Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLNNbarToLLbarChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/inclxx/incl_physics/src/G4INCLNNbarToLLbarChannel.cc (Version 11.3.0) and /processes/hadronic/models/inclxx/incl_physics/src/G4INCLNNbarToLLbarChannel.cc (Version 10.3.p2)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // INCL++ intra-nuclear cascade model             
 27 // Alain Boudard, CEA-Saclay, France              
 28 // Joseph Cugnon, University of Liege, Belgium    
 29 // Jean-Christophe David, CEA-Saclay, France      
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H    
 31 // Sylvie Leray, CEA-Saclay, France               
 32 // Davide Mancusi, CEA-Saclay, France             
 33 //                                                
 34 #define INCLXX_IN_GEANT4_MODE 1                   
 35                                                   
 36 #include "globals.hh"                             
 37                                                   
 38 #include "G4INCLNNbarToLLbarChannel.hh"           
 39 #include "G4INCLKinematicsUtils.hh"               
 40 #include "G4INCLBinaryCollisionAvatar.hh"         
 41 #include "G4INCLRandom.hh"                        
 42 #include "G4INCLGlobals.hh"                       
 43 #include "G4INCLLogger.hh"                        
 44 #include <algorithm>                              
 45 #include "G4INCLPhaseSpaceGenerator.hh"           
 46                                                   
 47 namespace G4INCL {                                
 48                                                   
 49   NNbarToLLbarChannel::NNbarToLLbarChannel(Par    
 50     : particle1(p1), particle2(p2)                
 51     {}                                            
 52                                                   
 53   NNbarToLLbarChannel::~NNbarToLLbarChannel(){    
 54                                                   
 55   void NNbarToLLbarChannel::fillFinalState(Fin    
 56     // this channel include all states with la    
 57                                                   
 58         //brief ppbar                             
 59         // p pbar -> l lbar (BFMM 121)            
 60         // ppbar -> l lbar pi0 (BFMM 113)         
 61         // ppbar -> splus pim lbar || sminusba    
 62         // ppbar -> sminus pip lbar || splusba    
 63         // ppbar -> sp spbar (BFMM 139)           
 64         // ppbar -> sm smbar (BFMM 149)           
 65         // ppbar -> szero szerobar (BFMM 144)     
 66         // ppbar -> ximinus ximinusbar (BFMM 1    
 67         // ppbar -> szero lbar || szerobar l (    
 68         //                                        
 69         //                                        
 70         //brief npbar                             
 71         // n pbar -> l lbar pi- (BFMM 487)        
 72         // n pbar -> l sbarplus || lbar sminus    
 73         //                                        
 74         //                                        
 75         //brief nnbar                             
 76         // all same as for ppbar                  
 77         //                                        
 78         //                                        
 79         //brief pnbar                             
 80         // p nbar -> l lbar pi+ (same as BFMM     
 81         // p nbar -> l sbarminus || lbar splus    
 82         //                                        
 83                                                   
 84     Particle *nucleon;                            
 85     Particle *antinucleon;                        
 86                                                   
 87     if(particle1->isNucleon()){                   
 88       nucleon = particle1;                        
 89       antinucleon = particle2;                    
 90     }                                             
 91     else{                                         
 92       nucleon = particle2;                        
 93       antinucleon = particle1;                    
 94     }                                             
 95                                                   
 96     const G4double plab = 0.001*KinematicsUtil    
 97     // ppbar cross sections                       
 98                                                   
 99     const std::vector<G4double> BFMM121 = {2.3    
100     //const G4double Eth_PPbar_LLbar = 1.437;     
101     const std::vector<G4double> BFMM113 = {-0.    
102     //const G4double Eth_PPbar_LLbar_pi0 = 1.8    
103     const std::vector<G4double> BFMM139 = {0.1    
104     //const G4double Eth_PPbar_SpSpbar = 1.851    
105     const std::vector<G4double> BFMM149 = {1.8    
106     //const G4double Eth_PPbar_SmSmbar = 1.896    
107     const std::vector<G4double> BFMM136 = {1.7    
108     //const G4double Eth_PPbar_SpLbar_pim = 2.    
