiLambda() const { << 474 384 475 /** \brief Returns the baryon number. */ 385 /** \brief Returns the baryon number. */ 476 G4int getA() const { return theA; } 386 G4int getA() const { return theA; } 477 387 478 /** \brief Returns the charge number. */ 388 /** \brief Returns the charge number. */ 479 G4int getZ() const { return theZ; } 389 G4int getZ() const { return theZ; } 480 390 481 /** \brief Returns the strangeness number. 391 /** \brief Returns the strangeness number. */ 482 G4int getS() const { return theS; } 392 G4int getS() const { return theS; } 483 393 484 G4double getBeta() const { 394 G4double getBeta() const { 485 const G4double P = theMomentum.mag(); 395 const G4double P = theMomentum.mag(); 486 return P/theEnergy; 396 return P/theEnergy; 487 } 397 } 488 398 489 /** 399 /** 490 * Returns a three vector we can give to t 400 * Returns a three vector we can give to the boost() -method. 491 * 401 * 492 * In order to go to the particle rest fra 402 * In order to go to the particle rest frame you need to multiply 493 * the boost vector by -1.0. 403 * the boost vector by -1.0. 494 */ 404 */ 495 ThreeVector boostVector() const { 405 ThreeVector boostVector() const { 496 return theMomentum / theEnergy; 406 return theMomentum / theEnergy; 497 } 407 } 498 408 499 /** 409 /** 500 * Boost the particle using a boost vector 410 * Boost the particle using a boost vector. 501 * 411 * 502 * Example (go to the particle rest frame) 412 * Example (go to the particle rest frame): 503 * particle->boost(particle->boostVector() 413 * particle->boost(particle->boostVector()); 504 */ 414 */ 505 void boost(const ThreeVector &aBoostVector 415 void boost(const ThreeVector &aBoostVector) { 506 const G4double beta2 = aBoostVector.mag2 416 const G4double beta2 = aBoostVector.mag2(); 507 const G4double gamma = 1.0 / std::sqrt(1 417 const G4double gamma = 1.0 / std::sqrt(1.0 - beta2); 508 const G4double bp = theMomentum.dot(aBoo 418 const G4double bp = theMomentum.dot(aBoostVector); 509 const G4double alpha = (gamma*gamma)/(1. 419 const G4double alpha = (gamma*gamma)/(1.0 + gamma); 510 420 511 theMomentum = theMomentum + aBoostVector 421 theMomentum = theMomentum + aBoostVector * (alpha * bp - gamma * theEnergy); 512 theEnergy = gamma * (theEnergy - bp); 422 theEnergy = gamma * (theEnergy - bp); 513 } 423 } 514 424 515 /** \brief Lorentz-contract the particle p 425 /** \brief Lorentz-contract the particle position around some center 516 * 426 * 517 * Apply Lorentz contraction to the positi 427 * Apply Lorentz contraction to the position component along the 518 * direction of the boost vector. 428 * direction of the boost vector. 519 * 429 * 520 * \param aBoostVector the boost vector (v 430 * \param aBoostVector the boost vector (velocity) [c] 521 * \param refPos the reference position 431 * \param refPos the reference position 522 */ 432 */ 523 void lorentzContract(const ThreeVector &aB 433 void lorentzContract(const ThreeVector &aBoostVector, const ThreeVector &refPos) { 524 const G4double beta2 = aBoostVector.mag2 434 const G4double beta2 = aBoostVector.mag2(); 525 const G4double gamma = 1.0 / std::sqrt(1 435 const G4double gamma = 1.0 / std::sqrt(1.0 - beta2); 526 const ThreeVector theRelativePosition = 436 const ThreeVector theRelativePosition = thePosition - refPos; 527 const ThreeVector transversePosition = t 437 const ThreeVector transversePosition = theRelativePosition - aBoostVector * (theRelativePosition.dot(aBoostVector) / aBoostVector.mag2()); 528 const ThreeVector longitudinalPosition = 438 const ThreeVector longitudinalPosition = theRelativePosition - transversePosition; 529 439 530 thePosition = refPos + transversePositio 440 thePosition = refPos + transversePosition + longitudinalPosition / gamma; 531 } 441 } 532 442 533 /** \brief Get the cached particle mass. * 443 /** \brief Get the cached particle mass. */ 534 inline G4double getMass() const { return t 444 inline G4double getMass() const { return theMass; } 535 445 536 /** \brief Get the INCL particle mass. */ 446 /** \brief Get the INCL particle mass. */ 537 inline G4double getINCLMass() const { 447 inline G4double getINCLMass() const { 538 switch(theType) { 448 switch(theType) { 539 case Proton: 449 case Proton: 540 case Neutron: 450 case Neutron: 541 case PiPlus: 451 case PiPlus: 542 case PiMinus: 452 case PiMinus: 543 case PiZero: 453 case PiZero: 544 case Lambda: 454 case Lambda: 545 case SigmaPlus: 455 case SigmaPlus: 546 case SigmaZero: 456 case SigmaZero: 547 case SigmaMinus: << 457 case SigmaMinus: 548 case antiProton: << 549 case XiZero: << 550 case XiMinus: << 551 case antiNeutron: << 552 case antiLambda: << 553 case antiSigmaPlus: << 554 case antiSigmaZero: << 555 case antiSigmaMinus: << 556 case antiXiZero: << 557 case antiXiMinus: << 558 case KPlus: 458 case KPlus: 559 case KZero: 459 case KZero: 560 case KZeroBar: 460 case KZeroBar: 561 case KShort: 461 case KShort: 562 case KLong: 462 case KLong: 563 case KMinus: 463 case KMinus: 564 case Eta: 464 case Eta: 565 case Omega: 465 case Omega: 566 case EtaPrime: 466 case EtaPrime: 567 case Photon: << 467 case Photon: 568 return ParticleTable::getINCLMass(th 468 return