Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 /* 38 /* 39 * G4INCLParticle.hh 39 * G4INCLParticle.hh 40 * 40 * 41 * \date Jun 5, 2009 41 * \date Jun 5, 2009 42 * \author Pekka Kaitaniemi 42 * \author Pekka Kaitaniemi 43 */ 43 */ 44 44 45 #ifndef PARTICLE_HH_ 45 #ifndef PARTICLE_HH_ 46 #define PARTICLE_HH_ 46 #define PARTICLE_HH_ 47 47 48 #include "G4INCLThreeVector.hh" 48 #include "G4INCLThreeVector.hh" 49 #include "G4INCLParticleTable.hh" 49 #include "G4INCLParticleTable.hh" 50 #include "G4INCLParticleType.hh" 50 #include "G4INCLParticleType.hh" 51 #include "G4INCLParticleSpecies.hh" 51 #include "G4INCLParticleSpecies.hh" 52 #include "G4INCLLogger.hh" 52 #include "G4INCLLogger.hh" 53 #include "G4INCLUnorderedVector.hh" 53 #include "G4INCLUnorderedVector.hh" 54 #include "G4INCLAllocationPool.hh" 54 #include "G4INCLAllocationPool.hh" 55 #include <sstream> 55 #include <sstream> 56 #include <string> 56 #include <string> 57 57 58 namespace G4INCL { 58 namespace G4INCL { 59 59 60 class Particle; 60 class Particle; 61 61 62 class ParticleList : public UnorderedVector< 62 class ParticleList : public UnorderedVector<Particle*> { 63 public: 63 public: 64 void rotatePositionAndMomentum(const G4d 64 void rotatePositionAndMomentum(const G4double angle, const ThreeVector &axis) const; 65 void rotatePosition(const G4double angle 65 void rotatePosition(const G4double angle, const ThreeVector &axis) const; 66 void rotateMomentum(const G4double angle 66 void rotateMomentum(const G4double angle, const ThreeVector &axis) const; 67 void boost(const ThreeVector &b) const; 67 void boost(const ThreeVector &b) const; 68 G4double getParticleListBias() const; << 69 std::vector<G4int> getParticleListBiasVe << 70 }; 68 }; 71 69 72 typedef ParticleList::const_iterator Particl 70 typedef ParticleList::const_iterator ParticleIter; 73 typedef ParticleList::iterator Particl 71 typedef ParticleList::iterator ParticleMutableIter; 74 72 75 class Particle { 73 class Particle { 76 public: 74 public: 77 Particle(); 75 Particle(); 78 Particle(ParticleType t, G4double energy, 76 Particle(ParticleType t, G4double energy, ThreeVector const &momentum, ThreeVector const &position); 79 Particle(ParticleType t, ThreeVector const 77 Particle(ParticleType t, ThreeVector const &momentum, ThreeVector const &position); 80 virtual ~Particle() {} 78 virtual ~Particle() {} 81 79 82 /** \brief Copy constructor 80 /** \brief Copy constructor 83 * 81 * 84 * Does not copy the particle ID. 82 * Does not copy the particle ID. 85 */ 83 */ 86 Particle(const Particle &rhs) : 84 Particle(const Particle &rhs) : 87 theZ(rhs.theZ), 85 theZ(rhs.theZ), 88 theA(rhs.theA), 86 theA(rhs.theA), 89 theS(rhs.theS), << 90 theParticipantType(rhs.theParticipantTyp 87 theParticipantType(rhs.theParticipantType), 91 theType(rhs.theType), 88 theType(rhs.theType), 92 theEnergy(rhs.theEnergy), 89 theEnergy(rhs.theEnergy), 93 theFrozenEnergy(rhs.theFrozenEnergy), 90 theFrozenEnergy(rhs.theFrozenEnergy), 94 theMomentum(rhs.theMomentum), 91 theMomentum(rhs.theMomentum), 95 theFrozenMomentum(rhs.theFrozenMomentum) 92 theFrozenMomentum(rhs.theFrozenMomentum), 96 thePosition(rhs.thePosition), 93 thePosition(rhs.thePosition), 97 nCollisions(rhs.nCollisions), 94 nCollisions(rhs.nCollisions), 98 nDecays(rhs.nDecays), 95 nDecays(rhs.nDecays), 99 thePotentialEnergy(rhs.thePotentialEnerg 96 thePotentialEnergy(rhs.thePotentialEnergy), 100 rpCorrelated(rhs.rpCorrelated), 97 rpCorrelated(rhs.rpCorrelated), 101 uncorrelatedMomentum(rhs.uncorrelatedMom 98 uncorrelatedMomentum(rhs.uncorrelatedMomentum), 102 theParticleBias(rhs.theParticleBias), << 103 theNKaon(rhs.theNKaon), << 104 #ifdef INCLXX_IN_GEANT4_MODE << 105 theParentResonancePDGCode(rhs.theParentR << 106 theParentResonanceID(rhs.theParentResona << 107 #endif << 108 theHelicity(rhs.theHelicity), 99 theHelicity(rhs.theHelicity), 109 emissionTime(rhs.emissionTime), 100 emissionTime(rhs.emissionTime), 110 outOfWell(rhs.outOfWell), 101 outOfWell(rhs.outOfWell), 111 theMass(rhs.theMass) 102 theMass(rhs.theMass) 112 { 103 { 113 if(rhs.thePropagationEnergy == &(rhs.t 104 if(rhs.thePropagationEnergy == &(rhs.theFrozenEnergy)) 114 thePropagationEnergy = &theFrozenEne 105 thePropagationEnergy = &theFrozenEnergy; 115 else 106 else 116 thePropagationEnergy = &theEnergy; 107 thePropagationEnergy = &theEnergy; 117 if(rhs.thePropagationMomentum == &(rhs 108 if(rhs.thePropagationMomentum == &(rhs.theFrozenMomentum)) 118 thePropagationMomentum = &theFrozenM 109 thePropagationMomentum = &theFrozenMomentum; 119 else 110 else 120 thePropagationMomentum = &theMomentu 111 thePropagationMomentum = &theMomentum; 121 // ID intentionally not copied 112 // ID intentionally not copied 122 ID = nextID++; 113 ID = nextID++; 123 << 124 theBiasCollisionVector = rhs.theBiasCo << 125 } 114 } 126 115 127 protected: 116 protected: 128 /// \brief Helper method for the assignmen 117 /// \brief Helper method for the assignment operator 129 void swap(Particle &rhs) { 118 void swap(Particle &rhs) { 130 std::swap(theZ, rhs.theZ); 119 std::swap(theZ, rhs.theZ); 131 std::swap(theA, rhs.theA); 120 std::swap(theA, rhs.theA); 132 std::swap(theS, rhs.theS); << 133 std::swap(theParticipantType, rhs.thePar 121 std::swap(theParticipantType, rhs.theParticipantType); 134 std::swap(theType, rhs.theType); 122 std::swap(theType, rhs.theType); 135 if(rhs.thePropagationEnergy == &(rhs.the 123 if(rhs.thePropagationEnergy == &(rhs.theFrozenEnergy)) 136 thePropagationEnergy = &theFrozenEnerg 124 thePropagationEnergy = &theFrozenEnergy; 137 else 125 else 138 thePropagationEnergy = &theEnergy; 126 thePropagationEnergy = &theEnergy; 139 std::swap(theEnergy, rhs.theEnergy); 127 std::swap(theEnergy, rhs.theEnergy); 140 std::swap(theFrozenEnergy, rhs.theFrozen 128 std::swap(theFrozenEnergy, rhs.theFrozenEnergy); 141 if(rhs.thePropagationMomentum == &(rhs.t 129 if(rhs.thePropagationMomentum == &(rhs.theFrozenMomentum)) 142 thePropagationMomentum = &theFrozenMom 130 thePropagationMomentum = &theFrozenMomentum; 143 else 131 else 144 thePropagationMomentum = &theMomentum; 132 thePropagationMomentum = &theMomentum; 145 std::swap(theMomentum, rhs.theMomentum); 133 std::swap(theMomentum, rhs.theMomentum); 146 std::swap(theFrozenMomentum, rhs.theFroz 134 std::swap(theFrozenMomentum, rhs.theFrozenMomentum); 147 std::swap(thePosition, rhs.thePosition); 135 std::swap(thePosition, rhs.thePosition); 148 std::swap(nCollisions, rhs.nCollisions); 136 std::swap(nCollisions, rhs.nCollisions); 149 std::swap(nDecays, rhs.nDecays); 137 std::swap(nDecays, rhs.nDecays); 150 std::swap(thePotentialEnergy, rhs.thePot 138 std::swap(thePotentialEnergy, rhs.thePotentialEnergy); 151 // ID intentionally not swapped 139 // ID intentionally not swapped 152 140 153 #ifdef INCLXX_IN_GEANT4_MODE << 154 std::swap(theParentResonancePDGCode, rhs << 155 std::swap(theParentResonanceID, rhs.theP << 156 #endif << 157 << 158 std::swap(theHelicity, rhs.theHelicity); 141 std::swap(theHelicity, rhs.theHelicity); 159 std::swap(emissionTime, rhs.emissionTime 142 