Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 /** \file G4INCLNuclearPotentialIsospin.cc 38 /** \file G4INCLNuclearPotentialIsospin.cc 39 * \brief Isospin-dependent nuclear potential. 39 * \brief Isospin-dependent nuclear potential. 40 * 40 * 41 * Provides an isospin-dependent nuclear poten 41 * Provides an isospin-dependent nuclear potential. 42 * 42 * 43 * \date 28 February 2011 43 * \date 28 February 2011 44 * \author Davide Mancusi 44 * \author Davide Mancusi 45 */ 45 */ 46 46 47 #include "G4INCLNuclearPotentialIsospin.hh" 47 #include "G4INCLNuclearPotentialIsospin.hh" 48 #include "G4INCLNuclearPotentialConstant.hh" 48 #include "G4INCLNuclearPotentialConstant.hh" 49 #include "G4INCLParticleTable.hh" 49 #include "G4INCLParticleTable.hh" 50 #include "G4INCLGlobals.hh" 50 #include "G4INCLGlobals.hh" 51 51 52 namespace G4INCL { 52 namespace G4INCL { 53 53 54 namespace NuclearPotential { 54 namespace NuclearPotential { 55 55 56 // Constructors 56 // Constructors 57 NuclearPotentialIsospin::NuclearPotentialI 57 NuclearPotentialIsospin::NuclearPotentialIsospin(const G4int A, const G4int Z, const G4bool aPionPotential) 58 : INuclearPotential(A, Z, aPionPotential 58 : INuclearPotential(A, Z, aPionPotential) 59 { 59 { 60 initialize(); 60 initialize(); 61 } 61 } 62 62 63 // Destructor 63 // Destructor 64 NuclearPotentialIsospin::~NuclearPotential 64 NuclearPotentialIsospin::~NuclearPotentialIsospin() {} 65 65 66 void NuclearPotentialIsospin::initialize() 66 void NuclearPotentialIsospin::initialize() { 67 const G4double ZOverA = ((G4double) theZ 67 const G4double ZOverA = ((G4double) theZ) / ((G4double) theA); 68 68 69 const G4double mp = ParticleTable::getIN 69 const G4double mp = ParticleTable::getINCLMass(Proton); 70 const G4double mn = ParticleTable::getIN 70 const G4double mn = ParticleTable::getINCLMass(Neutron); 71 const G4double ml = ParticleTable::getIN 71 const G4double ml = ParticleTable::getINCLMass(Lambda); 72 72 73 const G4double theFermiMomentum = Partic 73 const G4double theFermiMomentum = ParticleTable::getFermiMomentum(theA,theZ); 74 74 75 fermiMomentum[Proton] = theFermiMomentum 75 fermiMomentum[Proton] = theFermiMomentum * Math::pow13(2.*ZOverA); 76 const G4double theProtonFermiEnergy = st 76 const G4double theProtonFermiEnergy = std::sqrt(fermiMomentum[Proton]*fermiMomentum[Proton] + mp*mp) - mp; 77 fermiEnergy[Proton] = theProtonFermiEner 77 fermiEnergy[Proton] = theProtonFermiEnergy; 78 // Use separation energies from the Part 78 // Use separation energies from the ParticleTable 79 const G4double theProtonSeparationEnergy 79 const G4double theProtonSeparationEnergy = ParticleTable::getSeparationEnergy(Proton,theA,theZ); 80 separationEnergy[Proton] = theProtonSepa 80 separationEnergy[Proton] = theProtonSeparationEnergy; 81 vProton = theProtonFermiEnergy + theProt 81 vProton = theProtonFermiEnergy + theProtonSeparationEnergy; 82 82 83 fermiMomentum[Neutron] = theFermiMomentu 83 fermiMomentum[Neutron] = theFermiMomentum * Math::pow13(2.*(1.