ParticleTable::getINCLMass(theType); 569 break; 469 break; 570 470 571 case DeltaPlusPlus: 471 case DeltaPlusPlus: 572 case DeltaPlus: 472 case DeltaPlus: 573 case DeltaZero: 473 case DeltaZero: 574 case DeltaMinus: 474 case DeltaMinus: 575 return theMass; 475 return theMass; 576 break; 476 break; 577 477 578 case Composite: 478 case Composite: 579 return ParticleTable::getINCLMass(th << 479 return ParticleTable::getINCLMass(theA,theZ); 580 break; 480 break; 581 481 582 default: 482 default: 583 INCL_ERROR("Particle::getINCLMass: U 483 INCL_ERROR("Particle::getINCLMass: Unknown particle type." << '\n'); 584 return 0.0; 484 return 0.0; 585 break; 485 break; 586 } 486 } 587 } 487 } 588 488 589 /** \brief Get the tabulated particle mass 489 /** \brief Get the tabulated particle mass. */ 590 inline virtual G4double getTableMass() con 490 inline virtual G4double getTableMass() const { 591 switch(theType) { 491 switch(theType) { 592 case Proton: 492 case Proton: 593 case Neutron: 493 case Neutron: 594 case PiPlus: 494 case PiPlus: 595 case PiMinus: 495 case PiMinus: 596 case PiZero: 496 case PiZero: 597 case Lambda: 497 case Lambda: 598 case SigmaPlus: 498 case SigmaPlus: 599 case SigmaZero: 499 case SigmaZero: 600 case SigmaMinus: << 500 case SigmaMinus: 601 case antiProton: << 602 case XiZero: << 603 case XiMinus: << 604 case antiNeutron: << 605 case antiLambda: << 606 case antiSigmaPlus: << 607 case antiSigmaZero: << 608 case antiSigmaMinus: << 609 case antiXiZero: << 610 case antiXiMinus: << 611 case KPlus: 501 case KPlus: 612 case KZero: 502 case KZero: 613 case KZeroBar: 503 case KZeroBar: 614 case KShort: 504 case KShort: 615 case KLong: 505 case KLong: 616 case KMinus: 506 case KMinus: 617 case Eta: 507 case Eta: 618 case Omega: 508 case Omega: 619 case EtaPrime: 509 case EtaPrime: 620 case Photon: << 510 case Photon: 621 return ParticleTable::getTablePartic 511 return ParticleTable::getTableParticleMass(theType); 622 break; 512 break; 623 513 624 case DeltaPlusPlus: 514 case DeltaPlusPlus: 625 case DeltaPlus: 515 case DeltaPlus: 626 case DeltaZero: 516 case DeltaZero: 627 case DeltaMinus: 517 case DeltaMinus: 628 return theMass; 518 return theMass; 629 break; 519 break; 630 520 631 case Composite: 521 case Composite: 632 return ParticleTable::getTableMass(t << 522 return ParticleTable::getTableMass(theA,theZ); 633 break; 523 break; 634 524 635 default: 525 default: 636 INCL_ERROR("Particle::getTableMass: 526 INCL_ERROR("Particle::getTableMass: Unknown particle type." << '\n'); 637 return 0.0; 527 return 0.0; 638 break; 528 break; 639 } 529 } 640 } 530 } 641 531 642 /** \brief Get the real particle mass. */ 532 /** \brief Get the real particle mass. */ 643 inline G4double getRealMass() const { 533 inline G4double getRealMass() const { 644 switch(theType) { 534 switch(theType) { 645 case Proton: 535 case Proton: 646 case Neutron: 536 case Neutron: 647 case PiPlus: 537 case PiPlus: 648 case PiMinus: 538 case PiMinus: 649 case PiZero: 539 case PiZero: 650 case Lambda: 540 case Lambda: 651 case SigmaPlus: 541 case SigmaPlus: 652 case SigmaZero: 542 case SigmaZero: 653 case SigmaMinus: << 543 case SigmaMinus: 654 case antiProton: << 655 case XiZero: << 656 case XiMinus: << 657 case antiNeutron: << 658 case antiLambda: << 659 case antiSigmaPlus: << 660 case antiSigmaZero: << 661 case antiSigmaMinus: << 662 case antiXiZero: << 663 case antiXiMinus: << 664 case KPlus: 544 case KPlus: 665 case KZero: 545 case KZero: 666 case KZeroBar: 546 case KZeroBar: 667 case KShort: 547 case KShort: 668 case KLong: 548 case KLong: 669 case KMinus: 549 case KMinus: 670 case Eta: 550 case Eta: 671 case Omega: 551 case Omega: 672 case EtaPrime: 552 case EtaPrime: 673 case Photon: << 553 case Photon: 674 return ParticleTable::getRealMass(th 554 return ParticleTable::getRealMass(theType); 675 break; 555 break; 676 556 677 case DeltaPlusPlus: 557 case DeltaPlusPlus: 678 case DeltaPlus: 558 case DeltaPlus: 679 case DeltaZero: 559 case DeltaZero: 680 case DeltaMinus: 560 case DeltaMinus: 681 return theMass; 561 return theMass; 682 break; 562 break; 683 563 684 case Composite: 564 case Composite: 685 return ParticleTable::getRealMass(th << 565 return ParticleTable::getRealMass(theA,theZ); 686 break; 566 break; 687 567 688 default: 568 default: 689 INCL_ERROR("Particle::getRealMass: U 569 INCL_ERROR("Particle::getRealMass: Unknown particle type." << '\n'); 690 return 0.0; 570 return 0.0; 691 break; 571 break; 692 } 572 } 693 } 573 } 694 574 695 /// \brief Set the mass of the Particle to 575 /// \brief Set the mass of the Particle to its real mass 696 void setRealMass() { setMass(getRealMass() 576 void setRealMass() { setMass(getRealMass()); } 697 577 698 /// \brief Set the mass of the Particle to 578 /// \brief Set the mass of the Particle to its table mass 699 void setTableMass() { setMass(getTableMass 579 void setTableMass() { setMass(getTableMass()); } 700 580 701 /// \brief Set the mass of the Particle to 581 /// \brief Set the mass of the Particle to its table mass 702 void setINCLMass() { setMass(getINCLMass() 582 void setINCLMass() { setMass(getINCLMass()); } 703 583 704 /**\brief Computes correction on the emiss 584 /**\brief Computes correction on the emission Q-value 705 * 585 * 706 * Computes the correction that must be ap 586 * Computes the correction that must be applied to INCL particles in 707 * order to obtain the correct Q-value for 587 * order to obtain the correct Q-value for particle emission from a given 708 * nucleus. For absorption, the correction 588 * nucleus. For absorption, the correction is obviously equal to minus 709 * the value returned by this function. 