std::swap(emissionTime, rhs.emissionTime); 160 std::swap(outOfWell, rhs.outOfWell); 143 std::swap(outOfWell, rhs.outOfWell); 161 144 162 std::swap(theMass, rhs.theMass); 145 std::swap(theMass, rhs.theMass); 163 std::swap(rpCorrelated, rhs.rpCorrelated 146 std::swap(rpCorrelated, rhs.rpCorrelated); 164 std::swap(uncorrelatedMomentum, rhs.unco 147 std::swap(uncorrelatedMomentum, rhs.uncorrelatedMomentum); 165 << 166 std::swap(theParticleBias, rhs.thePartic << 167 std::swap(theBiasCollisionVector, rhs.th << 168 << 169 } 148 } 170 149 171 public: 150 public: 172 151 173 /** \brief Assignment operator 152 /** \brief Assignment operator 174 * 153 * 175 * Does not copy the particle ID. 154 * Does not copy the particle ID. 176 */ 155 */ 177 Particle &operator=(const Particle &rhs) { 156 Particle &operator=(const Particle &rhs) { 178 Particle temporaryParticle(rhs); 157 Particle temporaryParticle(rhs); 179 swap(temporaryParticle); 158 swap(temporaryParticle); 180 return *this; 159 return *this; 181 } 160 } 182 161 183 /** 162 /** 184 * Get the particle type. 163 * Get the particle type. 185 * @see G4INCL::ParticleType 164 * @see G4INCL::ParticleType 186 */ 165 */ 187 G4INCL::ParticleType getType() const { 166 G4INCL::ParticleType getType() const { 188 return theType; 167 return theType; 189 }; 168 }; 190 169 191 /// \brief Get the particle species 170 /// \brief Get the particle species 192 virtual G4INCL::ParticleSpecies getSpecies 171 virtual G4INCL::ParticleSpecies getSpecies() const { 193 return ParticleSpecies(theType); 172 return ParticleSpecies(theType); 194 }; 173 }; 195 174 196 void setType(ParticleType t) { 175 void setType(ParticleType t) { 197 theType = t; 176 theType = t; 198 switch(theType) 177 switch(theType) 199 { 178 { 200 case DeltaPlusPlus: 179 case DeltaPlusPlus: 201 theA = 1; 180 theA = 1; 202 theZ = 2; 181 theZ = 2; 203 theS = 0; << 204 break; 182 break; 205 case Proton: 183 case Proton: 206 case DeltaPlus: 184 case DeltaPlus: 207 theA = 1; 185 theA = 1; 208 theZ = 1; 186 theZ = 1; 209 theS = 0; << 210 break; 187 break; 211 case Neutron: 188 case Neutron: 212 case DeltaZero: 189 case DeltaZero: 213 theA = 1; 190 theA = 1; 214 theZ = 0; 191 theZ = 0; 215 theS = 0; << 216 break; 192 break; 217 case DeltaMinus: 193 case DeltaMinus: 218 theA = 1; 194 theA = 1; 219 theZ = -1; 195 theZ = -1; 220 theS = 0; << 221 break; 196 break; 222 case PiPlus: 197 case PiPlus: 223 theA = 0; 198 theA = 0; 224 theZ = 1; 199 theZ = 1; 225 theS = 0; << 226 break; 200 break; 227 case PiZero: 201 case PiZero: 228 case Eta: << 202 case Eta: 229 case Omega: << 203 case Omega: 230 case EtaPrime: << 204 case EtaPrime: 231 case Photon: << 205 case Photon: 232 theA = 0; 206 theA = 0; 233 theZ = 0; 207 theZ = 0; 234 theS = 0; << 235 break; 208 break; 236 case PiMinus: 209 case PiMinus: 237 theA = 0; 210 theA = 0; 238 theZ = -1; 211 theZ = -1; 239 theS = 0; << 240 break; << 241 case Lambda: << 242 theA = 1; << 243 theZ = 0; << 244 theS = -1; << 245 break; << 246 case SigmaPlus: << 247 theA = 1; << 248 theZ = 1; << 249 theS = -1; << 250 break; << 251 case SigmaZero: << 252 theA = 1; << 253 theZ = 0; << 254 theS = -1; << 255 break; << 256 case SigmaMinus: << 257 theA = 1; << 258 theZ = -1; << 259 theS = -1; << 260 break; << 261 case antiProton: << 262 theA = -1; << 263 theZ = -1; << 264 theS = 0; << 265 break; << 266 case XiMinus: << 267 theA = 1; << 268 theZ = -1; << 269 theS = -2; << 270 break; << 271 case XiZero: << 272 theA = 1; << 273 theZ = 0; << 274 theS = -2; << 275 break; << 276 case antiNeutron: << 277 theA = -1; << 278 theZ = 0; << 279 theS = 0; << 280 break; << 281 case antiLambda: << 282 theA = -1; << 283 theZ = 0; << 284 theS = 1; << 285 break; << 286 case antiSigmaMinus: << 287 theA = -1; << 288 theZ = 1; << 289 theS = 1; << 290 break; << 291 case antiSigmaPlus: << 292 theA = -1; << 293 theZ = -1; << 294 theS = 1; << 295 break; << 296 case antiSigmaZero: << 297 theA = -1; << 298 theZ = 0; << 299 theS = 1; << 300 break; << 301 case antiXiMinus: << 302 theA = -1; << 303 theZ = 1; << 304 theS = 2; << 305 break; << 306 case antiXiZero: << 307 theA = -1; << 308 theZ = 0; << 309 theS = 2; << 310 break; << 311 case KPlus: << 312 theA = 0; << 313 theZ = 1; << 314 theS = 1; << 315 break; << 316 case KZero: << 317 theA = 0; << 318 theZ = 0; << 319 theS = 1; << 320 break; << 321 case KZeroBar: << 322 theA = 0; << 323 theZ = 0; << 324 theS = -1; << 325 break; << 326 case KShort: << 327 theA = 0; << 328 theZ = 0; << 329 // theS should not be defined << 330 break; << 331 case KLong: << 332 theA = 0; << 333 theZ = 0; << 334 // theS should not be defined << 335 break; << 336 case KMinus: << 337 theA = 0; << 338 theZ = -1; << 339 theS = -1; << 340 break; 212 break; 341 case Composite: 213 case Composite: 342 // INCL_ERROR("Trying to set particle 214 // INCL_ERROR("Trying to set particle type to Composite! Construct a Cluster object instead" << '\n'); 343 theA = 0; 215 theA = 0; 344 theZ = 0; 216 theZ = 0; 345 theS = 0; << 217 break; 346 break; << 347 case UnknownParticle: 218 case UnknownParticle: 348 theA = 0; 219 theA = 0; 349 theZ = 0; 220 theZ = 0; 350 theS = 0; << 351 INCL_ERROR("Trying to set particle t 221 INCL_ERROR("Trying to set particle type to Unknown!" << '\n'); 352 break; 222 break; 353 } 223 } 354 224 355 if( !isResonance() && t!=Composite ) 225 if( !isResonance() && t!=Composite ) 356 setINCLMass(); 226 setINCLMass(); 357 } 227 } 358 228 359 /** 229 /** 360 * Is this a nucleon? 230 * Is this a nucleon? 361 */ 231 */ 362 G4bool isNucleon() const { 232 G4bool isNucleon() const { 363 if(theType == G4INCL::Proton || theType 233 if(theType == G4INCL::Proton || theType == G4INCL::Neutron) 364 return true; << 234 return true; 365 else 235 else 366 return false; << 236 return false; 367 }; 237 }; 368 238 369 ParticipantType getParticipantType() const 239 ParticipantType getParticipantType() const { 370 return theParticipantType; 240 return theParticipantType; 371 } 241 } 372 242 373 void setParticipantType(ParticipantType co 243 void setParticipantType(ParticipantType const p) { 374 theParticipantType = p; 244 theParticipantType = p; 375 } 245 } 376 246 377 G4bool isParticipant() const { 247 G4bool isParticipant() const { 378 return (theParticipantType==Participant) 248 return (theParticipantType==Participant); 379 } 249 } 380 250 381 G4bool isTargetSpectator() const { 251 G4bool isTargetSpectator() const { 382 return (theParticipantType==TargetSpecta 252 return (theParticipantType==TargetSpectator); 383 } 253 } 384 254 385 G4bool isProjectileSpectator() const { 255 G4bool isProjectileSpectator() const { 386 return (theParticipantType==ProjectileSp 256 return (theParticipantType==ProjectileSpectator); 387 } 257 } 388 258 389 virtual void makeParticipant() { 259 virtual void makeParticipant() { 390 theParticipantType = Participant; 260 theParticipantType = Participant; 391 } 261 } 392 262 393 virtual void makeTargetSpectator() { 263 virtual void makeTargetSpectator() { 394 theParticipantType = TargetSpectator; 264 theParticipantType = TargetSpectator; 395 } 265 } 396 