-ZOverA)); 84 const G4double theNeutronFermiEnergy = s 84 const G4double theNeutronFermiEnergy = std::sqrt(fermiMomentum[Neutron]*fermiMomentum[Neutron] + mn*mn) - mn; 85 fermiEnergy[Neutron] = theNeutronFermiEn 85 fermiEnergy[Neutron] = theNeutronFermiEnergy; 86 // Use separation energies from the Part 86 // Use separation energies from the ParticleTable 87 const G4double theNeutronSeparationEnerg 87 const G4double theNeutronSeparationEnergy = ParticleTable::getSeparationEnergy(Neutron,theA,theZ); 88 separationEnergy[Neutron] = theNeutronSe 88 separationEnergy[Neutron] = theNeutronSeparationEnergy; 89 vNeutron = theNeutronFermiEnergy + theNe 89 vNeutron = theNeutronFermiEnergy + theNeutronSeparationEnergy; 90 90 91 const G4double separationEnergyDeltaPlus 91 const G4double separationEnergyDeltaPlusPlus = 2.*theProtonSeparationEnergy - theNeutronSeparationEnergy; 92 separationEnergy[DeltaPlusPlus] = separa 92 separationEnergy[DeltaPlusPlus] = separationEnergyDeltaPlusPlus; 93 separationEnergy[DeltaPlus] = theProtonS 93 separationEnergy[DeltaPlus] = theProtonSeparationEnergy; 94 separationEnergy[DeltaZero] = theNeutron 94 separationEnergy[DeltaZero] = theNeutronSeparationEnergy; 95 const G4double separationEnergyDeltaMinu 95 const G4double separationEnergyDeltaMinus = 2.*theNeutronSeparationEnergy - theProtonSeparationEnergy; 96 separationEnergy[DeltaMinus] = separatio 96 separationEnergy[DeltaMinus] = separationEnergyDeltaMinus; 97 97 98 const G4double tinyMargin = 1E-7; 98 const G4double tinyMargin = 1E-7; 99 vDeltaPlus = vProton; 99 vDeltaPlus = vProton; 100 vDeltaZero = vNeutron; 100 vDeltaZero = vNeutron; 101 vDeltaPlusPlus = std::max(separationEner 101 vDeltaPlusPlus = std::max(separationEnergyDeltaPlusPlus + tinyMargin, 2.*vDeltaPlus - vDeltaZero); 102 vDeltaMinus = std::max(separationEnergyD 102 vDeltaMinus = std::max(separationEnergyDeltaMinus + tinyMargin, 2.*vDeltaZero - vDeltaPlus); 103 103 104 vSigmaMinus = -16.; // Repulsive potenti 104 vSigmaMinus = -16.; // Repulsive potential, from Eur. Phys.J.A. (2016) 52:21 105 vSigmaZero = -16.; // hypothesis: same 105 vSigmaZero = -16.; // hypothesis: same potential for each sigma 106 vSigmaPlus = -16.; 106 vSigmaPlus = -16.; 107 107 108 vLambda = 30.; << 108 vLambda = 28.; 109 vantiProton = 100.; << 110 << 111 const G4double asy = (theA - 2.*theZ)/th 109 const G4double asy = (theA - 2.*theZ)/theA; 112 // Jose Luis Rodriguez-Sanchez et al., R << 110 if(asy>0.11)vLambda = 56.549-678.73*asy+4905.35*std::pow(asy,2.)-9789.1*std::pow(asy,3.); // Jose Luis Rodriguez-Sanchez et al., Rapid Communication PRC 113 if (asy > 0.236) vLambda = 40.91; << 111 114 else if (asy > 0.133) vLambda = 56.549 - << 115 << 116 const G4double theLambdaSeparationEnergy 112 const G4double theLambdaSeparationEnergy = ParticleTable::getSeparationEnergy(Lambda,theA,theZ); 117 const G4double theantiProtonSeparationEn << 118 113 119 separationEnergy[PiPlus] = theProtonSepa 114 separationEnergy[PiPlus] = theProtonSeparationEnergy - theNeutronSeparationEnergy; 120 separationEnergy[PiZero] = 0.; 115 separationEnergy[PiZero] = 0.; 121 separationEnergy[PiMinus] = theNeutronSe 116 separationEnergy[PiMinus] = theNeutronSeparationEnergy - theProtonSeparationEnergy; 122 117 123 separationEnergy[Eta] = 0.; 118 separationEnergy[Eta] = 0.; 124 separationEnergy[Omega] = 0.; 119 separationEnergy[Omega] = 0.; 125 separationEnergy[EtaPrime] = 0.; 120 separationEnergy[EtaPrime] = 0.; 126 separationEnergy[Photon] = 0.; 121 separationEnergy[Photon] = 0.; 127 122 128 separationEnergy[Lambda] = theLambdaS 