589 * the value returned by this function. 710 * 590 * 711 * \param AParent the mass number of the e 591 * \param AParent the mass number of the emitting nucleus 712 * \param ZParent the charge number of the 592 * \param ZParent the charge number of the emitting nucleus 713 * \return the correction 593 * \return the correction 714 */ 594 */ 715 G4double getEmissionQValueCorrection(const 595 G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const { 716 const G4int SParent = 0; << 717 const G4int ADaughter = AParent - theA; 596 const G4int ADaughter = AParent - theA; 718 const G4int ZDaughter = ZParent - theZ; 597 const G4int ZDaughter = ZParent - theZ; 719 const G4int SDaughter = 0; << 720 598 721 // Note the minus sign here 599 // Note the minus sign here 722 G4double theQValue; 600 G4double theQValue; 723 if(isCluster()) 601 if(isCluster()) 724 theQValue = -ParticleTable::getTableQV << 602 theQValue = -ParticleTable::getTableQValue(theA, theZ, ADaughter, ZDaughter); 725 else { 603 else { 726 const G4double massTableParent = Parti << 604 const G4double massTableParent = ParticleTable::getTableMass(AParent,ZParent); 727 const G4double massTableDaughter = Par << 605 const G4double massTableDaughter = ParticleTable::getTableMass(ADaughter,ZDaughter); 728 const G4double massTableParticle = get 606 const G4double massTableParticle = getTableMass(); 729 theQValue = massTableParent - massTabl 607 theQValue = massTableParent - massTableDaughter - massTableParticle; 730 } 608 } 731 609 732 const G4double massINCLParent = Particle << 610 const G4double massINCLParent = ParticleTable::getINCLMass(AParent,ZParent); 733 const G4double massINCLDaughter = Partic << 611 const G4double massINCLDaughter = ParticleTable::getINCLMass(ADaughter,ZDaughter); 734 const G4double massINCLParticle = getINC 612 const G4double massINCLParticle = getINCLMass(); 735 613 736 // The rhs corresponds to the INCL Q-val 614 // The rhs corresponds to the INCL Q-value 737 return theQValue - (massINCLParent-massI 615 return theQValue - (massINCLParent-massINCLDaughter-massINCLParticle); 738 } 616 } 739 617 740 G4double getEmissionPbarQvalueCorrection(c << 741 G4int SParent = 0; << 742 G4int SDaughter = 0; << 743 G4int ADaughter = AParent - 1; << 744 G4int ZDaughter; << 745 G4bool isProton = Victim; << 746 if(isProton){ //proton is annihilate << 747 ZDaughter = ZParent - 1; << 748 } << 749 else { //neutron is annihilated << 750 ZDaughter = ZParent; << 751 } << 752 << 753 G4double theQValue; //same procedure as << 754 << 755 const G4double massTableParent = Particl << 756 const G4double massTableDaughter = Parti << 757 const G4double massTableParticle = getTa << 758 theQValue = massTableParent - massTableD << 759 << 760 const G4double massINCLParent = Particle << 761 const G4double massINCLDaughter = Partic << 762 const G4double massINCLParticle = getINC << 763 << 764 return theQValue - (massINCLParent-massI << 765 } << 766 << 767 /**\brief Computes correction on the trans 618 /**\brief Computes correction on the transfer Q-value 768 * 619 * 769 * Computes the correction that must be ap 620 * Computes the correction that must be applied to INCL particles in 770 * order to obtain the correct Q-value for 621 * order to obtain the correct Q-value for particle transfer from a given 771 * nucleus to another. 622 * nucleus to another. 772 * 623 * 773 * Assumes that the receving nucleus is IN 624 * Assumes that the receving nucleus is INCL's target nucleus, with the 774 * INCL separation energy. 625 * INCL separation energy. 775 * 626 * 776 * \param AFrom the mass number of the don 627 * \param AFrom the mass number of the donating nucleus 777 * \param ZFrom the charge number of the d 628 * \param ZFrom the charge number of the donating nucleus 778 * \param ATo the mass number of the recei 629 * \param ATo the mass number of the receiving nucleus 779 * \param ZTo the charge number of the rec 630 * \param ZTo the charge number of the receiving nucleus 780 * \return the correction 631 * \return the correction 781 */ 632 */ 782 G4double getTransferQValueCorrection(const 633 G4double getTransferQValueCorrection(const G4int AFrom, const G4int ZFrom, const G4int ATo, const G4int ZTo) const { 783 const G4int SFrom = 0; << 784 const G4int STo = 0; << 785 const G4int AFromDaughter = AFrom - theA << 786 const G4int ZFromDaughter = ZFrom - theZ << 787 const G4int SFromDaughter = 0; << 788 const G4int AToDaughter = ATo + theA; << 789 const G4int ZToDaughter = ZTo + theZ; << 790 const G4int SToDaughter = 0; << 791 const G4double theQValue = ParticleTable << 792 << 793 const G4double massINCLTo = ParticleTabl << 794 const G4double massINCLToDaughter = Part << 795 /* Note that here we have