Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 32 // >> 33 // INCL++ revision: v5.0_rc3 33 // 34 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 #define INCLXX_IN_GEANT4_MODE 1 35 36 36 #include "globals.hh" 37 #include "globals.hh" 37 38 38 /** \file G4INCLNuclearPotentialIsospin.cc 39 /** \file G4INCLNuclearPotentialIsospin.cc 39 * \brief Isospin-dependent nuclear potential. 40 * \brief Isospin-dependent nuclear potential. 40 * 41 * 41 * Provides an isospin-dependent nuclear poten 42 * Provides an isospin-dependent nuclear potential. 42 * 43 * 43 * \date 28 February 2011 << 44 * Created on: 28 February 2011 44 * \author Davide Mancusi << 45 * Author: Davide Mancusi 45 */ 46 */ 46 47 47 #include "G4INCLNuclearPotentialIsospin.hh" 48 #include "G4INCLNuclearPotentialIsospin.hh" 48 #include "G4INCLNuclearPotentialConstant.hh" 49 #include "G4INCLNuclearPotentialConstant.hh" 49 #include "G4INCLParticleTable.hh" 50 #include "G4INCLParticleTable.hh" 50 #include "G4INCLGlobals.hh" 51 #include "G4INCLGlobals.hh" 51 52 52 namespace G4INCL { 53 namespace G4INCL { 53 54 54 namespace NuclearPotential { 55 namespace NuclearPotential { 55 56 56 // Constructors 57 // Constructors 57 NuclearPotentialIsospin::NuclearPotentialI << 58 NuclearPotentialIsospin::NuclearPotentialIsospin(NuclearDensity *density, G4bool pionPotential) 58 : INuclearPotential(A, Z, aPionPotential << 59 : INuclearPotential(density, pionPotential) 59 { 60 { 60 initialize(); 61 initialize(); 61 } 62 } 62 63 63 // Destructor 64 // Destructor 64 NuclearPotentialIsospin::~NuclearPotential 65 NuclearPotentialIsospin::~NuclearPotentialIsospin() {} 65 66 66 void NuclearPotentialIsospin::initialize() 67 void NuclearPotentialIsospin::initialize() { 67 const G4double ZOverA = ((G4double) theZ << 68 const G4double ZOverA = ((G4double) theDensity->getZ()) / ((G4double) theDensity->getA()); 68 69 69 const G4double mp = ParticleTable::getIN << 70 const G4double mp = ParticleTable::getMass(Proton); 70 const G4double mn = ParticleTable::getIN << 71 fermiMomentum[Proton] = Pf * Math::pow13(2.*ZOverA); 71 const G4double ml = ParticleTable::getIN << 72 fermiEnergy[Proton] = std::sqrt(fermiMomentum[Proton]*fermiMomentum[Proton] + mp*mp) - mp; 72 << 73 vProton = fermiEnergy[Proton] + ParticleTable::getSeparationEnergy(Proton); 73 const G4double theFermiMomentum = Partic << 74 74 << 75 const G4double mn = ParticleTable::getMass(Neutron); 75 fermiMomentum[Proton] = theFermiMomentum << 76 fermiMomentum[Neutron] = Pf * Math::pow13(2.*(1.-ZOverA)); 76 const G4double theProtonFermiEnergy = st << 77 fermiEnergy[Neutron] = std::sqrt(fermiMomentum[Neutron]*fermiMomentum[Neutron] + mn*mn) - mn; 77 fermiEnergy[Proton] = theProtonFermiEner << 78 vNeutron = fermiEnergy[Neutron] + ParticleTable::getSeparationEnergy(Neutron); 78 // Use separation energies from the Part << 79 const G4double theProtonSeparationEnergy << 80 separationEnergy[Proton] = theProtonSepa << 81 vProton = theProtonFermiEnergy + theProt << 82 << 83 fermiMomentum[Neutron] = theFermiMomentu << 84 const G4double theNeutronFermiEnergy = s << 85 fermiEnergy[Neutron] = theNeutronFermiEn << 86 // Use separation energies from the Part << 87 const G4double theNeutronSeparationEnerg << 88 separationEnergy[Neutron] = theNeutronSe << 89 vNeutron = theNeutronFermiEnergy + theNe << 90 << 91 const G4double separationEnergyDeltaPlus << 92 separationEnergy[DeltaPlusPlus] = separa << 93 separationEnergy[DeltaPlus] = theProtonS << 94 separationEnergy[DeltaZero] = theNeutron << 95 const G4double separationEnergyDeltaMinu << 96 separationEnergy[DeltaMinus] = separatio << 97 79 