266 397 virtual void makeProjectileSpectator() { 267 virtual void makeProjectileSpectator() { 398 theParticipantType = ProjectileSpectator 268 theParticipantType = ProjectileSpectator; 399 } 269 } 400 270 401 /** \brief Is this a pion? */ 271 /** \brief Is this a pion? */ 402 G4bool isPion() const { return (theType == 272 G4bool isPion() const { return (theType == PiPlus || theType == PiZero || theType == PiMinus); } 403 273 404 /** \brief Is this an eta? */ << 274 /** \brief Is this a eta? */ 405 G4bool isEta() const { return (theType == 275 G4bool isEta() const { return (theType == Eta); } 406 276 407 /** \brief Is this an omega? */ << 277 /** \brief Is this a omega? */ 408 G4bool isOmega() const { return (theType = 278 G4bool isOmega() const { return (theType == Omega); } 409 279 410 /** \brief Is this an etaprime? */ << 280 /** \brief Is this a etaprime? */ 411 G4bool isEtaPrime() const { return (theTyp 281 G4bool isEtaPrime() const { return (theType == EtaPrime); } 412 282 413 /** \brief Is this a photon? */ << 414 G4bool isPhoton() const { return (theType << 415 << 416 /** \brief Is it a resonance? */ 283 /** \brief Is it a resonance? */ 417 inline G4bool isResonance() const { return 284 inline G4bool isResonance() const { return isDelta(); } 418 285 419 /** \brief Is it a Delta? */ 286 /** \brief Is it a Delta? */ 420 inline G4bool isDelta() const { 287 inline G4bool isDelta() const { 421 return (theType==DeltaPlusPlus || theTyp 288 return (theType==DeltaPlusPlus || theType==DeltaPlus || 422 theType==DeltaZero || theType==Delta << 289 theType==DeltaZero || theType==DeltaMinus); 423 << 290 } 424 /** \brief Is this a Sigma? */ << 425 G4bool isSigma() const { return (theType = << 426 << 427 /** \brief Is this a Kaon? */ << 428 G4bool isKaon() const { return (theType == << 429 << 430 /** \brief Is this an antiKaon? */ << 431 G4bool isAntiKaon() const { return (theTyp << 432 << 433 /** \brief Is this a Lambda? */ << 434 G4bool isLambda() const { return (theType << 435 << 436 /** \brief Is this a Nucleon or a Lambda? << 437 G4bool isNucleonorLambda() const { return << 438 << 439 /** \brief Is this an Hyperon? */ << 440 G4bool isHyperon() const { return (isLambd << 441 << 442 /** \brief Is this a Meson? */ << 443 G4bool isMeson() const { return (isPion() << 444 << 445 /** \brief Is this a Baryon? */ << 446 G4bool isBaryon() const { return (isNucleo << 447 << 448 /** \brief Is this a Strange? */ << 449 G4bool isStrange() const { return (isKaon( << 450 << 451 /** \brief Is this a Xi? */ << 452 G4bool isXi() const { return (theType == X << 453 << 454 /** \brief Is this an antinucleon? */ << 455 G4bool isAntiNucleon() const { return (the << 456 << 457 /** \brief Is this an antiSigma? */ << 458 G4bool isAntiSigma() const { return (theTy << 459 << 460 /** \brief Is this an antiXi? */ << 461 G4bool isAntiXi() const { return (theType << 462 << 463 /** \brief Is this an antiLambda? */ << 464 G4bool isAntiLambda() const { return (theT << 465 << 466 /** \brief Is this an antiHyperon? */ << 467 G4bool isAntiHyperon() const { return (isA << 468 << 469 /** \brief Is this an antiBaryon? */ << 470 G4bool isAntiBaryon() const { return (isAn << 471 << 472 /** \brief Is this an antiNucleon or an an << 473 G4bool isAntiNucleonorAntiLambda() const { << 474 291 475 /** \brief Returns the baryon number. */ 292 /** \brief Returns the baryon number. */ 476 G4int getA() const { return theA; } 293 G4int getA() const { return theA; } 477 294 478 /** \brief Returns the charge number. */ 295 /** \brief Returns the charge number. */ 479 G4int getZ() const { return theZ; } 296 G4int getZ() const { return theZ; } 480 << 481 /** \brief Returns the strangeness number. << 482 G4int getS() const { return theS; } << 483 297 484 G4double getBeta() const { 298 G4double getBeta() const { 485 const G4double P = theMomentum.mag(); 299 const G4double P = theMomentum.mag(); 486 return P/theEnergy; 300 return P/theEnergy; 487 } 301 } 488 302 489 /** 303 /** 490 * Returns a three vector we can give to t 304 * Returns a three vector we can give to the boost() -method. 491 * 305 * 492 * In order to go to the particle rest fra 306 * In order to go to the particle rest frame you need to multiply 493 * the boost vector by -1.0. 307 * the boost vector by -1.0. 494 */ 308 */ 495 ThreeVector boostVector() const { 309 ThreeVector boostVector() const { 496 return theMomentum / theEnergy; 310 return theMomentum / theEnergy; 497 } 311 } 498 312 499 /** 313 /** 500 * Boost the particle using a boost vector 314 * Boost the particle using a boost vector. 501 * 315 * 502 * Example (go to the particle rest frame) 316 * Example (go to the particle rest frame): 503 * particle->boost(particle->boostVector() 317 * particle->boost(particle->boostVector()); 504 */ 318 */ 505 void boost(const ThreeVector &aBoostVector 319 void boost(const ThreeVector &aBoostVector) { 506 const G4double beta2 = aBoostVector.mag2 320 const G4double beta2 = aBoostVector.mag2(); 507 const G4double gamma = 1.0 / std::sqrt(1 321 const G4double gamma = 1.0 / std::sqrt(1.0 - beta2); 508 const G4double bp = theMomentum.dot(aBoo 322 const G4double bp = theMomentum.dot(aBoostVector); 509 const G4double alpha = (gamma*gamma)/(1. 323 const G4double alpha = (gamma*gamma)/(1.0 + gamma); 510 324 511 theMomentum = theMomentum + aBoostVector 325 theMomentum = theMomentum + aBoostVector * (alpha * bp - gamma * theEnergy); 512 theEnergy = gamma * (theEnergy - bp); 326 theEnergy = gamma * (theEnergy - bp); 513 } 327 } 514 328 515 /** \brief Lorentz-contract the particle p 329 /** \brief Lorentz-contract the particle position around some center 516 * 330 * 517 * Apply Lorentz contraction to the positi 331 * Apply Lorentz contraction to the position component along the 518 * direction of the boost vector. 332 * direction of the boost vector. 519 * 333 * 520 * \param aBoostVector the boost vector (v 334 * \param aBoostVector the boost vector (velocity) [c] 521 * \param refPos the reference position 335 * \param refPos the reference position 522 */ 336 */ 523 void lorentzContract(const ThreeVector &aB 337 void lorentzContract(const ThreeVector &aBoostVector, const ThreeVector &refPos) { 524 const G4double beta2 = aBoostVector.mag2 338 const G4double beta2 = aBoostVector.mag2(); 525 const G4double gamma = 1.0 / std::sqrt(1 339 const G4double gamma = 1.0 / std::sqrt(1.0 - beta2); 526 const ThreeVector theRelativePosition = 340 const ThreeVector theRelativePosition = thePosition - refPos; 527 const ThreeVector transversePosition = t 341 const ThreeVector transversePosition = theRelativePosition - aBoostVector * (theRelativePosition.dot(aBoostVector) / aBoostVector.mag2()); 528 const ThreeVector longitudinalPosition = 342 const ThreeVector longitudinalPosition = theRelativePosition - transversePosition; 529 343 530 thePosition = refPos + transversePositio 344 thePosition = refPos + transversePosition + longitudinalPosition / gamma; 531 } 345 } 532 346 533 /** \brief Get the cached particle mass. * 347 /** \brief Get the cached particle mass. */ 534 