to use the tab << 796 * cannot use theMass, because at this s << 797 * still off-shell; and we cannot use ge << 798 * violations of global energy conservat << 799 */ << 800 const G4double massINCLParticle = getTab << 801 << 802 // The rhs corresponds to the INCL Q-val << 803 return theQValue - (massINCLToDaughter-m << 804 } << 805 << 806 /**\brief Computes correction on the emiss << 807 * << 808 * Computes the correction that must be ap << 809 * order to obtain the correct Q-value for << 810 * nucleus. For absorption, the correction << 811 * the value returned by this function. << 812 * << 813 * \param AParent the mass number of the e << 814 * \param ZParent the charge number of the << 815 * \param SParent the strangess number of << 816 * \return the correction << 817 */ << 818 G4double getEmissionQValueCorrection(const << 819 const G4int ADaughter = AParent - theA; << 820 const G4int ZDaughter = ZParent - theZ; << 821 const G4int SDaughter = SParent - theS; << 822 << 823 // Note the minus sign here << 824 G4double theQValue; << 825 if(isCluster()) << 826 theQValue = -ParticleTable::getTableQV << 827 else { << 828 const G4double massTableParent = Parti << 829 const G4double massTableDaughter = Par << 830 const G4double massTableParticle = get << 831 theQValue = massTableParent - massTabl << 832 } << 833 << 834 const G4double massINCLParent = Particle << 835 const G4double massINCLDaughter = Partic << 836 const G4double massINCLParticle = getINC << 837 << 838 // The rhs corresponds to the INCL Q-val << 839 return theQValue - (massINCLParent-massI << 840 } << 841 << 842 /**\brief Computes correction on the trans << 843 * << 844 * Computes the correction that must be ap << 845 * order to obtain the correct Q-value for << 846 * nucleus to another. << 847 * << 848 * Assumes that the receving nucleus is IN << 849 * INCL separation energy. << 850 * << 851 * \param AFrom the mass number of the don << 852 * \param ZFrom the charge number of the d << 853 * \param SFrom the strangess number of th << 854 * \param ATo the mass number of the recei << 855 * \param ZTo the charge number of the rec << 856 * \param STo the strangess number of the << 857 * \return the correction << 858 */ << 859 G4double getTransferQValueCorrection(const << 860 const G4int AFromDaughter = AFrom - theA 634 const G4int AFromDaughter = AFrom - theA; 861 const G4int ZFromDaughter = ZFrom - theZ 635 const G4int ZFromDaughter = ZFrom - theZ; 862 const G4int SFromDaughter = SFrom - theS << 863 const G4int AToDaughter = ATo + theA; 636 const G4int AToDaughter = ATo + theA; 864 const G4int ZToDaughter = ZTo + theZ; 637 const G4int ZToDaughter = ZTo + theZ; 865 const G4int SToDaughter = STo + theS; << 638 const G4double theQValue = ParticleTable::getTableQValue(AToDaughter,ZToDaughter,AFromDaughter,ZFromDaughter,AFrom,ZFrom); 866 const G4double theQValue = ParticleTable << 867 639 868 const G4double massINCLTo = ParticleTabl << 640 const G4double massINCLTo = ParticleTable::getINCLMass(ATo,ZTo); 869 const G4double massINCLToDaughter = Part << 641 const G4double massINCLToDaughter = ParticleTable::getINCLMass(AToDaughter,ZToDaughter); 870 /* Note that here we have to use the tab 642 /* Note that here we have to use the table mass in the INCL Q-value. We 871 * cannot use theMass, because at this s 643 * cannot use theMass, because at this stage the particle is probably 872 * still off-shell; and we cannot use ge 644 * still off-shell; and we cannot use getINCLMass(), because it leads to 873 * violations of global energy conservat 645 * violations of global energy conservation. 874 */ 646 */ 875 const G4double massINCLParticle = getTab 647 const G4double massINCLParticle = getTableMass(); 876 648 877 // The rhs corresponds to the INCL Q-val 649 // The rhs corresponds to the INCL Q-value for particle absorption 878 return theQValue - (massINCLToDaughter-m 650 return theQValue - (massINCLToDaughter-massINCLTo-massINCLParticle); 879 } 651 } 880 652 881 << 882 << 883 /** \brief Get the the particle invariant 653 /** \brief Get the the particle invariant mass. 884 * 654 * 885 * Uses the relativistic invariant 655 * Uses the relativistic invariant 886 * \f[ m = \sqrt{E^2 - {\vec p}^2}\f] 656 * \f[ m = \sqrt{E^2 - {\vec p}^2}\f] 887 **/ 657 **/ 888 G4double getInvariantMass() const { 658 G4double getInvariantMass() const { 889 const G4double mass = std::pow(theEnergy 659 const G4double mass = std::pow(theEnergy, 2) - theMomentum.dot(theMomentum); 890 if(mass < 0.0) { 660 if(mass < 0.0) { 891 INCL_ERROR("E*E - p*p is negative." << 661 INCL_ERROR("E*E - p*p is negative." << '\n'); 892 return 0.0; 662 return 0.0; 893 } else { 663 } else { 894 return std::sqrt(mass); 664 return std::sqrt(mass); 895 } 665 } 896 }; 666 }; 897 667 898 /// \brief Get the particle kinetic energy 668 /// \brief Get the particle kinetic energy. 899 inline G4double getKineticEnergy() const { 669 inline G4double getKineticEnergy() const { return theEnergy - theMass; } 900 670 901 /// \brief Get the particle potential ener 671 /// \brief Get the particle potential energy. 