98 const G4double tinyMargin = 1E-7; << 99 vDeltaPlus = vProton; 80 vDeltaPlus = vProton; 100 vDeltaZero = vNeutron; 81 vDeltaZero = vNeutron; 101 vDeltaPlusPlus = std::max(separationEner << 82 vDeltaPlusPlus = 2*vDeltaPlus - vDeltaZero; 102 vDeltaMinus = std::max(separationEnergyD << 83 vDeltaMinus = 2*vDeltaZero - vDeltaPlus; 103 << 84 104 vSigmaMinus = -16.; // Repulsive potenti << 85 const G4double Tfpp = vDeltaPlusPlus - vProton + fermiEnergy.find(Proton)->second; 105 vSigmaZero = -16.; // hypothesis: same << 86 const G4double Tfp = fermiEnergy.find(Proton)->second; 106 vSigmaPlus = -16.; << 87 const G4double Tf0 = fermiEnergy.find(Neutron)->second; 107 << 88 const G4double Tfm = vDeltaMinus - vNeutron + fermiEnergy.find(Neutron)->second; 108 vLambda = 30.; << 89 fermiEnergy[DeltaPlusPlus] = Tfpp; 109 vantiProton = 100.; << 90 fermiEnergy[DeltaPlus] = Tfp; 110 << 91 fermiEnergy[DeltaZero] = Tf0; 111 const G4double asy = (theA - 2.*theZ)/th << 92 fermiEnergy[DeltaMinus] = Tfm; 112 // Jose Luis Rodriguez-Sanchez et al., R << 113 if (asy > 0.236) vLambda = 40.91; << 114 else if (asy > 0.133) vLambda = 56.549 - << 115 << 116 const G4double theLambdaSeparationEnergy << 117 const G4double theantiProtonSeparationEn << 118 << 119 separationEnergy[PiPlus] = theProtonSepa << 120 separationEnergy[PiZero] = 0.; << 121 separationEnergy[PiMinus] = theNeutronSe << 122 << 123 separationEnergy[Eta] = 0.; << 124 separationEnergy[Omega] = 0.; << 125 separationEnergy[EtaPrime] = 0.; << 126 separationEnergy[Photon] = 0.; << 127 << 128 separationEnergy[Lambda] = theLambdaS << 129 separationEnergy[SigmaPlus] = theProtonS << 130 separationEnergy[SigmaZero] = theLambdaS << 131 separationEnergy[SigmaMinus] = theNeutr << 132 << 133 separationEnergy[KPlus] = theProtonSep << 134 separationEnergy[KZero] = (theNeutronS << 135 separationEnergy[KZeroBar] = (theLambda << 136 separationEnergy[KMinus] = 2.*theNeut << 137 << 138 separationEnergy[KShort] = (theNeutro << 139 separationEnergy[KLong] = (theNeutronS << 140 << 141 separationEnergy[antiProton] = theant << 142 << 143 fermiEnergy[DeltaPlusPlus] = vDeltaPlusP << 144 fermiEnergy[DeltaPlus] = vDeltaPlus - se << 145 fermiEnergy[DeltaZero] = vDeltaZero - se << 146 fermiEnergy[DeltaMinus] = vDeltaMinus - << 147 << 148 fermiEnergy[Lambda] = vLambda - separati << 149 if (fermiEnergy[Lambda] <= 0.) << 150 fermiMomentum[Lambda]=0.; << 151 else << 152 fermiMomentum[Lambda]=std::sqrt(std:: << 153 << 154 fermiEnergy[SigmaPlus] = vSigmaPlus - se << 155 fermiEnergy[SigmaZero] = vSigmaZero - se << 156 fermiEnergy[SigmaMinus] = vSigmaMinus - << 157 << 158 fermiEnergy[antiProton] = vantiProton - << 159 << 160 INCL_DEBUG("Table of separation energies << 161 << " proton: " << separationEner << 162 << " neutron: " << separationEner << 163 << " delta++: " << separationEner << 164 << " delta+: " << separationEner << 165 << " delta0: " << separationEner << 166 << " delta-: " << separationEner << 167 << " pi+: " << separationEner << 168 << " pi0: " << separationEner << 169 << " pi-: " << separationEner << 170 << " eta: " << separationEner << 171 << " omega: " << separationEner << 172 << " etaprime:" << separationEner << 173 << " photon: " << separationEner << 174 << " lambda: " << separationEner << 175 << " sigmaplus: " << separationE << 176 << " sigmazero: " << separationE << 177 << " sigmaminus: " << separation << 178 << " kplus: " << separationEnerg << 179 << " kzero: " << separationEnerg << 180 << " kzerobar: " << separationEn << 181 << " kminus: " << separationEner << 182 << " kshort: " << separationEner << 183 << " klong: " << separationEnerg << 184 ); << 185 << 186 INCL_DEBUG("Table of Fermi energies [MeV << 187 << " proton: " << fermiEnergy[Pr << 188 << " neutron: " << fermiEnergy[Ne << 189 << " delta++: " << fermiEnergy[De << 190 << " delta+: " << fermiEnergy[De << 191 << " delta0: " << fermiEnergy[De << 192 << " delta-: " << fermiEnergy[De << 193 << " lambda: " << fermiEnergy[La << 194 << " sigma+: " << fermiEnergy[Si << 195 << " sigma0: " << fermiEnergy[Si << 196 << " sigma-: " << fermiEnergy[Si << 197 ); << 198 << 199 INCL_DEBUG("Table of Fermi momenta [MeV/ << 200 << " proton: " << fermiMomentum[ << 201 << " neutron: " << fermiMomentum[ << 202 ); << 203 } 93 } 204 94 205 G4double NuclearPotentialIsospin::computeP 95 G4double NuclearPotentialIsospin::computePotentialEnergy(const Particle *particle) const { 206 96 207 switch( particle->getType() ) 97 switch( particle->getType() ) 208 { 98 { 209 case Proton: 99 case Proton: 210 return vProton; 100 return vProton; 211 break; 101 break; 212 case Neutron: 102 case Neutron: 213 return vNeutron; 103 return vNeutron; 214 break; 104 break; 215 105 216 case PiPlus: 106 case PiPlus: 217 case PiZero: 107 case PiZero: 218 case PiMinus: 108 case PiMinus: 219 return computePionPotentialEnergy(pa 109 return computePionPotentialEnergy(particle); 220 break; 110 break; 221 << 222 case SigmaPlus: << 223 return vSigmaPlus; << 224 break; << 225 case SigmaZero: << 226 return vSigmaZero; << 227 break; << 228 case Lambda: << 229 return vLambda; << 230 break; << 231 case SigmaMinus: << 232 return vSigmaMinus; << 233 break; << 234 << 235 case Eta: << 236 case Omega: << 237 case EtaPrime: << 238 return computePionResonancePotential << 239 break; << 240 << 241 case KPlus: << 242 case KZero: << 243 case KZeroBar: << 244 case KMinus: << 245 case KShort: << 246 case KLong: << 247 return computeKaonPotentialEnergy(pa << 248 break; << 249 << 250 case Photon: << 251 return 0.0; << 252 break; << 253 << 254 case antiProton: << 255 return vantiProton; << 256 break; << 257 case antiNeutron: << 258 return vantiProton; << 259 break; << 260 case antiLambda: << 261 return 0.0; << 262 break; << 263 case antiSigmaMinus: << 264 return 0.0; << 265 break; << 266 case antiSigmaPlus: << 267 return 0.0; << 268 break; << 269 case antiSigmaZero: << 270 return 0.0; << 271 break; << 272 case antiXiMinus: << 273 return 0.0; << 274 break; << 275 case antiXiZero: << 276 return 0.0; << 277 break; << 278 case XiMinus: << 279 return 0.0; << 280 break; << 281 case XiZero: << 282 return 0.0; << 283 break; << 284 111 285 case DeltaPlusPlus: 112 case DeltaPlusPlus: 286 return vDeltaPlusPlus; 113 return vDeltaPlusPlus; 287 break; 114 break; 288 case DeltaPlus: 115 case DeltaPlus: 289 return vDeltaPlus; 116 return vDeltaPlus; 290 break; 117 break; 291 case DeltaZero: 118 case DeltaZero: 292 return vDeltaZero; 119 return vDeltaZero; 293 break; 120 break; 294 case DeltaMinus: 121 case DeltaMinus: 295 return vDeltaMinus; 122 return vDeltaMinus; 296 break; 123 break; 297 case Composite: 124 case Composite: 298 INCL_ERROR("No potential computed for partic << 125 ERROR("No potential computed for particle of type Cluster."); 299 return 0.0; 126 return 0.0; 300 break; 127 break; 301 case UnknownParticle: 128 case UnknownParticle: 302 INCL_ERROR("Trying to compute potential ener << 129 ERROR("Trying to compute potential energy for an unknown particle."); 303 return 0.0; 130 return 0.0; 304 break; 131 break; 305 } 132 } 306 133 307 INCL_ERROR("There is no potential for th << 134 ERROR("There is no potential for this type of particle."); 308 return 0.0; 135 return 0.0; 309 } 136 } 310 137 311 } 138 } 312 } 139 } 313 140 314 141