inline G4double getMass() const { return t 348 inline G4double getMass() const { return theMass; } 535 349 536 /** \brief Get the INCL particle mass. */ 350 /** \brief Get the INCL particle mass. */ 537 inline G4double getINCLMass() const { 351 inline G4double getINCLMass() const { 538 switch(theType) { 352 switch(theType) { 539 case Proton: 353 case Proton: 540 case Neutron: 354 case Neutron: 541 case PiPlus: 355 case PiPlus: 542 case PiMinus: 356 case PiMinus: 543 case PiZero: 357 case PiZero: 544 case Lambda: << 545 case SigmaPlus: << 546 case SigmaZero: << 547 case SigmaMinus: << 548 case antiProton: << 549 case XiZero: << 550 case XiMinus: << 551 case antiNeutron: << 552 case antiLambda: << 553 case antiSigmaPlus: << 554 case antiSigmaZero: << 555 case antiSigmaMinus: << 556 case antiXiZero: << 557 case antiXiMinus: << 558 case KPlus: << 559 case KZero: << 560 case KZeroBar: << 561 case KShort: << 562 case KLong: << 563 case KMinus: << 564 case Eta: 358 case Eta: 565 case Omega: 359 case Omega: 566 case EtaPrime: 360 case EtaPrime: 567 case Photon: << 361 case Photon: 568 return ParticleTable::getINCLMass(th 362 return ParticleTable::getINCLMass(theType); 569 break; 363 break; 570 364 571 case DeltaPlusPlus: 365 case DeltaPlusPlus: 572 case DeltaPlus: 366 case DeltaPlus: 573 case DeltaZero: 367 case DeltaZero: 574 case DeltaMinus: 368 case DeltaMinus: 575 return theMass; 369 return theMass; 576 break; 370 break; 577 371 578 case Composite: 372 case Composite: 579 return ParticleTable::getINCLMass(th << 373 return ParticleTable::getINCLMass(theA,theZ); 580 break; 374 break; 581 375 582 default: 376 default: 583 INCL_ERROR("Particle::getINCLMass: U 377 INCL_ERROR("Particle::getINCLMass: Unknown particle type." << '\n'); 584 return 0.0; 378 return 0.0; 585 break; 379 break; 586 } 380 } 587 } 381 } 588 382 589 /** \brief Get the tabulated particle mass 383 /** \brief Get the tabulated particle mass. */ 590 inline virtual G4double getTableMass() con 384 inline virtual G4double getTableMass() const { 591 switch(theType) { 385 switch(theType) { 592 case Proton: 386 case Proton: 593 case Neutron: 387 case Neutron: 594 case PiPlus: 388 case PiPlus: 595 case PiMinus: 389 case PiMinus: 596 case PiZero: 390 case PiZero: 597 case Lambda: << 598 case SigmaPlus: << 599 case SigmaZero: << 600 case SigmaMinus: << 601 case antiProton: << 602 case XiZero: << 603 case XiMinus: << 604 case antiNeutron: << 605 case antiLambda: << 606 case antiSigmaPlus: << 607 case antiSigmaZero: << 608 case antiSigmaMinus: << 609 case antiXiZero: << 610 case antiXiMinus: << 611 case KPlus: << 612 case KZero: << 613 case KZeroBar: << 614 case KShort: << 615 case KLong: << 616 case KMinus: << 617 case Eta: 391 case Eta: 618 case Omega: 392 case Omega: 619 case EtaPrime: 393 case EtaPrime: 620 case Photon: << 394 case Photon: 621 return ParticleTable::getTablePartic 395 return ParticleTable::getTableParticleMass(theType); 622 break; 396 break; 623 397 624 case DeltaPlusPlus: 398 case DeltaPlusPlus: 625 case DeltaPlus: 399 case DeltaPlus: 626 case DeltaZero: 400 case DeltaZero: 627 case DeltaMinus: 401 case DeltaMinus: 628 return theMass; 402 return theMass; 629 break; 403 break; 630 404 631 case Composite: 405 case Composite: 632 return ParticleTable::getTableMass(t << 406 return ParticleTable::getTableMass(theA,theZ); 633 break; 407 break; 634 408 635 default: 409 default: 636 INCL_ERROR("Particle::getTableMass: 410 INCL_ERROR("Particle::getTableMass: Unknown particle type." << '\n'); 637 return 0.0; 411 return 0.0; 638 break; 412 break; 639 } 413 } 640 } 414 } 641 415 642 /** \brief Get the real particle mass. */ 416 /** \brief Get the real particle mass. */ 643 inline G4double getRealMass() const { 417 inline G4double getRealMass() const { 644 switch(theType) { 418 switch(theType) { 645 case Proton: 419 case Proton: 646 case Neutron: 420 case Neutron: 647 case PiPlus: 421 case PiPlus: 648 case PiMinus: 422 case PiMinus: 649 case PiZero: 423 case PiZero: 650 case Lambda: << 651 case SigmaPlus: << 652 case SigmaZero: << 653 case SigmaMinus: << 654 case antiProton: << 655 case XiZero: << 656 case XiMinus: << 657 case antiNeutron: << 658 case antiLambda: << 659 case antiSigmaPlus: << 660 case antiSigmaZero: << 661 case antiSigmaMinus: << 662 case antiXiZero: << 663 case antiXiMinus: << 664 case KPlus: << 665 case KZero: << 666 case KZeroBar: << 667 case KShort: << 668 case KLong: << 669 case KMinus: << 670 case Eta: 424 case Eta: 671 case Omega: 425 case Omega: 672 case EtaPrime: 426 case EtaPrime: 673 case Photon: << 427 case Photon: 674 return ParticleTable::getRealMass(th 428 return ParticleTable::getRealMass(theType); 675 break; 429 break; 676 430 677 case DeltaPlusPlus: 431 case DeltaPlusPlus: 678 case DeltaPlus: 432 case DeltaPlus: 679 case DeltaZero: 433 case DeltaZero: 680 case DeltaMinus: 434 case DeltaMinus: 681 return theMass; 435 return theMass; 682 break; 436 break; 683 437 684 case Composite: 438 case Composite: 685 return ParticleTable::getRealMass(th << 439 return ParticleTable::getRealMass(theA,theZ); 686 break; 440 break; 687 441 688 default: 442 default: 689 INCL_ERROR("Particle::getRealMass: U 443 INCL_ERROR("Particle::getRealMass: Unknown particle type." << '\n'); 690 return 0.0; 444 return 0.0; 691 break; 445 break; 692 } 446 } 693 } 447 } 694 448 695 /// \brief Set the mass of the Particle to 449 /// \brief Set the mass of the Particle to its real mass 696 void setRealMass() { setMass(getRealMass() 450 void setRealMass() { setMass(getRealMass()); } 697 451 698 /// \brief Set the mass of the Particle to 452 /// \brief Set the mass of the Particle to its table mass 699 void setTableMass() { setMass(getTableMass 453 void setTableMass() { setMass(getTableMass()); } 700 454 701 /// \brief Set the mass of the Particle to 455 /// \brief Set the mass of the Particle to its table mass 702 void setINCLMass() { setMass(getINCLMass() 456 void setINCLMass() { setMass(getINCLMass()); } 703 457 704 /**\brief Computes correction on the emiss 458 /**\brief Computes correction on the emission Q-value 705 * 459 * 706 * Computes the correction that must be ap 460 * Computes the correction that must be applied to INCL particles in 707 * order to obtain the correct Q-value for 461 * order to obtain the correct Q-value for particle emission from a given 708 * nucleus. For absorption, the correction 462 * nucleus. For absorption, the correction is obviously equal to minus 709 * the value returned by this function. 463 * the value returned by this function. 