109     const std::vector<G4double> BFMM146 = {1.0    
110     //const G4double Eth_PPbar_SmLbar_pip = 2.    
111     const std::vector<G4double> BFMM143 = {0.6    
112                                                   
113                                                   
114                                                   
115     //const G4double Eth_PPbar_Szero_Lbar = 1.    
116     //fixed due to limited data                   
117     G4double BFMM144;                             
118     if(plab > 2.0) BFMM144 = 0.008; //sigmazer    
119     else BFMM144 = 0.0;                           
120     G4double BFMM101;                             
121     if(plab > 2.8) BFMM101 = 0.002; //ximinus     
122     else BFMM101 = 0.0;                           
123                                                   
124     // npbar cross sections (fixed due to limi    
125     G4double BFMM487;                             
126     if(plab > 2.1) BFMM487 = 0.048; //llbar pi    
127     else BFMM487 = 0.0;                           
128     G4double BFMM488;                             
129     if(plab > 2.0) BFMM488 = 0.139; //lsigmami    
130     else BFMM488 = 0.0;                           
131                                                   
132     const G4double sqrtS = KinematicsUtils::to    
133     const G4double totalppbar = KinematicsUtil    
134     +KinematicsUtils::compute_xs(BFMM139, plab    
135     +KinematicsUtils::compute_xs(BFMM146, plab    
136     +KinematicsUtils::compute_xs(BFMM121, plab    
137     +BFMM144 +BFMM101;                            
138     const G4double totalpnbar = BFMM487 + BFMM    
139     const G4double rdm = Random::shoot();         
140                                                   
141     G4bool thirdparticle = false; //set true i    
142     ParticleType PionType;                        
143     //setting types of new particles              
144     if(nucleon->getType()==Proton){               
145       if(antinucleon->getType()==antiProton){     
146         if(rdm*totalppbar < KinematicsUtils::c    
147           nucleon->setType(Lambda);               
148           antinucleon->setType(antiLambda);       
149         }                                         
150         else if(rdm*totalppbar < KinematicsUti    
151           nucleon->setType(SigmaZero);            
152           antinucleon->setType(antiSigmaZero);    
153         }                                         
154         else if(rdm*totalppbar < KinematicsUti    
155           nucleon->setType(XiMinus);              
156           antinucleon->setType(antiXiMinus);      
157         }                                         
158         else if(rdm*totalppbar < KinematicsUti    
159         +KinematicsUtils::compute_xs(BFMM113,     
160           nucleon->setType(Lambda);               
161           antinucleon->setType(antiLambda);       
162           thirdparticle = true;                   
163           PionType = PiZero;                      
164         }                                         
165         else if(rdm*totalppbar < KinematicsUti    
166         +KinematicsUtils::compute_xs(BFMM113,     
167           G4double rdm2 = Random::shoot();        
168           if(rdm2 > 0.5){                         
169             nucleon->setType(SigmaPlus);          
170             antinucleon->setType(antiLambda);     
171             thirdparticle = true;                 
172             PionType = PiMinus;                   
173           }                                       
174           else{                                   
175             nucleon->setType(antiSigmaMinus);     
176             antinucleon->setType(Lambda);         
177             thirdparticle = true;                 
178             PionType = PiMinus;                   
179           }                                       
180         }                                         
181         else if(rdm*totalppbar < KinematicsUti    
182         +KinematicsUtils::compute_xs(BFMM113,     
183         +KinematicsUtils::compute_xs(BFMM146,     
184           G4double rdm2 = Random::shoot();        
185           if(rdm2 > 0.5){                         
186             nucleon->setType(SigmaMinus);         
187             antinucleon->setType(antiLambda);     
188             thirdparticle = true;                 
189             PionType = PiPlus;                    
190           }                                       
191           else{                                   
192             nucleon->setType(antiSigmaPlus);      
193             antinucleon->setType(Lambda);         
194             thirdparticle = true;                 
195             PionType = PiPlus;                    
196           }                                       
197         }                                         
198         else if(rdm*totalppbar < KinematicsUti    
199         +KinematicsUtils::compute_xs(BFMM113,     
200         +KinematicsUtils::compute_xs(BFMM146,     
201           G4double rdm2 = Random::shoot();        
202           if(rdm2 > 0.5){                         
203             nucleon->setType(SigmaZero);          