123 separationEnergy[Lambda] = theLambdaSeparationEnergy; 129 separationEnergy[SigmaPlus] = theProtonS 124 separationEnergy[SigmaPlus] = theProtonSeparationEnergy + theLambdaSeparationEnergy - theNeutronSeparationEnergy; 130 separationEnergy[SigmaZero] = theLambdaS 125 separationEnergy[SigmaZero] = theLambdaSeparationEnergy; 131 separationEnergy[SigmaMinus] = theNeutr 126 separationEnergy[SigmaMinus] = theNeutronSeparationEnergy + theLambdaSeparationEnergy - theProtonSeparationEnergy; 132 127 133 separationEnergy[KPlus] = theProtonSep 128 separationEnergy[KPlus] = theProtonSeparationEnergy - theLambdaSeparationEnergy; 134 separationEnergy[KZero] = (theNeutronS 129 separationEnergy[KZero] = (theNeutronSeparationEnergy - theLambdaSeparationEnergy); 135 separationEnergy[KZeroBar] = (theLambda 130 separationEnergy[KZeroBar] = (theLambdaSeparationEnergy - theNeutronSeparationEnergy); 136 separationEnergy[KMinus] = 2.*theNeut 131 separationEnergy[KMinus] = 2.*theNeutronSeparationEnergy - theProtonSeparationEnergy-theLambdaSeparationEnergy; 137 132 138 separationEnergy[KShort] = (theNeutro 133 separationEnergy[KShort] = (theNeutronSeparationEnergy - theLambdaSeparationEnergy); 139 separationEnergy[KLong] = (theNeutronS 134 separationEnergy[KLong] = (theNeutronSeparationEnergy - theLambdaSeparationEnergy); 140 135 141 separationEnergy[antiProton] = theant << 142 << 143 fermiEnergy[DeltaPlusPlus] = vDeltaPlusP 136 fermiEnergy[DeltaPlusPlus] = vDeltaPlusPlus - separationEnergy[DeltaPlusPlus]; 144 fermiEnergy[DeltaPlus] = vDeltaPlus - se 137 fermiEnergy[DeltaPlus] = vDeltaPlus - separationEnergy[DeltaPlus]; 145 fermiEnergy[DeltaZero] = vDeltaZero - se 138 fermiEnergy[DeltaZero] = vDeltaZero - separationEnergy[DeltaZero]; 146 fermiEnergy[DeltaMinus] = vDeltaMinus - 139 fermiEnergy[DeltaMinus] = vDeltaMinus - separationEnergy[DeltaMinus]; 147 140 148 fermiEnergy[Lambda] = vLambda - separati 141 fermiEnergy[Lambda] = vLambda - separationEnergy[Lambda]; 149 if (fermiEnergy[Lambda] <= 0.) 142 if (fermiEnergy[Lambda] <= 0.) 150 fermiMomentum[Lambda]=0.; 143 fermiMomentum[Lambda]=0.; 151 else 144 else 152 fermiMomentum[Lambda]=std::sqrt(std:: 145 fermiMomentum[Lambda]=std::sqrt(std::pow(fermiEnergy[Lambda]+ml,2.0)-ml*ml); 153 146 154 fermiEnergy[SigmaPlus] = vSigmaPlus - se 147 fermiEnergy[SigmaPlus] = vSigmaPlus - separationEnergy[SigmaPlus]; 155 fermiEnergy[SigmaZero] = vSigmaZero - se 148 fermiEnergy[SigmaZero] = vSigmaZero - separationEnergy[SigmaZero]; 156 fermiEnergy[SigmaMinus] = vSigmaMinus - 149 fermiEnergy[SigmaMinus] = vSigmaMinus - separationEnergy[SigmaMinus]; 157 << 158 fermiEnergy[antiProton] = vantiProton - << 159 150 160 INCL_DEBUG("Table of separation energies 151 INCL_DEBUG("Table of separation energies [MeV] for A=" << theA << ", Z=" << theZ << ":" << '\n' 161 << " proton: " << separationEner 152 << " proton: " << separationEnergy[Proton] << '\n' 162 << " neutron: " << separationEner 153 << " neutron: " << separationEnergy[Neutron] << '\n' 163 << " delta++: " << separationEner 154 << " delta++: " << separationEnergy[DeltaPlusPlus] << '\n' 164 << " delta+: " << separationEner 155 << " delta+: " << separationEnergy[DeltaPlus] << '\n' 165 << " delta0: " << separationEner 156 << " delta0: " << separationEnergy[DeltaZero] << '\n' 