710 * 464 * 711 * \param AParent the mass number of the e 465 * \param AParent the mass number of the emitting nucleus 712 * \param ZParent the charge number of the 466 * \param ZParent the charge number of the emitting nucleus 713 * \return the correction 467 * \return the correction 714 */ 468 */ 715 G4double getEmissionQValueCorrection(const 469 G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const { 716 const G4int SParent = 0; << 717 const G4int ADaughter = AParent - theA; 470 const G4int ADaughter = AParent - theA; 718 const G4int ZDaughter = ZParent - theZ; 471 const G4int ZDaughter = ZParent - theZ; 719 const G4int SDaughter = 0; << 720 472 721 // Note the minus sign here 473 // Note the minus sign here 722 G4double theQValue; 474 G4double theQValue; 723 if(isCluster()) 475 if(isCluster()) 724 theQValue = -ParticleTable::getTableQV << 476 theQValue = -ParticleTable::getTableQValue(theA, theZ, ADaughter, ZDaughter); 725 else { 477 else { 726 const G4double massTableParent = Parti << 478 const G4double massTableParent = ParticleTable::getTableMass(AParent,ZParent); 727 const G4double massTableDaughter = Par << 479 const G4double massTableDaughter = ParticleTable::getTableMass(ADaughter,ZDaughter); 728 const G4double massTableParticle = get 480 const G4double massTableParticle = getTableMass(); 729 theQValue = massTableParent - massTabl 481 theQValue = massTableParent - massTableDaughter - massTableParticle; 730 } 482 } 731 483 732 const G4double massINCLParent = Particle << 484 const G4double massINCLParent = ParticleTable::getINCLMass(AParent,ZParent); 733 const G4double massINCLDaughter = Partic << 485 const G4double massINCLDaughter = ParticleTable::getINCLMass(ADaughter,ZDaughter); 734 const G4double massINCLParticle = getINC 486 const G4double massINCLParticle = getINCLMass(); 735 487 736 // The rhs corresponds to the INCL Q-val 488 // The rhs corresponds to the INCL Q-value 737 return theQValue - (massINCLParent-massI 489 return theQValue - (massINCLParent-massINCLDaughter-massINCLParticle); 738 } 490 } 739 491 740 G4double getEmissionPbarQvalueCorrection(c << 741 G4int SParent = 0; << 742 G4int SDaughter = 0; << 743 G4int ADaughter = AParent - 1; << 744 G4int ZDaughter; << 745 G4bool isProton = Victim; << 746 if(isProton){ //proton is annihilate << 747 ZDaughter = ZParent - 1; << 748 } << 749 else { //neutron is annihilated << 750 ZDaughter = ZParent; << 751 } << 752 << 753 G4double theQValue; //same procedure as << 754 << 755 const G4double massTableParent = Particl << 756 const G4double massTableDaughter = Parti << 757 const G4double massTableParticle = getTa << 758 theQValue = massTableParent - massTableD << 759 << 760 const G4double massINCLParent = Particle << 761 const G4double massINCLDaughter = Partic << 762 const G4double massINCLParticle = getINC << 763 << 764 return theQValue - (massINCLParent-massI << 765 } << 766 << 767 /**\brief Computes correction on the trans 492 /**\brief Computes correction on the transfer Q-value 768 * 493 * 769 * Computes the correction that must be ap 494 * Computes the correction that must be applied to INCL particles in 770 * order to obtain the correct Q-value for 495 * order to obtain the correct Q-value for particle transfer from a given 771 * nucleus to another. 496 * nucleus to another. 772 * 497 * 773 * Assumes that the receving nucleus is IN 498 * Assumes that the receving nucleus is INCL's target nucleus, with the 774 * INCL separation energy. 499 * INCL separation energy. 775 * 500 * 776 * \param AFrom the mass number of the don 501 * \param AFrom the mass number of the donating nucleus 777 * \param ZFrom the charge number of the d 502 * \param ZFrom the charge number of the donating nucleus 778 * \param ATo the mass number of the recei 503 * \param ATo the mass number of the receiving nucleus 779 * \param ZTo the charge number of the rec 504 * \param ZTo the charge number of the receiving nucleus 780 * \return the correction 505 * \return the correction 781 */ 506 */ 782 G4double getTransferQValueCorrection(const 507 G4double getTransferQValueCorrection(const G4int AFrom, const G4int ZFrom, const G4int ATo, const G4int ZTo) const { 783 const G4int SFrom = 0; << 784 const G4int STo = 0; << 785 const G4int AFromDaughter = AFrom - theA 508 const G4int AFromDaughter = AFrom - theA; 786 const G4int ZFromDaughter = ZFrom - theZ 509 const G4int ZFromDaughter = ZFrom - theZ; 787 const G4int SFromDaughter = 0; << 788 const G4int AToDaughter = ATo + theA; 510 const G4int AToDaughter = ATo + theA; 789 const G4int ZToDaughter = ZTo + theZ; 511 const G4int ZToDaughter = ZTo + theZ; 790 const G4int SToDaughter = 0; << 512 const G4double theQValue = ParticleTable::getTableQValue(AToDaughter,ZToDaughter,AFromDaughter,ZFromDaughter,AFrom,ZFrom); 791 const G4double theQValue = ParticleTable << 792 513 793 const G4double massINCLTo = ParticleTabl << 514 const G4double massINCLTo = ParticleTable::getINCLMass(ATo,ZTo); 794 const G4double massINCLToDaughter = Part << 515 const G4double massINCLToDaughter = ParticleTable::getINCLMass(AToDaughter,ZToDaughter); 795 /* Note that here we have to use the tab 516 /* Note that here we have to use the table mass in the INCL Q-value. We 796 * cannot use theMass, because at this s 517 * cannot use theMass, because at this stage the particle is probably 797 * still off-shell; and we cannot use ge 518 * still off-shell; and we cannot use getINCLMass(), because it leads to 798 * violations of global energy conservat 519 * violations of global energy conservation. 799 */ 520 */ 800 const G4double massINCLParticle = getTab 521 const G4double massINCLParticle = getTableMass(); 801 522 802 // The rhs corresponds to the INCL Q-val 523 // The rhs corresponds to the INCL Q-value for particle absorption 803 return theQValue - (massINCLToDaughter-m 524 return theQValue - (massINCLToDaughter-massINCLTo-massINCLParticle); 804 } 525 } 805 526 806 /**\brief Computes correction on the emiss << 807 * << 808 * Computes the correction that must be ap << 809 * order to obtain the correct Q-value for << 810 * nucleus. For absorption, the correction << 811 * the value returned by this function. << 812 * << 813 * \param AParent the mass number of the e << 814 * \param ZParent the charge number of the << 815 * \param SParent the strangess number of << 816 * \return the correction << 817 */ << 818 G4double getEmissionQValueCorrection(const << 819 const G4int ADaughter = AParent - theA; << 820 const G4int ZDaughter = ZParent - theZ; << 821 const G4int SDaughter = SParent - theS; << 822 << 823 // Note the minus sign here << 824 G4double theQValue; << 825 if(isCluster()) << 826 theQValue = -ParticleTable::getTableQV << 827 else { << 828 const G4double massTableParent = Parti << 829 const G4double massTableDaughter = Par << 830 const G4double massTableParticle = get << 831 theQValue = massTableParent - massTabl << 832 } << 833 << 834 const G4double massINCLParent = Particle << 835 const G4double massINCLDaughter = Partic << 836 const G4double massINCLParticle = getINC << 837 << 838 // The rhs corresponds to the INCL Q-val << 839 return theQValue - (massINCLParent-massI << 840 } << 841 << 842 /**\brief Computes correction on the trans << 843 * << 844 * Computes the correction that must be ap << 845 * order to obtain the correct Q-value for << 846 * nucleus to another. << 847 * << 848 * Assumes that the receving nucleus is IN << 849 * INCL separation energy. << 850 * << 851 * \param AFrom the mass number of the don << 852 * \param ZFrom the charge number of the d << 853 * \param SFrom the