902 inline G4double getPotentialEnergy() const 672 inline G4double getPotentialEnergy() const { return thePotentialEnergy; } 903 673 904 /// \brief Set the particle potential ener 674 /// \brief Set the particle potential energy. 905 inline void setPotentialEnergy(G4double v) 675 inline void setPotentialEnergy(G4double v) { thePotentialEnergy = v; } 906 676 907 /** 677 /** 908 * Get the energy of the particle in MeV. 678 * Get the energy of the particle in MeV. 909 */ 679 */ 910 G4double getEnergy() const 680 G4double getEnergy() const 911 { 681 { 912 return theEnergy; 682 return theEnergy; 913 }; 683 }; 914 684 915 /** 685 /** 916 * Set the mass of the particle in MeV/c^2 686 * Set the mass of the particle in MeV/c^2. 917 */ 687 */ 918 void setMass(G4double mass) 688 void setMass(G4double mass) 919 { 689 { 920 this->theMass = mass; 690 this->theMass = mass; 921 } 691 } 922 692 923 /** 693 /** 924 * Set the energy of the particle in MeV. 694 * Set the energy of the particle in MeV. 925 */ 695 */ 926 void setEnergy(G4double energy) 696 void setEnergy(G4double energy) 927 { 697 { 928 this->theEnergy = energy; 698 this->theEnergy = energy; 929 }; 699 }; 930 700 931 /** 701 /** 932 * Get the momentum vector. 702 * Get the momentum vector. 933 */ 703 */ 934 const G4INCL::ThreeVector &getMomentum() c 704 const G4INCL::ThreeVector &getMomentum() const 935 { 705 { 936 return theMomentum; 706 return theMomentum; 937 }; 707 }; 938 708 939 /** Get the angular momentum w.r.t. the or 709 /** Get the angular momentum w.r.t. the origin */ 940 virtual G4INCL::ThreeVector getAngularMome 710 virtual G4INCL::ThreeVector getAngularMomentum() const 941 { 711 { 942 return thePosition.vector(theMomentum); 712 return thePosition.vector(theMomentum); 943 }; 713 }; 944 714 945 /** 715 /** 946 * Set the momentum vector. 716 * Set the momentum vector. 947 */ 717 */ 948 virtual void setMomentum(const G4INCL::Thr 718 virtual void setMomentum(const G4INCL::ThreeVector &momentum) 949 { 719 { 950 this->theMomentum = momentum; 720 this->theMomentum = momentum; 951 }; 721 }; 952 722 953 /** 723 /** 954 * Set the position vector. 724 * Set the position vector. 955 */ 725 */ 956 const G4INCL::ThreeVector &getPosition() c 726 const G4INCL::ThreeVector &getPosition() const 957 { 727 { 958 return thePosition; 728 return thePosition; 959 }; 729 }; 960 730 961 virtual void setPosition(const G4INCL::Thr 731 virtual void setPosition(const G4INCL::ThreeVector &position) 962 { 732 { 963 this->thePosition = position; 733 this->thePosition = position; 964 }; 734 }; 965 735 966 G4double getHelicity() { return theHelicit 736 G4double getHelicity() { return theHelicity; }; 967 void setHelicity(G4double h) { theHelicity 737 void setHelicity(G4double h) { theHelicity = h; }; 968 738 969 void propagate(G4double step) { 739 void propagate(G4double step) { 970 thePosition += ((*thePropagationMomentum 740 thePosition += ((*thePropagationMomentum)*(step/(*thePropagationEnergy))); 971 }; 741 }; 972 742 973 /** \brief Return the number of collisions 743 /** \brief Return the number of collisions undergone by the particle. **/ 974 G4int getNumberOfCollisions() const { retu 744 G4int getNumberOfCollisions() const { return nCollisions; } 975 745 976 /** \brief Set the number of collisions un 746 /** \brief Set the number of collisions undergone by the particle. **/ 977 void setNumberOfCollisions(G4int n) { nCol 747 void setNumberOfCollisions(G4int n) { nCollisions = n; } 978 748 979 /** \brief Increment the number of collisi 749 /** \brief Increment the number of collisions undergone by the particle. **/ 980 void incrementNumberOfCollisions() { nColl 750 void incrementNumberOfCollisions() { nCollisions++; } 981 751 982 /** \brief Return the number of decays und 752 /** \brief Return the number of decays undergone by the particle. **/ 983 G4int getNumberOfDecays() const { return n 753 G4int getNumberOfDecays() const { return nDecays; } 984 754 985 /** \brief Set the number of decays underg 755 /** \brief Set the number of decays undergone by the particle. **/ 986 void setNumberOfDecays(G4int n) { nDecays 756 void setNumberOfDecays(G4int n) { nDecays = n; } 987 757 988 /** \brief Increment the number of decays 758 /** \brief Increment the number of decays undergone by the particle. **/ 989 void incrementNumberOfDecays() { nDecays++ 759 void incrementNumberOfDecays() { nDecays++; } 990 760 991 /** \brief Mark the particle as out of its 761 /** \brief Mark the particle as out of its potential well 992 * 762 * 993 * This flag is used to control pions crea 763 * This flag is used to control pions created outside their potential well 994 * in delta decay. The pion potential chec 764 * in delta decay. The pion potential checks it and returns zero if it is 995 * true (necessary in order to correctly e 765 * true (necessary in order to correctly enforce energy conservation). The 996 * Nucleus::applyFinalState() method uses 766 * Nucleus::applyFinalState() method uses it to determine whether new 997 * avatars should be generated for the par 767 * avatars should be generated for the particle. 