Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 #include "G4INCLNDeltaToDeltaLKChannel.hh" 38 #include "G4INCLNDeltaToDeltaLKChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 39 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 41 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 42 #include "G4INCLGlobals.hh" 43 #include "G4INCLLogger.hh" 43 #include "G4INCLLogger.hh" 44 #include <algorithm> 44 #include <algorithm> 45 #include "G4INCLPhaseSpaceGenerator.hh" 45 #include "G4INCLPhaseSpaceGenerator.hh" 46 46 47 namespace G4INCL { 47 namespace G4INCL { 48 48 49 const G4double NDeltaToDeltaLKChannel::angul 49 const G4double NDeltaToDeltaLKChannel::angularSlope = 2.; 50 50 51 NDeltaToDeltaLKChannel::NDeltaToDeltaLKChann 51 NDeltaToDeltaLKChannel::NDeltaToDeltaLKChannel(Particle *p1, Particle *p2) 52 : particle1(p1), particle2(p2) 52 : particle1(p1), particle2(p2) 53 {} 53 {} 54 54 55 NDeltaToDeltaLKChannel::~NDeltaToDeltaLKChan 55 NDeltaToDeltaLKChannel::~NDeltaToDeltaLKChannel(){} 56 56 57 G4double NDeltaToDeltaLKChannel::sampleDelta 57 G4double NDeltaToDeltaLKChannel::sampleDeltaMass(G4double ecm) { 58 const G4double maxDeltaMass = ecm - Partic 58 const G4double maxDeltaMass = ecm - ParticleTable::effectiveLambdaMass - ParticleTable::effectiveKaonMass - 1.0; 59 const G4double maxDeltaMassRndm = std::ata 59 const G4double maxDeltaMassRndm = std::atan((maxDeltaMass-ParticleTable::effectiveDeltaMass)*2./ParticleTable::effectiveDeltaWidth); 60 const G4double deltaMassRndmRange = maxDel 60 const G4double deltaMassRndmRange = maxDeltaMassRndm - ParticleTable::minDeltaMassRndm; 61 // assert(deltaMassRndmRange>0.); 61 // assert(deltaMassRndmRange>0.); 62 62 63 G4double y=ecm*ecm; 63 G4double y=ecm*ecm; 64 G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0 64 G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2 = (mNucleon + mPion)^2, 6.4E5 = 800^2 = (mNucleon - mPion)^2 65 G4double q3=std::pow(std::sqrt(q2), 3.); 65 G4double q3=std::pow(std::sqrt(q2), 3.); 66 const G4double f3max=q3/(q3+5.832E6); // 5 66 const G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3 = ???^3 67 G4double x; 67 G4double x; 68 68 69 G4int nTries = 0; 69 G4int nTries = 0; 70 G4bool success = false; 70 G4bool success = false; 71 while(!success) { /* Loop checking, 10.07. 71 while(!success) { /* Loop checking, 10.07.2015, D.Mancusi */ 72 if(++nTries >= 100000) { 72 if(++nTries >= 100000) { 73 INCL_WARN("NDeltaToDeltaLKChannel::sam 73 INCL_WARN("NDeltaToDeltaLKChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Minimum delta mass " 74 << ParticleTable::minDeltaMass < 74 << ParticleTable::minDeltaMass << " MeV with CM energy " << ecm << " MeV may be unphysical." << '\n'); 75 return ParticleTable::minDeltaMass; 75 return ParticleTable::minDeltaMass; 76 } 76 } 77 77 78 G4double rndm = ParticleTable::minDeltaM 78 G4double rndm = ParticleTable::minDeltaMassRndm + Random::shoot() * deltaMassRndmRange; 79 y = std::tan(rndm); 79 y = std::tan(rndm); 80 x = ParticleTable::effectiveDeltaMass + 80 x = ParticleTable::effectiveDeltaMass + 0.5*ParticleTable::effectiveDeltaWidth*y; 81 // assert(x>=ParticleTable::minDeltaMass && ec 81 // assert(x>=ParticleTable::minDeltaMass && ecm >= x + ParticleTable::effectiveLambdaMass + ParticleTable::effectiveKaonMass + 1.0); 82 82 83 // generation of the delta mass with the 83 // generation of the delta mass with the penetration factor 84 // (see prc56(1997)2431) 84 // (see prc56(1997)2431) 85 y=x*x; 85 y=x*x; 86 q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1. 86 q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2 = (mNucleon + mPion)^2, 6.4E5 = 800^2 = (mNucleon - mPion)^2 87 q3=std::pow(std::sqrt(q2), 3.); 87 q3=std::pow(std::sqrt(q2), 3.); 88 const G4double f3=q3/(q3+5.832E6); // 5. 88 const G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3 = ???^3 89 rndm = Random::shoot(); 89 rndm = Random::shoot(); 90 if (rndm*f3max < f3) 90 if (rndm*f3max < f3) 91 success = true; 91 success = true; 92 } 92 } 93 return x; 93 return x; 94 } 94 } 95 95 96 void NDeltaToDeltaLKChannel::fillFinalState( 96 void NDeltaToDeltaLKChannel::fillFinalState(FinalState *fs) { 97 // D++ p -> L K+ D++ (4) 97 // D++ p -> L K+ D++ (4) 98 // 98 // 99 // D++ n -> L K+ D+ (3) 99 // D++ n -> L K+ D+ (3) 100 // D++ n -> L K0 D++ (4) 100 // D++ n -> L K0 D++ (4) 101 // 101 // 102 // D+ p -> L K0 D++ (3) 102 // D+ p -> L K0 D++ (3) 103 // D+ p -> L K+ D+ (2) 103 // D+ p -> L K+ D+ (2) 104 // 104 // 105 // D+ n -> L K+ D0 (4) 105 // D+ n -> L K+ D0 (4) 106 // D+ n -> L K0 D+ (2) 106 // D+ n -> L K0 D+ (2) 107 107 108 Particle *delta; 108 Particle *delta; 109 Particle *nucleon; 109 Particle *nucleon; 110 110 111 if (particle1->isResonance()) { 111 if (particle1->isResonance()) { 112 delta = particle1; 112 delta = particle1; 113 nucleon = particle2; 113 nucleon = particle2; 114 } 114 } 115 else { 115 else { 116 delta = particle2; 116 delta = particle2; 117 nucleon = particle1; 117 nucleon = particle1; 118 } 118 } 119 119 120 120 121 const G4double sqrtS = KinematicsUtils::to 121 const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2); 122 122 123 const G4int iso = ParticleTable::getIsospi 123 const G4int iso = ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType()); 124 const G4int iso_d = ParticleTable::getIsos 124 const G4int iso_d = ParticleTable::getIsospin(delta->getType()); 125 const G4double rdm = Random::shoot(); 125 const G4double rdm = Random::shoot(); 126 126 127 /* const G4double m1 = particle1->getMass() 127 /* const G4double m1 = particle1->getMass(); 128 const G4double m2 = particle2->getMass(); 128 const G4double m2 = particle2->getMass(); 129 const G4double pLab = KinematicsUtils::mom 129 const G4double pLab = KinematicsUtils::momentumInLab(particle1, particle2);*/ 130 130 131 ParticleType KaonType; 131 ParticleType KaonType; 132 ParticleType DeltaType; 132 ParticleType DeltaType; 133 nucleon->setType(Lambda); 133 nucleon->setType(Lambda); 134 134 135 if(std::abs(iso) == 4){// D++ p 135 if(std::abs(iso) == 4){// D++ p 136 KaonType = ParticleTable::getKaonType(is 136 KaonType = ParticleTable::getKaonType(iso/4); 137 DeltaType = ParticleTable::getDeltaType( 137 DeltaType = ParticleTable::getDeltaType(3*iso/4); 138 } 138 } 139 else if(iso == 0){// D+ n 139 else if(iso == 0){// D+ n 140 if(rdm*3 < 2){ 140 if(rdm*3 < 2){ 141 KaonType = ParticleTable::getKaonType( 141 KaonType = ParticleTable::getKaonType(iso_d); 142 DeltaType = ParticleTable::getDeltaTyp 142 DeltaType = ParticleTable::getDeltaType(-iso_d); 143 } 143 } 144 else{ 144 else{ 145 KaonType = ParticleTable::getKaonType( 145 KaonType = ParticleTable::getKaonType(-iso_d); 146 DeltaType = ParticleTable::getDeltaTyp 146 DeltaType = ParticleTable::getDeltaType(iso_d); 147 } 147 } 148 } 148 } 149 else if(ParticleTable::getIsospin(particle 149 else if(ParticleTable::getIsospin(particle1->getType()) == ParticleTable::getIsospin(particle2->getType())){// D+ p 150 if(rdm*5 < 3){ 150 if(rdm*5 < 3){ 151 KaonType = ParticleTable::getKaonType( 151 KaonType = ParticleTable::getKaonType(-iso/2); 152 DeltaType = ParticleTable::getDeltaTyp 152 DeltaType = ParticleTable::getDeltaType(3*iso/2); 153 } 153 } 154 else{ 154 else{ 155 KaonType = ParticleTable::getKaonType( 155 KaonType = ParticleTable::getKaonType(iso/2); 156 DeltaType = ParticleTable::getDeltaTyp 156 DeltaType = ParticleTable::getDeltaType(iso/2); 157 } 157 } 158 } 158 } 159 else{// D++ n 159 else{// D++ n 160 if(rdm*7 < 3){ 160 if(rdm*7 < 3){ 161 KaonType = ParticleTable::getKaonType( 161 KaonType = ParticleTable::getKaonType(iso/2); 162 DeltaType = ParticleTable::getDeltaTyp 162 DeltaType = ParticleTable::getDeltaType(iso/2); 163 } 163 } 164 else{ 164 else{ 165 KaonType = ParticleTable::getKaonType( 165 KaonType = ParticleTable::getKaonType(-iso/2); 166 DeltaType = ParticleTable::getDeltaTyp 166 DeltaType = ParticleTable::getDeltaType(3*iso/2); 167 } 167 } 168 } 168 } 169 169 170 delta->setType(DeltaType); 170 delta->setType(DeltaType); 171 delta->setMass(sampleDeltaMass(sqrtS)); 171 delta->setMass(sampleDeltaMass(sqrtS)); 172 172 173 ParticleList list; 173 ParticleList list; 174 list.push_back(delta); 174 list.push_back(delta); 175 list.push_back(nucleon); 175 list.push_back(nucleon); 176 const ThreeVector &rcol = nucleon->getPosi 176 const ThreeVector &rcol = nucleon->getPosition(); 177 const ThreeVector zero; 177 const ThreeVector zero; 178 Particle *kaon = new Particle(KaonType,zer 178 Particle *kaon = new Particle(KaonType,zero,rcol); 179 list.push_back(kaon); 179 list.push_back(kaon); 180 180 181 if(Random::shoot()<0.5) PhaseSpaceGenerato 181 if(Random::shoot()<0.5) PhaseSpaceGenerator::generateBiased(sqrtS, list, 0, angularSlope); 182 else PhaseSpaceGenerator::generateBiased(s 182 else PhaseSpaceGenerator::generateBiased(sqrtS, list, 1, angularSlope); 183 183 184 184 185 fs->addModifiedParticle(delta); 185 fs->addModifiedParticle(delta); 186 fs->addModifiedParticle(nucleon); 186 fs->addModifiedParticle(nucleon); 187 fs->addCreatedParticle(kaon); 187 fs->addCreatedParticle(kaon); 188 188 189 } 189 } 190 } 190 } 191 191