strangess number of th << 854 * \param ATo the mass number of the recei << 855 * \param ZTo the charge number of the rec << 856 * \param STo the strangess number of the << 857 * \return the correction << 858 */ << 859 G4double getTransferQValueCorrection(const << 860 const G4int AFromDaughter = AFrom - theA << 861 const G4int ZFromDaughter = ZFrom - theZ << 862 const G4int SFromDaughter = SFrom - theS << 863 const G4int AToDaughter = ATo + theA; << 864 const G4int ZToDaughter = ZTo + theZ; << 865 const G4int SToDaughter = STo + theS; << 866 const G4double theQValue = ParticleTable << 867 << 868 const G4double massINCLTo = ParticleTabl << 869 const G4double massINCLToDaughter = Part << 870 /* Note that here we have to use the tab << 871 * cannot use theMass, because at this s << 872 * still off-shell; and we cannot use ge << 873 * violations of global energy conservat << 874 */ << 875 const G4double massINCLParticle = getTab << 876 << 877 // The rhs corresponds to the INCL Q-val << 878 return theQValue - (massINCLToDaughter-m << 879 } << 880 << 881 << 882 << 883 /** \brief Get the the particle invariant 527 /** \brief Get the the particle invariant mass. 884 * 528 * 885 * Uses the relativistic invariant 529 * Uses the relativistic invariant 886 * \f[ m = \sqrt{E^2 - {\vec p}^2}\f] 530 * \f[ m = \sqrt{E^2 - {\vec p}^2}\f] 887 **/ 531 **/ 888 G4double getInvariantMass() const { 532 G4double getInvariantMass() const { 889 const G4double mass = std::pow(theEnergy 533 const G4double mass = std::pow(theEnergy, 2) - theMomentum.dot(theMomentum); 890 if(mass < 0.0) { 534 if(mass < 0.0) { 891 INCL_ERROR("E*E - p*p is negative." << 535 INCL_ERROR("E*E - p*p is negative." << '\n'); 892 return 0.0; 536 return 0.0; 893 } else { 537 } else { 894 return std::sqrt(mass); 538 return std::sqrt(mass); 895 } 539 } 896 }; 540 }; 897 541 898 /// \brief Get the particle kinetic energy 542 /// \brief Get the particle kinetic energy. 899 inline G4double getKineticEnergy() const { 543 inline G4double getKineticEnergy() const { return theEnergy - theMass; } 900 544 901 /// \brief Get the particle potential ener 545 /// \brief Get the particle potential energy. 902 inline G4double getPotentialEnergy() const 546 inline G4double getPotentialEnergy() const { return thePotentialEnergy; } 903 547 904 /// \brief Set the particle potential ener 548 /// \brief Set the particle potential energy. 905 inline void setPotentialEnergy(G4double v) 549 inline void setPotentialEnergy(G4double v) { thePotentialEnergy = v; } 906 550 907 /** 551 /** 908 * Get the energy of the particle in MeV. 552 * Get the energy of the particle in MeV. 909 */ 553 */ 910 G4double getEnergy() const 554 G4double getEnergy() const 911 { 555 { 912 return theEnergy; 556 return theEnergy; 913 }; 557 }; 914 558 915 /** 559 /** 916 * Set the mass of the particle in MeV/c^2 560 * Set the mass of the particle in MeV/c^2. 917 */ 561 */ 918 void setMass(G4double mass) 562 void setMass(G4double mass) 919 { 563 { 920 this->theMass = mass; 564 this->theMass = mass; 921 } 565 } 922 566 923 /** 567 /** 924 * Set the energy of the particle in MeV. 568 * Set the energy of the particle in MeV. 925 */ 569 */ 926 void setEnergy(G4double energy) 570 void setEnergy(G4double energy) 927 { 571 { 928 this->theEnergy = energy; 572 this->theEnergy = energy; 929 }; 573 }; 930 574 931 /** 575 /** 932 * Get the momentum vector. 576 * Get the momentum vector. 933 */ 577 */ 934 const G4INCL::ThreeVector &getMomentum() c 578 const G4INCL::ThreeVector &getMomentum() const 935 { 579 { 936 return theMomentum; 580 return theMomentum; 937 }; 581 }; 938 582 939 /** Get the angular momentum w.r.t. the or 583 /** Get the angular momentum w.r.t. the origin */ 940 virtual G4INCL::ThreeVector getAngularMome 584 virtual G4INCL::ThreeVector getAngularMomentum() const 941 { 585 { 942 return thePosition.vector(theMomentum); 586 return thePosition.vector(theMomentum); 943 }; 587 }; 944 588 945 /** 589 /** 946 * Set the momentum vector. 590 * Set the momentum vector. 947 */ 591 */ 948 virtual void setMomentum(const G4INCL::Thr 592 virtual void setMomentum(const G4INCL::ThreeVector &momentum) 949 { 593 { 950 this->theMomentum = momentum; 594 this->theMomentum = momentum; 951 }; 595 }; 952 596 953 /** 597 /** 954 * Set the position vector. 598 * Set the position vector. 955 */ 599 */ 956 const G4INCL::ThreeVector &getPosition() c 600 const G4INCL::ThreeVector &getPosition() const 957 { 601 { 958 return thePosition; 602 return thePosition; 959 }; 603 }; 960 604 961 virtual void setPosition(const G4INCL::Thr 605 virtual void setPosition(const G4INCL::ThreeVector &position) 962 { 606 { 963 this->thePosition = position; 607 this->thePosition = position; 964 }; 608 }; 965 609 966 G4double getHelicity() { return theHelicit 610 G4double getHelicity() { return theHelicity; }; 967 void setHelicity(G4double h) { theHelicity 611 void setHelicity(G4double h) { theHelicity = h; }; 968 612 969 void propagate(G4double step) { 613 void propagate(G4double step) { 970 thePosition += ((*thePropagationMomentum 614 thePosition += ((*thePropagationMomentum)*(step/(*thePropagationEnergy))); 971 }; 615 }; 972 616 973 /** \brief Return the number of collisions 617 /** \brief Return the number of collisions undergone by the particle. **/ 974 G4int getNumberOfCollisions() const { retu 618 G4int getNumberOfCollisions() const { return nCollisions; } 975 619 976 /** \brief Set the number of collisions un 620 /** \brief Set the number of collisions undergone by the particle. **/ 977 void setNumberOfCollisions(G4int n) { nCol 621 void setNumberOfCollisions(G4int n) { nCollisions = n; } 978 622 979 /** \brief Increment the number of collisi 623 /** \brief Increment the number of collisions undergone by the particle. **/ 980 void incrementNumberOfCollisions() { nColl 624 void incrementNumberOfCollisions() { nCollisions++; } 981 625 982 /** \brief Return the number of decays und 626 /** \brief Return the number of decays undergone by the particle. **/ 983 G4int getNumberOfDecays() const { return n 627 G4int getNumberOfDecays() const { return nDecays; } 984 628 985 /** \brief Set the number of decays underg 629 /** \brief Set the number of decays undergone by the particle. **/ 986 void setNumberOfDecays(G4int n) { nDecays 630 void setNumberOfDecays(G4int n) { nDecays = n; } 987 631 988 /** \brief Increment the number of decays 632 /** \brief Increment the number of decays undergone by the particle. **/ 989 void incrementNumberOfDecays() { nDecays++ 633 void incrementNumberOfDecays() { nDecays++; } 990 634 991 /** \brief Mark the particle as out of its 635 /** \brief Mark the particle as out of its potential well 992 * 636 * 993 * This flag is used to control pions crea 637 * This flag is used to control pions created outside their potential well 994 * in delta decay. The pion potential chec 638 * in delta decay. The pion potential checks it and returns zero if it is 995 * true (necessary in order to correctly e 639 * true (necessary in order to correctly enforce energy conservation). The 996 * Nucleus::applyFinalState() method uses 640 * Nucleus::applyFinalState() method uses it to determine whether new 997 * avatars should be generated for the par 641 * avatars should be generated for the particle. 