Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #include "G4INCLTransmissionChannel.hh" 39 40 namespace G4INCL { 41 42 TransmissionChannel::TransmissionChannel(Nuc 43 : theNucleus(nucleus), theParticle(particl 44 refraction(false), 45 pOutMag(0.), 46 kineticEnergyOutside(initializeKineticEner 47 cosRefractionAngle(1.) 48 {} 49 50 TransmissionChannel::TransmissionChannel(Nuc 51 : theNucleus(nucleus), theParticle(particl 52 refraction(false), 53 pOutMag(0.), 54 kineticEnergyOutside(TOut), 55 cosRefractionAngle(1.) 56 {} 57 58 TransmissionChannel::TransmissionChannel(Nuc 59 : theNucleus(nucleus), theParticle(particl 60 refraction(true), 61 pOutMag(kOut), 62 kineticEnergyOutside(initializeKineticEner 63 cosRefractionAngle(cosR) 64 {} 65 66 TransmissionChannel::~TransmissionChannel() 67 68 G4double TransmissionChannel::initializeKine 69 // The particle energy outside the nucleus 70 // potential from the kinetic energy when 71 G4double TOut = theParticle->getEnergy() 72 - theParticle->getPotentialEnergy() 73 - theParticle->getMass(); 74 75 // Correction for real masses 76 const G4int AParent = theNucleus->getA(); 77 const G4int ZParent = theNucleus->getZ(); 78 const G4int SParent = theNucleus->getS(); 79 const G4double theQValueCorrection = thePa 80 TOut += theQValueCorrection; 81 return TOut; 82 } 83 84 void TransmissionChannel::particleLeaves() { 85 86 // Use the table mass in the outside world 87 theParticle->setTableMass(); 88 theParticle->setPotentialEnergy(0.); 89 90 if(refraction) { 91 // Change the momentum direction 92 // The magnitude of the particle momentu 93 // fixed by the kineticEnergyOutside var 94 // avoid numerical inaccuracies. 95 const ThreeVector &position = theParticl 96 const G4double r2 = position.mag2(); 97 ThreeVector normal; 98 if(r2>0.) 99 normal = position / std::sqrt(r2); 100 101 const ThreeVector &momentum = theParticl 102 103 const ThreeVector pOut = normal * (pOutM 104 // assert(std::fabs(pOut.mag()-pOutMag)<1.e-5) 105 106 theParticle->setMomentum(pOut); 107 } 108 // Scaling factor for the particle momentu 109 theParticle->setEnergy(kineticEnergyOutsid 110 theParticle->adjustMomentumFromEnergy(); 111 } 112 113 void TransmissionChannel::fillFinalState(Fin 114 G4double initialEnergy = 0.0; 115 initialEnergy = theParticle->getEnergy() - 116 // Correction for real masses 117 const G4int AParent = theNucleus->getA(); 118 const G4int ZParent = theNucleus->getZ(); 119 const G4int SParent = theNucleus->getS(); 120 initialEnergy += theParticle->getTableMass 121 + theParticle->getEmissionQValueCorrecti 122 particleLeaves(); 123 124 fs->setTotalEnergyBeforeInteraction(initia 125 fs->addOutgoingParticle(theParticle); // W 126 } 127 } 128