204             antinucleon->setType(antiLambda);     
205           }                                       
206           else{                                   
207             nucleon->setType(antiSigmaZero);      
208             antinucleon->setType(Lambda);         
209           }                                       
210         }                                         
211         else if(rdm*totalppbar < KinematicsUti    
212         +KinematicsUtils::compute_xs(BFMM113,     
213         +KinematicsUtils::compute_xs(BFMM146,     
214         +KinematicsUtils::compute_xs(BFMM139,     
215           nucleon->setType(SigmaPlus);            
216           antinucleon->setType(antiSigmaPlus);    
217         }                                         
218         else if(rdm*totalppbar < KinematicsUti    
219         +KinematicsUtils::compute_xs(std::move    
220         +KinematicsUtils::compute_xs(std::move    
221         +KinematicsUtils::compute_xs(std::move    
222           nucleon->setType(SigmaMinus);           
223           antinucleon->setType(antiSigmaMinus)    
224         }                                         
225         else{                                     
226           INCL_ERROR("out of total ppbar sum i    
227         }                                         
228       }                                           
229       else{ //pnbar case charge +1                
230         if(rdm*totalpnbar < BFMM488){             
231           G4double rdm2 = Random::shoot();        
232           if(rdm2 > 0.5){                         
233             nucleon->setType(Lambda);             
234             antinucleon->setType(antiSigmaMinu    
235           }                                       
236           else{                                   
237             nucleon->setType(antiLambda);         
238             antinucleon->setType(SigmaPlus); /    
239           }                                       
240         }                                         
241         else{                                     
242           nucleon->setType(Lambda);               
243           antinucleon->setType(antiLambda);       
244           thirdparticle = true;                   
245           PionType = PiPlus;                      
246         }                                         
247       }                                           
248     }                                             
249     else{ // neutron                              
250       if(antinucleon->getType()==antiNeutron){    
251         if(rdm*totalppbar < KinematicsUtils::c    
252           nucleon->setType(Lambda);               
253           antinucleon->setType(antiLambda);       
254         }                                         
255         else if(rdm*totalppbar < KinematicsUti    
256           nucleon->setType(SigmaZero);            
257           antinucleon->setType(antiSigmaZero);    
258         }                                         
259         else if(rdm*totalppbar < KinematicsUti    
260           nucleon->setType(XiMinus);              
261           antinucleon->setType(antiXiMinus);      
262         }                                         
263         else if(rdm*totalppbar < KinematicsUti    
264         +KinematicsUtils::compute_xs(BFMM113,     
265           nucleon->setType(Lambda);               
266           antinucleon->setType(antiLambda);       
267           thirdparticle = true;                   
268           PionType = PiZero;                      
269         }                                         
270         else if(rdm*totalppbar < KinematicsUti    
271         +KinematicsUtils::compute_xs(BFMM113,     
272           G4double rdm2 = Random::shoot();        
273           if(rdm2 > 0.5){                         
274             nucleon->setType(SigmaPlus);          
275             antinucleon->setType(antiLambda);     
276             thirdparticle = true;                 
277             PionType = PiMinus;                   
278           }                                       
279           else{                                   
280             nucleon->setType(antiSigmaMinus);     
281             antinucleon->setType(Lambda);         
282             thirdparticle = true;                 
283             PionType = PiMinus;                   
284           }                                       
285         }                                         
286         else if(rdm*totalppbar < KinematicsUti    
287         +KinematicsUtils::compute_xs(BFMM113,     
288         +KinematicsUtils::compute_xs(BFMM146,     
289           G4double rdm2 = Random::shoot();        
290           if(rdm2 > 0.5){                         
291             nucleon->setType(SigmaMinus); //ch    
292             antinucleon->setType(antiLambda);     
293             thirdparticle = true;                 
294             PionType = PiPlus;                    
295           }                                       
296           else{                                   
297             nucleon->setType(antiSigmaPlus); /    