166 << " delta-: " << separationEner 157 << " delta-: " << separationEnergy[DeltaMinus] << '\n' 167 << " pi+: " << separationEner 158 << " pi+: " << separationEnergy[PiPlus] << '\n' 168 << " pi0: " << separationEner 159 << " pi0: " << separationEnergy[PiZero] << '\n' 169 << " pi-: " << separationEner 160 << " pi-: " << separationEnergy[PiMinus] << '\n' 170 << " eta: " << separationEner 161 << " eta: " << separationEnergy[Eta] << '\n' 171 << " omega: " << separationEner 162 << " omega: " << separationEnergy[Omega] << '\n' 172 << " etaprime:" << separationEner 163 << " etaprime:" << separationEnergy[EtaPrime] << '\n' 173 << " photon: " << separationEner 164 << " photon: " << separationEnergy[Photon] << '\n' 174 << " lambda: " << separationEner 165 << " lambda: " << separationEnergy[Lambda] << '\n' 175 << " sigmaplus: " << separationE 166 << " sigmaplus: " << separationEnergy[SigmaPlus] << '\n' 176 << " sigmazero: " << separationE 167 << " sigmazero: " << separationEnergy[SigmaZero] << '\n' 177 << " sigmaminus: " << separation 168 << " sigmaminus: " << separationEnergy[SigmaMinus] << '\n' 178 << " kplus: " << separationEnerg 169 << " kplus: " << separationEnergy[KPlus] << '\n' 179 << " kzero: " << separationEnerg 170 << " kzero: " << separationEnergy[KZero] << '\n' 180 << " kzerobar: " << separationEn 171 << " kzerobar: " << separationEnergy[KZeroBar] << '\n' 181 << " kminus: " << separationEner 172 << " kminus: " << separationEnergy[KMinus] << '\n' 182 << " kshort: " << separationEner 173 << " kshort: " << separationEnergy[KShort] << '\n' 183 << " klong: " << separationEnerg 174 << " klong: " << separationEnergy[KLong] << '\n' 184 ); 175 ); 185 176 186 INCL_DEBUG("Table of Fermi energies [MeV 177 INCL_DEBUG("Table of Fermi energies [MeV] for A=" << theA << ", Z=" << theZ << ":" << '\n' 187 << " proton: " << fermiEnergy[Pr 178 << " proton: " << fermiEnergy[Proton] << '\n' 188 << " neutron: " << fermiEnergy[Ne 179 << " neutron: " << fermiEnergy[Neutron] << '\n' 189 << " delta++: " << fermiEnergy[De 180 << " delta++: " << fermiEnergy[DeltaPlusPlus] << '\n' 190 << " delta+: " << fermiEnergy[De 181 << " delta+: " << fermiEnergy[DeltaPlus] << '\n' 191 << " delta0: " << fermiEnergy[De 182 << " delta0: " << fermiEnergy[DeltaZero] << '\n' 192 << " delta-: " << fermiEnergy[De 183 << " delta-: " << fermiEnergy[DeltaMinus] << '\n' 193 << " lambda: " << fermiEnergy[La 184 << " lambda: " << fermiEnergy[Lambda] << '\n' 194 << " sigma+: " << fermiEnergy[Si 185 << " sigma+: " << fermiEnergy[SigmaPlus] << '\n' 195 << " sigma0: " << fermiEnergy[Si 186 << " sigma0: " << fermiEnergy[SigmaZero] << '\n' 196 << " sigma-: " << fermiEnergy[Si 187 << " sigma-: " << fermiEnergy[SigmaMinus] << '\n' 197 ); 188 ); 198 189 199 INCL_DEBUG("Table of Fermi momenta [MeV/ 190 INCL_DEBUG("Table of Fermi momenta [MeV/c] for A=" << theA << ", Z=" << theZ << ":" << '\n' 200 << " proton: " << fermiMomentum[ 191 << " proton: " << fermiMomentum[Proton] << '\n' 201 << " neutron: " << fermiMomentum[ 192 << " neutron: " << fermiMomentum[Neutron] << '\n' 202 ); 193 ); 203 } 194 } 204 195 205 G4double NuclearPotentialIsospin::computeP 196 G4double NuclearPotentialIsospin::computePotentialEnergy(const Particle *particle) const { 206 197 207 switch( particle->getType() ) 