998 */ 768 */ 999 void setOutOfWell() { outOfWell = true; } 769 void setOutOfWell() { outOfWell = true; } 1000 770 1001 /// \brief Check if the particle is out o 771 /// \brief Check if the particle is out of its potential well 1002 G4bool isOutOfWell() const { return outOf 772 G4bool isOutOfWell() const { return outOfWell; } 1003 773 1004 void setEmissionTime(G4double t) { emissi 774 void setEmissionTime(G4double t) { emissionTime = t; } 1005 G4double getEmissionTime() { return emiss 775 G4double getEmissionTime() { return emissionTime; }; 1006 776 1007 /** \brief Transverse component of the po 777 /** \brief Transverse component of the position w.r.t. the momentum. */ 1008 ThreeVector getTransversePosition() const 778 ThreeVector getTransversePosition() const { 1009 return thePosition - getLongitudinalPos 779 return thePosition - getLongitudinalPosition(); 1010 } 780 } 1011 781 1012 /** \brief Longitudinal component of the 782 /** \brief Longitudinal component of the position w.r.t. the momentum. */ 1013 ThreeVector getLongitudinalPosition() con 783 ThreeVector getLongitudinalPosition() const { 1014 return *thePropagationMomentum * (thePo 784 return *thePropagationMomentum * (thePosition.dot(*thePropagationMomentum)/thePropagationMomentum->mag2()); 1015 } 785 } 1016 786 1017 /** \brief Rescale the momentum to match 787 /** \brief Rescale the momentum to match the total energy. */ 1018 const ThreeVector &adjustMomentumFromEner 788 const ThreeVector &adjustMomentumFromEnergy(); 1019 789 1020 /** \brief Recompute the energy to match 790 /** \brief Recompute the energy to match the momentum. */ 1021 G4double adjustEnergyFromMomentum(); 791 G4double adjustEnergyFromMomentum(); 1022 792 1023 G4bool isCluster() const { 793 G4bool isCluster() const { 1024 return (theType == Composite); 794 return (theType == Composite); 1025 } 795 } 1026 796 1027 /// \brief Set the frozen particle moment 797 /// \brief Set the frozen particle momentum 1028 void setFrozenMomentum(const ThreeVector 798 void setFrozenMomentum(const ThreeVector &momentum) { theFrozenMomentum = momentum; } 1029 799 1030 /// \brief Set the frozen particle moment 800 /// \brief Set the frozen particle momentum 1031 void setFrozenEnergy(const G4double energ 801 void setFrozenEnergy(const G4double energy) { theFrozenEnergy = energy; } 1032 802 1033 /// \brief Get the frozen particle moment 803 /// \brief Get the frozen particle momentum 1034 ThreeVector getFrozenMomentum() const { r 804 ThreeVector getFrozenMomentum() const { return theFrozenMomentum; } 1035 805 1036 /// \brief Get the frozen particle moment 806 /// \brief Get the frozen particle momentum 1037 G4double getFrozenEnergy() const { return 807 G4double getFrozenEnergy() const { return theFrozenEnergy; } 1038 808 1039 /// \brief Get the propagation velocity o 809 /// \brief Get the propagation velocity of the particle 1040 ThreeVector getPropagationVelocity() cons 810 ThreeVector getPropagationVelocity() const { return (*thePropagationMomentum)/(*thePropagationEnergy); } 1041 811 1042 /** \brief Freeze particle propagation 812 /** \brief Freeze particle propagation 1043 * 813 * 1044 * Make the particle use theFrozenMomentu 814 * Make the particle use theFrozenMomentum and theFrozenEnergy for 1045 * propagation. The normal state can be r 815 * propagation. The normal state can be restored by calling the 1046 * thawPropagation() method. 816 * thawPropagation() method. 1047 */ 817 */ 1048 void freezePropagation() { 818 void freezePropagation() { 1049 thePropagationMomentum = &theFrozenMome 819 thePropagationMomentum = &theFrozenMomentum; 1050 thePropagationEnergy = &theFrozenEnergy 820 thePropagationEnergy = &theFrozenEnergy; 1051 } 821 } 1052 822 1053 /** \brief Unfreeze particle propagation 823 /** \brief Unfreeze particle propagation 1054 * 824 * 1055 * Make the particle use theMomentum and 825 * Make the particle use theMomentum and theEnergy for propagation. Call 1056 * this method to restore the normal prop 826 * this method to restore the normal propagation if the 1057 * freezePropagation() method has been ca 827 * freezePropagation() method has been called. 1058 */ 828 */ 1059 void thawPropagation() { 829 void thawPropagation() { 1060 thePropagationMomentum = &theMomentum; 830 thePropagationMomentum = &theMomentum; 1061 thePropagationEnergy = &theEnergy; 831 thePropagationEnergy = &theEnergy; 1062 } 832 } 1063 833 1064 /** \brief Rotate the particle position a 834 /** \brief Rotate the particle position and momentum 1065 * 835 * 1066 * \param angle the rotation angle 836 * \param angle the rotation angle 1067 * \param axis a unit vector representing 837 * \param axis a unit vector representing the rotation axis 1068 */ 838 */ 1069 virtual void rotatePositionAndMomentum(co 839 virtual void rotatePositionAndMomentum(const G4double angle, const ThreeVector &axis) { 1070 rotatePosition(angle, axis); 840 rotatePosition(angle, axis); 1071 rotateMomentum(angle, axis); 841 rotateMomentum(angle, axis); 1072 } 842 } 1073 843 1074 /** \brief Rotate the particle position 844 /** \brief Rotate the particle position 1075 * 845 * 1076 * \param angle the rotation angle 846 * \param angle the rotation angle 1077 * \param axis a unit vector representing 847 * \param axis a unit vector representing the rotation axis 1078 */ 848 */ 1079 virtual void rotatePosition(const