298             antinucleon->setType(Lambda);         
299             thirdparticle = true;                 
300             PionType = PiPlus;                    
301           }                                       
302         }                                         
303         else if(rdm*totalppbar < KinematicsUti    
304         +KinematicsUtils::compute_xs(BFMM113,     
305         +KinematicsUtils::compute_xs(BFMM146,     
306           G4double rdm2 = Random::shoot();        
307           if(rdm2 > 0.5){                         
308             nucleon->setType(SigmaZero);          
309             antinucleon->setType(antiLambda);     
310           }                                       
311           else{                                   
312             nucleon->setType(antiSigmaZero);      
313             antinucleon->setType(Lambda);         
314           }                                       
315         }                                         
316         else if(rdm*totalppbar < KinematicsUti    
317         +KinematicsUtils::compute_xs(BFMM113,     
318         +KinematicsUtils::compute_xs(BFMM146,     
319         +KinematicsUtils::compute_xs(BFMM139,     
320           nucleon->setType(SigmaPlus);            
321           antinucleon->setType(antiSigmaPlus);    
322         }                                         
323         else if(rdm*totalppbar < KinematicsUti    
324         +KinematicsUtils::compute_xs(std::move    
325         +KinematicsUtils::compute_xs(std::move    
326         +KinematicsUtils::compute_xs(std::move    
327           nucleon->setType(SigmaMinus);           
328           antinucleon->setType(antiSigmaMinus)    
329         }                                         
330         else{                                     
331           INCL_ERROR("out of total nnbar sum i    
332         }                                         
333       }                                           
334       else{ //npbar case charge -1                
335         if(rdm*totalpnbar < BFMM488){             
336           G4double rdm2 = Random::shoot();        
337           if(rdm2 > 0.5){                         
338             nucleon->setType(Lambda);             
339             antinucleon->setType(antiSigmaPlus    
340           }                                       
341           else{                                   
342             nucleon->setType(antiLambda);         
343             antinucleon->setType(SigmaMinus);     
344           }                                       
345         }                                         
346         else{                                     
347           nucleon->setType(Lambda);               
348           antinucleon->setType(antiLambda);       
349           thirdparticle = true;                   
350           PionType = PiMinus;                     
351         }                                         
352       }                                           
353     }                                             
354                                                   
355     //now assigning momentum to the final part    
356                                                   
357     if(thirdparticle){ //three particles          
358       ParticleList list;                          
359       list.push_back(nucleon);                    
360       list.push_back(antinucleon);                
361       const ThreeVector &rcol = nucleon->getPo    
362       const ThreeVector zero;                     
363       Particle *pion = new Particle(PionType,z    
364       list.push_back(pion);                       
365                                                   
366       PhaseSpaceGenerator::generate(sqrtS, lis    
367                                                   
368       fs->addModifiedParticle(nucleon);           
369       fs->addModifiedParticle(antinucleon);       
370       fs->addCreatedParticle(pion);               
371     }                                             
372     else{//only two particles                     
373       G4double mn=nucleon->getMass();             
374       G4double my=antinucleon->getMass();         
375                                                   
376       G4double ey=(sqrtS*sqrtS+my*my-mn*mn)/(2    
377       G4double en=std::sqrt(ey*ey-my*my+mn*mn)    
378       nucleon->setEnergy(en);                     
379       antinucleon->setEnergy(ey);                 
380       G4double py=std::sqrt(ey*ey-my*my);         
381                                                   
382       ThreeVector mom_antinucleon = Random::no    
383                                                   
384       antinucleon->setMomentum(mom_antinucleon    
385       nucleon->setMomentum(-mom_antinucleon);     
386                                                   
387       fs->addModifiedParticle(nucleon);           
388       fs->addModifiedParticle(antinucleon);       
389     }                                             
390                                                   
391   }                                               
392 }                                                 
393