Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 #include "G4INCLTransmissionChannel.hh" 38 #include "G4INCLTransmissionChannel.hh" 39 39 40 namespace G4INCL { 40 namespace G4INCL { 41 41 42 TransmissionChannel::TransmissionChannel(Nuc 42 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle) 43 : theNucleus(nucleus), theParticle(particl 43 : theNucleus(nucleus), theParticle(particle), 44 refraction(false), 44 refraction(false), 45 pOutMag(0.), 45 pOutMag(0.), 46 kineticEnergyOutside(initializeKineticEner 46 kineticEnergyOutside(initializeKineticEnergyOutside()), 47 cosRefractionAngle(1.) 47 cosRefractionAngle(1.) 48 {} 48 {} 49 49 50 TransmissionChannel::TransmissionChannel(Nuc 50 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double TOut) 51 : theNucleus(nucleus), theParticle(particl 51 : theNucleus(nucleus), theParticle(particle), 52 refraction(false), 52 refraction(false), 53 pOutMag(0.), 53 pOutMag(0.), 54 kineticEnergyOutside(TOut), 54 kineticEnergyOutside(TOut), 55 cosRefractionAngle(1.) 55 cosRefractionAngle(1.) 56 {} 56 {} 57 57 58 TransmissionChannel::TransmissionChannel(Nuc 58 TransmissionChannel::TransmissionChannel(Nucleus * const nucleus, Particle * const particle, const G4double kOut, const G4double cosR) 59 : theNucleus(nucleus), theParticle(particl 59 : theNucleus(nucleus), theParticle(particle), 60 refraction(true), 60 refraction(true), 61 pOutMag(kOut), 61 pOutMag(kOut), 62 kineticEnergyOutside(initializeKineticEner 62 kineticEnergyOutside(initializeKineticEnergyOutside()), 63 cosRefractionAngle(cosR) 63 cosRefractionAngle(cosR) 64 {} 64 {} 65 65 66 TransmissionChannel::~TransmissionChannel() 66 TransmissionChannel::~TransmissionChannel() {} 67 67 68 G4double TransmissionChannel::initializeKine 68 G4double TransmissionChannel::initializeKineticEnergyOutside() { 69 // The particle energy outside the nucleus 69 // The particle energy outside the nucleus. Subtract the nuclear 70 // potential from the kinetic energy when 70 // potential from the kinetic energy when leaving the nucleus 71 G4double TOut = theParticle->getEnergy() 71 G4double TOut = theParticle->getEnergy() 72 - theParticle->getPotentialEnergy() 72 - theParticle->getPotentialEnergy() 73 - theParticle->getMass(); 73 - theParticle->getMass(); 74 74 75 // Correction for real masses 75 // Correction for real masses 76 const G4int AParent = theNucleus->getA(); 76 const G4int AParent = theNucleus->getA(); 77 const G4int ZParent = theNucleus->getZ(); 77 const G4int ZParent = theNucleus->getZ(); 78 const G4int SParent = theNucleus->getS(); << 78 const G4double theQValueCorrection = theParticle->getEmissionQValueCorrection(AParent,ZParent); 79 const G4double theQValueCorrection = thePa << 80 TOut += theQValueCorrection; 79 TOut += theQValueCorrection; 81 return TOut; 80 return TOut; 82 } 81 } 83 82 84 void TransmissionChannel::particleLeaves() { 83 void TransmissionChannel::particleLeaves() { 85 84 86 // Use the table mass in the outside world 85 // Use the table mass in the outside world 87 theParticle->setTableMass(); 86 theParticle->setTableMass(); 88 theParticle->setPotentialEnergy(0.); 87 theParticle->setPotentialEnergy(0.); 89 88 90 if(refraction) { 89 if(refraction) { 91 // Change the momentum direction 90 // Change the momentum direction 92 // The magnitude of the particle momentu 91 // The magnitude of the particle momentum outside the nucleus will be 93 // fixed by the kineticEnergyOutside var 92 // fixed by the kineticEnergyOutside variable. This is done in order to 94 // avoid numerical inaccuracies. 93 // avoid numerical inaccuracies. 95 const ThreeVector &position = theParticl 94 const ThreeVector &position = theParticle->getPosition(); 96 const G4double r2 = position.mag2(); 95 const G4double r2 = position.mag2(); 97 ThreeVector normal; 96 ThreeVector normal; 98 if(r2>0.) 97 if(r2>0.) 99 normal = position / std::sqrt(r2); 98 normal = position / std::sqrt(r2); 100 99 101 const ThreeVector &momentum = theParticl 100 const ThreeVector &momentum = theParticle->getMomentum(); 102 101 103 const ThreeVector pOut = normal * (pOutM 102 const ThreeVector pOut = normal * (pOutMag * cosRefractionAngle) + momentum - normal * normal.dot(momentum); 104 // assert(std::fabs(pOut.mag()-pOutMag)<1.e-5) 103 // assert(std::fabs(pOut.mag()-pOutMag)<1.e-5); 105 104 106 theParticle->setMomentum(pOut); 105 theParticle->setMomentum(pOut); 107 } 106 } 108 // Scaling factor for the particle momentu 107 // Scaling factor for the particle momentum 109 theParticle->setEnergy(kineticEnergyOutsid 108 theParticle->setEnergy(kineticEnergyOutside + theParticle->getMass()); 110 theParticle->adjustMomentumFromEnergy(); 109 theParticle->adjustMomentumFromEnergy(); 111 } 110 } 112 111 113 void TransmissionChannel::fillFinalState(Fin 112 void TransmissionChannel::fillFinalState(FinalState *fs) { 114 G4double initialEnergy = 0.0; 113 G4double initialEnergy = 0.0; 115 initialEnergy = theParticle->getEnergy() - 114 initialEnergy = theParticle->getEnergy() - theParticle->getPotentialEnergy(); >> 115 116 // Correction for real masses 116 // Correction for real masses 117 const G4int AParent = theNucleus->getA(); 117 const G4int AParent = theNucleus->getA(); 118 const G4int ZParent = theNucleus->getZ(); 118 const G4int ZParent = theNucleus->getZ(); 119 const G4int SParent = theNucleus->getS(); << 120 initialEnergy += theParticle->getTableMass 119 initialEnergy += theParticle->getTableMass() - theParticle->getMass() 121 + theParticle->getEmissionQValueCorrecti << 120 + theParticle->getEmissionQValueCorrection(AParent,ZParent); >> 121 122 particleLeaves(); 122 particleLeaves(); 123 << 123 124 fs->setTotalEnergyBeforeInteraction(initia 124 fs->setTotalEnergyBeforeInteraction(initialEnergy); 125 fs->addOutgoingParticle(theParticle); // W 125 fs->addOutgoingParticle(theParticle); // We write the particle down as outgoing 126 } 126 } 127 } 127 } 128 128