998 */ 642 */ 999 void setOutOfWell() { outOfWell = true; } 643 void setOutOfWell() { outOfWell = true; } 1000 644 1001 /// \brief Check if the particle is out o 645 /// \brief Check if the particle is out of its potential well 1002 G4bool isOutOfWell() const { return outOf 646 G4bool isOutOfWell() const { return outOfWell; } 1003 647 1004 void setEmissionTime(G4double t) { emissi 648 void setEmissionTime(G4double t) { emissionTime = t; } 1005 G4double getEmissionTime() { return emiss 649 G4double getEmissionTime() { return emissionTime; }; 1006 650 1007 /** \brief Transverse component of the po 651 /** \brief Transverse component of the position w.r.t. the momentum. */ 1008 ThreeVector getTransversePosition() const 652 ThreeVector getTransversePosition() const { 1009 return thePosition - getLongitudinalPos 653 return thePosition - getLongitudinalPosition(); 1010 } 654 } 1011 655 1012 /** \brief Longitudinal component of the 656 /** \brief Longitudinal component of the position w.r.t. the momentum. */ 1013 ThreeVector getLongitudinalPosition() con 657 ThreeVector getLongitudinalPosition() const { 1014 return *thePropagationMomentum * (thePo 658 return *thePropagationMomentum * (thePosition.dot(*thePropagationMomentum)/thePropagationMomentum->mag2()); 1015 } 659 } 1016 660 1017 /** \brief Rescale the momentum to match 661 /** \brief Rescale the momentum to match the total energy. */ 1018 const ThreeVector &adjustMomentumFromEner 662 const ThreeVector &adjustMomentumFromEnergy(); 1019 663 1020 /** \brief Recompute the energy to match 664 /** \brief Recompute the energy to match the momentum. */ 1021 G4double adjustEnergyFromMomentum(); 665 G4double adjustEnergyFromMomentum(); 1022 666 1023 G4bool isCluster() const { 667 G4bool isCluster() const { 1024 return (theType == Composite); 668 return (theType == Composite); 1025 } 669 } 1026 670 1027 /// \brief Set the frozen particle moment 671 /// \brief Set the frozen particle momentum 1028 void setFrozenMomentum(const ThreeVector 672 void setFrozenMomentum(const ThreeVector &momentum) { theFrozenMomentum = momentum; } 1029 673 1030 /// \brief Set the frozen particle moment 674 /// \brief Set the frozen particle momentum 1031 void setFrozenEnergy(const G4double energ 675 void setFrozenEnergy(const G4double energy) { theFrozenEnergy = energy; } 1032 676 1033 /// \brief Get the frozen particle moment 677 /// \brief Get the frozen particle momentum 1034 ThreeVector getFrozenMomentum() const { r 678 ThreeVector getFrozenMomentum() const { return theFrozenMomentum; } 1035 679 1036 /// \brief Get the frozen particle moment 680 /// \brief Get the frozen particle momentum 1037 G4double getFrozenEnergy() const { return 681 G4double getFrozenEnergy() const { return theFrozenEnergy; } 1038 682 1039 /// \brief Get the propagation velocity o 683 /// \brief Get the propagation velocity of the particle 1040 ThreeVector getPropagationVelocity() cons 684 ThreeVector getPropagationVelocity() const { return (*thePropagationMomentum)/(*thePropagationEnergy); } 1041 685 1042 /** \brief Freeze particle propagation 686 /** \brief Freeze particle propagation 1043 * 687 * 1044 * Make the particle use theFrozenMomentu 688 * Make the particle use theFrozenMomentum and theFrozenEnergy for 1045 * propagation. The normal state can be r 689 * propagation. The normal state can be restored by calling the 1046 * thawPropagation() method. 690 * thawPropagation() method. 1047 */ 691 */ 1048 void freezePropagation() { 692 void freezePropagation() { 1049 thePropagationMomentum = &theFrozenMome 693 thePropagationMomentum = &theFrozenMomentum; 1050 thePropagationEnergy = &theFrozenEnergy 694 thePropagationEnergy = &theFrozenEnergy; 1051 } 695 } 1052 696 1053 /** \brief Unfreeze particle propagation 697 /** \brief Unfreeze particle propagation 1054 * 698 * 1055 * Make the particle use theMomentum and 699 * Make the particle use theMomentum and theEnergy for propagation. Call 1056 * this method to restore the normal prop 700 * this method to restore the normal propagation if the 1057 * freezePropagation() method has been ca 701 * freezePropagation() method has been called. 1058 */ 702 */ 1059 void thawPropagation() { 703 void thawPropagation() { 1060 thePropagationMomentum = &theMomentum; 704 thePropagationMomentum = &theMomentum; 1061 thePropagationEnergy = &theEnergy; 705 thePropagationEnergy = &theEnergy; 1062 } 706 } 1063 707 1064 /** \brief Rotate the particle position a 708 /** \brief Rotate the particle position and momentum 1065 * 709 * 1066 * \param angle the rotation angle 710 * \param angle the rotation angle 1067 * \param axis a unit vector representing 711 * \param axis a unit vector representing the rotation axis 1068 */ 712 */ 1069 virtual void rotatePositionAndMomentum(co 713 virtual void rotatePositionAndMomentum(const G4double angle, const ThreeVector &axis) { 1070 rotatePosition(angle, axis); 714 rotatePosition(angle, axis); 1071 rotateMomentum(angle, axis); 715 rotateMomentum(angle, axis); 1072 } 716 } 1073 717 1074 /** \brief Rotate the particle position 718 /** \brief Rotate the particle position 1075 * 719 * 1076 * \param angle the rotation angle 720 * \param angle the rotation angle 1077 * \param axis a unit vector representing 721 * \param axis a unit vector representing the rotation axis 1078 */ 722 */ 1079 virtual void rotatePosition(const G4doubl 723 virtual void rotatePosition(const G4double angle, const ThreeVector &axis) { 1080 thePosition.rotate(angle, axis); 724 thePosition.rotate(angle, axis); 1081 } 725 } 1082 726 1083 /** \brief Rotate the particle momentum 727 /** \brief Rotate the particle momentum 1084 * 728 * 1085 * \param angle the rotation angle 729 * \param angle the rotation angle 1086 * \param axis a unit vector representing 730 * \param axis a unit vector representing the rotation axis 1087 */ 731 */ 1088 virtual void rotateMomentum(const G4doubl 732 virtual void rotateMomentum(const G4double angle, const ThreeVector &axis) { 1089 theMomentum.rotate(angle, axis); 733 theMomentum.rotate(angle, axis); 1090 theFrozenMomentum.rotate(angle, axis); 734 theFrozenMomentum.rotate(angle, axis); 1091 } 735 } 1092 736 1093 std::string print() const { 737 std::string print() const { 1094 std::stringstream ss; 738 std::stringstream ss; 1095 ss << "Particle (ID = " << ID << ") typ 739 ss << "Particle (ID = " << ID << ") type = "; 1096 ss << ParticleTable::getName(theType); 740 ss << ParticleTable::getName(theType); 1097 ss << '\n' 741 ss << '\n' 1098 << " energy = " << theEnergy << '\n 742 << " energy = " << theEnergy << '\n' 1099 << " momentum = " 743 << " momentum = " 1100 << theMomentum.print() 744 << theMomentum.print() 1101 << '\n' 745 << '\n' 1102 << " position = " 746 << " position = " 1103 << thePosition.print() 747 << thePosition.print() 1104 << '\n'; 748 << '\n'; 1105 return