G4doubl 849 virtual void rotatePosition(const G4double angle, const ThreeVector &axis) { 1080 thePosition.rotate(angle, axis); 850 thePosition.rotate(angle, axis); 1081 } 851 } 1082 852 1083 /** \brief Rotate the particle momentum 853 /** \brief Rotate the particle momentum 1084 * 854 * 1085 * \param angle the rotation angle 855 * \param angle the rotation angle 1086 * \param axis a unit vector representing 856 * \param axis a unit vector representing the rotation axis 1087 */ 857 */ 1088 virtual void rotateMomentum(const G4doubl 858 virtual void rotateMomentum(const G4double angle, const ThreeVector &axis) { 1089 theMomentum.rotate(angle, axis); 859 theMomentum.rotate(angle, axis); 1090 theFrozenMomentum.rotate(angle, axis); 860 theFrozenMomentum.rotate(angle, axis); 1091 } 861 } 1092 862 1093 std::string print() const { 863 std::string print() const { 1094 std::stringstream ss; 864 std::stringstream ss; 1095 ss << "Particle (ID = " << ID << ") typ 865 ss << "Particle (ID = " << ID << ") type = "; 1096 ss << ParticleTable::getName(theType); 866 ss << ParticleTable::getName(theType); 1097 ss << '\n' 867 ss << '\n' 1098 << " energy = " << theEnergy << '\n 868 << " energy = " << theEnergy << '\n' 1099 << " momentum = " 869 << " momentum = " 1100 << theMomentum.print() 870 << theMomentum.print() 1101 << '\n' 871 << '\n' 1102 << " position = " 872 << " position = " 1103 << thePosition.print() 873 << thePosition.print() 1104 << '\n'; 874 << '\n'; 1105 return ss.str(); 875 return ss.str(); 1106 }; 876 }; 1107 877 1108 std::string dump() const { 878 std::string dump() const { 1109 std::stringstream ss; 879 std::stringstream ss; 1110 ss << "(particle " << ID << " "; 880 ss << "(particle " << ID << " "; 1111 ss << ParticleTable::getName(theType); 881 ss << ParticleTable::getName(theType); 1112 ss << '\n' 882 ss << '\n' 1113 << thePosition.dump() 883 << thePosition.dump() 1114 << '\n' 884 << '\n' 1115 << theMomentum.dump() 885 << theMomentum.dump() 1116 << '\n' 886 << '\n' 1117 << theEnergy << ")" << '\n'; 887 << theEnergy << ")" << '\n'; 1118 return ss.str(); 888 return ss.str(); 1119 }; 889 }; 1120 890 1121 long getID() const { return ID; }; 891 long getID() const { return ID; }; 1122 892 1123 /** 893 /** 1124 * Return a NULL pointer 894 * Return a NULL pointer 1125 */ 895 */ 1126 ParticleList const *getParticles() const 896 ParticleList const *getParticles() const { 1127 INCL_WARN("Particle::getParticles() met 897 INCL_WARN("Particle::getParticles() method was called on a Particle object" << '\n'); 1128 return 0; 898 return 0; 1129 } 899 } 1130 900 1131 /** \brief Return the reflection momentum 901 /** \brief Return the reflection momentum 1132 * 902 * 1133 * The reflection momentum is used by cal 903 * The reflection momentum is used by calls to getSurfaceRadius to compute 1134 * the radius of the sphere where the nuc 904 * the radius of the sphere where the nucleon moves. It is necessary to 1135 * introduce fuzzy r-p correlations. 905 * introduce fuzzy r-p correlations. 1136 */ 906 */ 1137 G4double getReflectionMomentum() const { 907 G4double getReflectionMomentum() const { 1138 if(rpCorrelated) 908 if(rpCorrelated) 1139 return theMomentum.mag(); 909 return theMomentum.mag(); 1140 else 910 else 1141 return uncorrelatedMomentum; 911 return uncorrelatedMomentum; 1142 } 912 } 1143 913 1144 /// \brief Set the uncorrelated momentum 914 /// \brief Set the uncorrelated momentum 1145 void setUncorrelatedMomentum(const G4doub 915 void setUncorrelatedMomentum(const G4double p) { uncorrelatedMomentum = p; } 1146 916 1147 /// \brief Make the particle follow a str 917 /// \brief Make the particle follow a strict r-p correlation 1148 void rpCorrelate() { rpCorrelated = true; 918 void rpCorrelate() { rpCorrelated = true; } 1149 919 1150 /// \brief Make the particle not follow a 920 /// \brief Make the particle not follow a strict r-p correlation 1151 void rpDecorrelate() { rpCorrelated = fal 921 void rpDecorrelate() { rpCorrelated = false; } 1152 922 1153 /// \brief Get the cosine of the angle be 923 /// \brief Get the cosine of the angle between position and momentum 1154 G4double getCosRPAngle() const { 924 G4double getCosRPAngle() const { 1155 const G4double norm = thePosition.mag2( 925 const G4double norm = thePosition.mag2()*thePropagationMomentum->mag2(); 1156 if(norm>0.) 926 if(norm>0.) 1157 return thePosition.dot(*thePropagatio 927 return thePosition.dot(*thePropagationMomentum) / std::sqrt(norm); 1158 else 928 else 1159 return 1.; 929 return 1.; 1160 } 930 } 1161 931 1162 /// \brief General bias vector function 932 /// \brief General bias vector function 1163 static G4double getTotalBias(); 933 static G4double getTotalBias(); 1164 static void setINCLBiasVector(std::vector 934 static void setINCLBiasVector(std::vector<G4double> NewVector); 1165 static void FillINCLBiasVector(G4double n 935 static void FillINCLBiasVector(G4double newBias); 1166 static G4double getBiasFromVector(std::ve 936 static G4double getBiasFromVector(std::vector<G4int> VectorBias); 1167 937 1168 static std::vector<G4int> MergeVectorBias 938 static std::vector<G4int> MergeVectorBias(Particle const * const p1, Particle