198 switch( particle->getType() ) 208 { 199 { 209 case Proton: 200 case Proton: 210 return vProton; 201 return vProton; 211 break; 202 break; 212 case Neutron: 203 case Neutron: 213 return vNeutron; 204 return vNeutron; 214 break; 205 break; 215 206 216 case PiPlus: 207 case PiPlus: 217 case PiZero: 208 case PiZero: 218 case PiMinus: 209 case PiMinus: 219 return computePionPotentialEnergy(pa 210 return computePionPotentialEnergy(particle); 220 break; 211 break; 221 212 222 case SigmaPlus: 213 case SigmaPlus: 223 return vSigmaPlus; 214 return vSigmaPlus; 224 break; 215 break; 225 case SigmaZero: 216 case SigmaZero: 226 return vSigmaZero; 217 return vSigmaZero; 227 break; 218 break; 228 case Lambda: 219 case Lambda: 229 return vLambda; 220 return vLambda; 230 break; 221 break; 231 case SigmaMinus: 222 case SigmaMinus: 232 return vSigmaMinus; 223 return vSigmaMinus; 233 break; 224 break; 234 225 235 case Eta: 226 case Eta: 236 case Omega: 227 case Omega: 237 case EtaPrime: << 228 case EtaPrime: 238 return computePionResonancePotential 229 return computePionResonancePotentialEnergy(particle); 239 break; 230 break; 240 231 241 case KPlus: 232 case KPlus: 242 case KZero: 233 case KZero: 243 case KZeroBar: 234 case KZeroBar: 244 case KMinus: 235 case KMinus: 245 case KShort: 236 case KShort: 246 case KLong: 237 case KLong: 247 return computeKaonPotentialEnergy(pa 238 return computeKaonPotentialEnergy(particle); 248 break; 239 break; 249 240 250 case Photon: 241 case Photon: 251 return 0.0; << 252 break; << 253 << 254 case antiProton: << 255 return vantiProton; << 256 break; << 257 case antiNeutron: << 258 return vantiProton; << 259 break; << 260 case antiLambda: << 261 return 0.0; << 262 break; << 263 case antiSigmaMinus: << 264 return 0.0; << 265 break; << 266 case antiSigmaPlus: << 267 return 0.0; << 268 break; << 269 case antiSigmaZero: << 270 return 0.0; << 271 break; << 272 case antiXiMinus: << 273 return 0.0; << 274 break; << 275 case antiXiZero: << 276 return 0.0; << 277 break; << 278 case XiMinus: << 279 return 0.0; << 280 break; << 281 case XiZero: << 282 return 0.0; 242 return 0.0; 283 break; 243 break; 284 244 285 case DeltaPlusPlus: 245 case DeltaPlusPlus: 286 return vDeltaPlusPlus; 246 return vDeltaPlusPlus; 287 break; 247 break; 288 case DeltaPlus: 248 case DeltaPlus: 289 return vDeltaPlus; 249 return vDeltaPlus; 290 break; 250 break; 291 case DeltaZero: 251 case DeltaZero: 292 return vDeltaZero; 252 return vDeltaZero; 293 break; 253 break; 294 case DeltaMinus: 254 case DeltaMinus: 295 return vDeltaMinus; 255 return vDeltaMinus; 296 break; 256 break; 297 case Composite: 257 case Composite: 298 INCL_ERROR("No potential computed for partic 258 INCL_ERROR("No potential computed for particle of type Cluster."); 299 return 0.0; 259 return 0.0; 300 break; 260 break; 301 case UnknownParticle: 261 case UnknownParticle: 302 INCL_ERROR("Trying to compute potential ener 262 INCL_ERROR("Trying to compute potential energy for an unknown particle."); 303 return 0.0; 263 return 0.0; 304 break; 264 break; 305 } 265 } 306 266 307 INCL_ERROR("There is no potential for th 267 INCL_ERROR("There is no potential for this type of particle."); 308 return 0.0; 268 return 0.0; 309 } 269 } 310 270 311 } 271 } 312 } 272 } 313 273 314 274