ss.str(); 749 return ss.str(); 1106 }; 750 }; 1107 751 1108 std::string dump() const { 752 std::string dump() const { 1109 std::stringstream ss; 753 std::stringstream ss; 1110 ss << "(particle " << ID << " "; 754 ss << "(particle " << ID << " "; 1111 ss << ParticleTable::getName(theType); 755 ss << ParticleTable::getName(theType); 1112 ss << '\n' 756 ss << '\n' 1113 << thePosition.dump() 757 << thePosition.dump() 1114 << '\n' 758 << '\n' 1115 << theMomentum.dump() 759 << theMomentum.dump() 1116 << '\n' 760 << '\n' 1117 << theEnergy << ")" << '\n'; 761 << theEnergy << ")" << '\n'; 1118 return ss.str(); 762 return ss.str(); 1119 }; 763 }; 1120 764 1121 long getID() const { return ID; }; 765 long getID() const { return ID; }; 1122 766 1123 /** 767 /** 1124 * Return a NULL pointer 768 * Return a NULL pointer 1125 */ 769 */ 1126 ParticleList const *getParticles() const 770 ParticleList const *getParticles() const { 1127 INCL_WARN("Particle::getParticles() met 771 INCL_WARN("Particle::getParticles() method was called on a Particle object" << '\n'); 1128 return 0; 772 return 0; 1129 } 773 } 1130 774 1131 /** \brief Return the reflection momentum 775 /** \brief Return the reflection momentum 1132 * 776 * 1133 * The reflection momentum is used by cal 777 * The reflection momentum is used by calls to getSurfaceRadius to compute 1134 * the radius of the sphere where the nuc 778 * the radius of the sphere where the nucleon moves. It is necessary to 1135 * introduce fuzzy r-p correlations. 779 * introduce fuzzy r-p correlations. 1136 */ 780 */ 1137 G4double getReflectionMomentum() const { 781 G4double getReflectionMomentum() const { 1138 if(rpCorrelated) 782 if(rpCorrelated) 1139 return theMomentum.mag(); 783 return theMomentum.mag(); 1140 else 784 else 1141 return uncorrelatedMomentum; 785 return uncorrelatedMomentum; 1142 } 786 } 1143 787 1144 /// \brief Set the uncorrelated momentum 788 /// \brief Set the uncorrelated momentum 1145 void setUncorrelatedMomentum(const G4doub 789 void setUncorrelatedMomentum(const G4double p) { uncorrelatedMomentum = p; } 1146 790 1147 /// \brief Make the particle follow a str 791 /// \brief Make the particle follow a strict r-p correlation 1148 void rpCorrelate() { rpCorrelated = true; 792 void rpCorrelate() { rpCorrelated = true; } 1149 793 1150 /// \brief Make the particle not follow a 794 /// \brief Make the particle not follow a strict r-p correlation 1151 void rpDecorrelate() { rpCorrelated = fal 795 void rpDecorrelate() { rpCorrelated = false; } 1152 796 1153 /// \brief Get the cosine of the angle be 797 /// \brief Get the cosine of the angle between position and momentum 1154 G4double getCosRPAngle() const { 798 G4double getCosRPAngle() const { 1155 const G4double norm = thePosition.mag2( 799 const G4double norm = thePosition.mag2()*thePropagationMomentum->mag2(); 1156 if(norm>0.) 800 if(norm>0.) 1157 return thePosition.dot(*thePropagatio 801 return thePosition.dot(*thePropagationMomentum) / std::sqrt(norm); 1158 else 802 else 1159 return 1.; 803 return 1.; 1160 } 804 } 1161 805 1162 /// \brief General bias vector function << 1163 static G4double getTotalBias(); << 1164 static void setINCLBiasVector(std::vector << 1165 static void FillINCLBiasVector(G4double n << 1166 static G4double getBiasFromVector(std::ve << 1167 << 1168 static std::vector<G4int> MergeVectorBias << 1169 static std::vector<G4int> MergeVectorBias << 1170 << 1171 /// \brief Get the particle bias. << 1172 G4double getParticleBias() const { return << 1173 << 1174 /// \brief Set the particle bias. << 1175 void setParticleBias(G4double ParticleBia << 1176 << 1177 /// \brief Get the vector list of biased << 1178 std::vector<G4int> getBiasCollisionVector << 1179 << 1180 /// \brief Set the vector list of biased << 1181 void setBiasCollisionVector(std::vector<G << 1182 this->theBiasCollisionVector = BiasCollis << 1183 this->setParticleBias(Particle::getBiasFr << 1184 } << 1185 << 1186 /** \brief Number of Kaon inside de nucle << 1187 * << 1188 * Put in the Particle class in order to << 1189 * "correct" mass of composit particle. << 1190 * << 1191 */ << 1192 << 1193 G4int getNumberOfKaon() const { return th << 1194 void setNumberOfKaon(const G4int NK) { th << 1195 << 1196 #ifdef INCLXX_IN_GEANT4_MODE << 1197 G4int getParentResonancePDGCode() const { << 1198 void setParentResonancePDGCode(const G4in << 1199 G4int getParentResonanceID() const { retu << 1200 void setParentResonanceID(const G4int par << 1201 #endif << 1202 << 1203 public: << 1204 /** \brief Time ordered vector of all bia << 1205 * << 1206 * /!\ Caution /!\ << 1207 * methods Assotiated to G4VectorCache<T> << 1208 * Push_back(…), << 1209 * operator[], << 1210 * Begin(), << 1211 * End(), << 1212 * Clear(), << 1213 * Size() and << 1214 * Pop_back() << 1215 * << 1216 */ << 1217 #ifdef INCLXX_IN_GEANT4_MODE << 1218 static std::vector<G4double> INCLBiasVe << 1219 //static G4VectorCache<G4double> INCLBi << 1220 #else << 1221 static G4ThreadLocal std::vector<G4doub << 1222 //static G4VectorCache<G4double> INCLBi << 1223 #endif << 1224 static G4ThreadLocal G4int nextBiasedColl << 1225 << 1226 protected: 806 protected: 1227 G4int theZ, theA, theS; << 807 G4int theZ, theA; 1228 ParticipantType theParticipantType; 808 ParticipantType theParticipantType; 1229 G4INCL::ParticleType theType; 809 G4INCL::ParticleType theType; 1230 G4double theEnergy; 810 G4double theEnergy; 1231 G4double *thePropagationEnergy; 811 G4double *thePropagationEnergy; 1232 G4double theFrozenEnergy; 812 G4double theFrozenEnergy; 1233 G4INCL::ThreeVector theMomentum; 813 G4INCL::ThreeVector theMomentum; 1234 G4INCL::ThreeVector *thePropagationMoment 814 G4INCL::ThreeVector *thePropagationMomentum; 1235 G4INCL::ThreeVector theFrozenMomentum; 815 G4INCL::ThreeVector theFrozenMomentum; 1236 G4INCL::ThreeVector thePosition; 816 G4INCL::ThreeVector thePosition; 1237 G4int nCollisions; 817 G4int nCollisions; 1238 G4int nDecays; 818 G4int nDecays; 1239 G4double thePotentialEnergy; 819 G4double thePotentialEnergy; 1240 long ID; 820 long ID; 1241 821 1242 G4bool rpCorrelated; 822 G4bool rpCorrelated; 1243 G4double uncorrelatedMomentum; 823 G4double uncorrelatedMomentum; 1244 << 1245 G4double theParticleBias; << 1246 /// \brief The number of Kaons inside the << 1247 G4int theNKaon; << 1248 << 1249 #ifdef INCLXX_IN_GEANT4_MODE << 1250 G4int theParentResonancePDGCode; << 1251 G4int theParentResonanceID; << 1252 #endif << 1253 824 1254 private: 825 private: 1255 G4double theHelicity; 826 G4double theHelicity; 1256 G4double emissionTime; 827 G4double emissionTime; 1257 G4bool outOfWell; 828 G4bool outOfWell; 1258 << 1259 /// \brief Time ordered vector of all bia << 1260 std::vector<G4int> theBiasCollisionVector << 1261 829 1262 G4double theMass; 830 G4double theMass; 1263 static G4ThreadLocal long nextID; 831 static G4ThreadLocal long nextID; 1264 832 1265 INCL_DECLARE_ALLOCATION_POOL(Particle) 833 INCL_DECLARE_ALLOCATION_POOL(Particle) 1266 }; 834 }; 1267 } 835 } 1268 836 1269 #endif /* PARTICLE_HH_ */ 837 #endif /* PARTICLE_HH_ */ 1270 838