const * const p2); 1169 static std::vector<G4int> MergeVectorBias 939 static std::vector<G4int> MergeVectorBias(std::vector<G4int> p1, Particle const * const p2); 1170 940 1171 /// \brief Get the particle bias. 941 /// \brief Get the particle bias. 1172 G4double getParticleBias() const { return 942 G4double getParticleBias() const { return theParticleBias; }; 1173 943 1174 /// \brief Set the particle bias. 944 /// \brief Set the particle bias. 1175 void setParticleBias(G4double ParticleBia 945 void setParticleBias(G4double ParticleBias) { this->theParticleBias = ParticleBias; } 1176 946 1177 /// \brief Get the vector list of biased 947 /// \brief Get the vector list of biased vertices on the particle path. 1178 std::vector<G4int> getBiasCollisionVector 948 std::vector<G4int> getBiasCollisionVector() const { return theBiasCollisionVector; } 1179 949 1180 /// \brief Set the vector list of biased 950 /// \brief Set the vector list of biased vertices on the particle path. 1181 void setBiasCollisionVector(std::vector<G 951 void setBiasCollisionVector(std::vector<G4int> BiasCollisionVector) { 1182 this->theBiasCollisionVector = BiasCollis 952 this->theBiasCollisionVector = BiasCollisionVector; 1183 this->setParticleBias(Particle::getBiasFr << 953 this->setParticleBias(Particle::getBiasFromVector(BiasCollisionVector)); 1184 } 954 } 1185 << 1186 /** \brief Number of Kaon inside de nucle << 1187 * << 1188 * Put in the Particle class in order to << 1189 * "correct" mass of composit particle. << 1190 * << 1191 */ << 1192 << 1193 G4int getNumberOfKaon() const { return th << 1194 void setNumberOfKaon(const G4int NK) { th << 1195 << 1196 #ifdef INCLXX_IN_GEANT4_MODE << 1197 G4int getParentResonancePDGCode() const { << 1198 void setParentResonancePDGCode(const G4in << 1199 G4int getParentResonanceID() const { retu << 1200 void setParentResonanceID(const G4int par << 1201 #endif << 1202 955 1203 public: 956 public: 1204 /** \brief Time ordered vector of all bia 957 /** \brief Time ordered vector of all bias applied 1205 * 958 * 1206 * /!\ Caution /!\ 959 * /!\ Caution /!\ 1207 * methods Assotiated to G4VectorCache<T> 960 * methods Assotiated to G4VectorCache<T> are: 1208 * Push_back(…), 961 * Push_back(…), 1209 * operator[], 962 * operator[], 1210 * Begin(), 963 * Begin(), 1211 * End(), 964 * End(), 1212 * Clear(), 965 * Clear(), 1213 * Size() and 966 * Size() and 1214 * Pop_back() 967 * Pop_back() 1215 * 968 * 1216 */ 969 */ 1217 #ifdef INCLXX_IN_GEANT4_MODE 970 #ifdef INCLXX_IN_GEANT4_MODE 1218 static std::vector<G4double> INCLBiasVe 971 static std::vector<G4double> INCLBiasVector; 1219 //static G4VectorCache<G4double> INCLBi 972 //static G4VectorCache<G4double> INCLBiasVector; 1220 #else 973 #else 1221 static G4ThreadLocal std::vector<G4doub 974 static G4ThreadLocal std::vector<G4double> INCLBiasVector; 1222 //static G4VectorCache<G4double> INCLBi 975 //static G4VectorCache<G4double> INCLBiasVector; 1223 #endif 976 #endif 1224 static G4ThreadLocal G4int nextBiasedColl 977 static G4ThreadLocal G4int nextBiasedCollisionID; 1225 978 1226 protected: 979 protected: 1227 G4int theZ, theA, theS; 980 G4int theZ, theA, theS; 1228 ParticipantType theParticipantType; 981 ParticipantType theParticipantType; 1229 G4INCL::ParticleType theType; 982 G4INCL::ParticleType theType; 1230 G4double theEnergy; 983 G4double theEnergy; 1231 G4double *thePropagationEnergy; 984 G4double *thePropagationEnergy; 1232 G4double theFrozenEnergy; 985 G4double theFrozenEnergy; 1233 G4INCL::ThreeVector theMomentum; 986 G4INCL::ThreeVector theMomentum; 1234 G4INCL::ThreeVector *thePropagationMoment 987 G4INCL::ThreeVector *thePropagationMomentum; 1235 G4INCL::ThreeVector theFrozenMomentum; 988 G4INCL::ThreeVector theFrozenMomentum; 1236 G4INCL::ThreeVector thePosition; 989 G4INCL::ThreeVector thePosition; 1237 G4int nCollisions; 990 G4int nCollisions; 1238 G4int nDecays; 991 G4int nDecays; 1239 G4double thePotentialEnergy; 992 G4double thePotentialEnergy; 1240 long ID; 993 long ID; 1241 994 1242 G4bool rpCorrelated; 995 G4bool rpCorrelated; 1243 G4double uncorrelatedMomentum; 996 G4double uncorrelatedMomentum; 1244 997 1245 G4double theParticleBias; 998 G4double theParticleBias; 1246 /// \brief The number of Kaons inside the << 1247 G4int theNKaon; << 1248 << 1249 #ifdef INCLXX_IN_GEANT4_MODE << 1250 G4int theParentResonancePDGCode; << 1251 G4int theParentResonanceID; << 1252 #endif << 1253 999 1254 private: 1000 private: 1255 G4double theHelicity; 1001 G4double theHelicity; 1256 G4double emissionTime; 1002 G4double emissionTime; 1257 G4bool outOfWell; 1003 G4bool outOfWell; 1258 1004 1259 /// \brief Time ordered vector of all bia 1005 /// \brief Time ordered vector of all biased vertices on the particle path 1260 std::vector<G4int> theBiasCollisionVector 1006 std::vector<G4int> theBiasCollisionVector; 1261 1007 1262 G4double theMass; 1008 G4double theMass; 1263 static G4ThreadLocal long nextID; 1009 static G4ThreadLocal long nextID; 1264 1010 1265 INCL_DECLARE_ALLOCATION_POOL(Particle) 1011 INCL_DECLARE_ALLOCATION_POOL(Particle) 1266 }; 1012 }; 1267 } 1013 } 1268 1014 1269 #endif /* PARTICLE_HH_ */ 1015 #endif /* PARTICLE_HH_ */ 1270 1016