Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLKinematicsUtils.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/inclxx/incl_physics/src/G4INCLKinematicsUtils.cc (Version 11.3.0) and /processes/hadronic/models/inclxx/incl_physics/src/G4INCLKinematicsUtils.cc (Version 9.6)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // INCL++ intra-nuclear cascade model              26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France           <<  27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
 28 // Joseph Cugnon, University of Liege, Belgium <<  28 // Davide Mancusi, CEA
 29 // Jean-Christophe David, CEA-Saclay, France   <<  29 // Alain Boudard, CEA
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H <<  30 // Sylvie Leray, CEA
 31 // Sylvie Leray, CEA-Saclay, France            <<  31 // Joseph Cugnon, University of Liege
 32 // Davide Mancusi, CEA-Saclay, France          <<  32 //
                                                   >>  33 // INCL++ revision: v5.1.8
 33 //                                                 34 //
 34 #define INCLXX_IN_GEANT4_MODE 1                    35 #define INCLXX_IN_GEANT4_MODE 1
 35                                                    36 
 36 #include "globals.hh"                              37 #include "globals.hh"
 37                                                    38 
 38 #include "G4INCLKinematicsUtils.hh"                39 #include "G4INCLKinematicsUtils.hh"
 39 #include "G4INCLParticleTable.hh"                  40 #include "G4INCLParticleTable.hh"
 40                                                    41 
 41 namespace G4INCL {                                 42 namespace G4INCL {
 42                                                    43 
 43   namespace KinematicsUtils {                  <<  44   void KinematicsUtils::transformToLocalEnergyFrame(Nucleus const * const n, Particle * const p) {
 44                                                <<  45     const G4double localEnergy = KinematicsUtils::getLocalEnergy(n, p);
 45   G4double fiveParFit (const G4double a, const << 
 46     return a+b*std::pow(x, c)+d*std::log(x)+e* << 
 47   }                                            << 
 48                                                << 
 49   G4double compute_xs(const std::vector<G4doub << 
 50       G4double sigma = 0.;                     << 
 51       G4double Ethreshold = 0.0;               << 
 52       if(coefficients.size() == 6){            << 
 53           Ethreshold = coefficients[5];        << 
 54           if(Ethreshold >= 5){ //there are no  << 
 55               if(pLab > Ethreshold){ // E is E << 
 56                   return 0.;                   << 
 57               }                                << 
 58           }                                    << 
 59           else{                                << 
 60               if(pLab < Ethreshold){           << 
 61                   return 0.;                   << 
 62               }                                << 
 63           }                                    << 
 64       }                                        << 
 65                                                << 
 66       sigma = fiveParFit(coefficients[0],coeff << 
 67       if(sigma < 0.){                          << 
 68           return 0.;                           << 
 69       };                                       << 
 70       return sigma;                            << 
 71   }                                            << 
 72                                                << 
 73   void transformToLocalEnergyFrame(Nucleus con << 
 74 // assert(!p->isMeson() && !p->isPhoton() && ! << 
 75     const G4double localEnergy = getLocalEnerg << 
 76     const G4double localTotalEnergy = p->getEn     46     const G4double localTotalEnergy = p->getEnergy() - localEnergy;
 77     p->setEnergy(localTotalEnergy);                47     p->setEnergy(localTotalEnergy);
 78     p->adjustMomentumFromEnergy();                 48     p->adjustMomentumFromEnergy();
 79   }                                                49   }
 80                                                    50 
 81   G4double getLocalEnergy(Nucleus const * cons <<  51   G4double KinematicsUtils::getLocalEnergy(Nucleus const * const n, Particle * const p) {
 82 // assert(!p->isMeson() && !p->isPhoton() && ! <<  52 // assert(!p->isPion()); // No local energy for pions
                                                   >>  53 
 83     G4double vloc = 0.0;                           54     G4double vloc = 0.0;
 84     const G4double r = p->getPosition().mag();     55     const G4double r = p->getPosition().mag();
 85     const G4double mass = p->getMass();            56     const G4double mass = p->getMass();
 86                                                    57 
 87     // Local energy is constant outside the su     58     // Local energy is constant outside the surface
 88     if(r > n->getUniverseRadius()) {               59     if(r > n->getUniverseRadius()) {
 89       INCL_WARN("Tried to evaluate local energ <<  60       WARN("Tried to evaluate local energy for a particle outside the maximum radius."
 90             << '\n' << p->print() << '\n'      <<  61             << std::endl << p->print() << std::endl
 91             << "Maximum radius = " << n->getDe <<  62             << "Maximum radius = " << n->getDensity()->getMaximumRadius() << std::endl
 92             << "Universe radius = " << n->getU <<  63             << "Universe radius = " << n->getUniverseRadius() << std::endl);
 93       return 0.0;                                  64       return 0.0;
 94     }                                              65     }
 95                                                    66 
 96     G4double pfl0 = 0.0;                           67     G4double pfl0 = 0.0;
 97     const ParticleType t = p->getType();       << 
 98     const G4double kinE = p->getKineticEnergy(     68     const G4double kinE = p->getKineticEnergy();
 99     if(kinE <= n->getPotential()->getFermiEner <<  69     if(kinE <= n->getPotential()->getFermiEnergy(p->getType())) {
100       pfl0 = n->getPotential()->getFermiMoment     70       pfl0 = n->getPotential()->getFermiMomentum(p);
101     } else {                                       71     } else {
102       const G4double tf0 = p->getPotentialEner     72       const G4double tf0 = p->getPotentialEnergy() - n->getPotential()->getSeparationEnergy(p);
103       if(tf0<0.0) return 0.0;                      73       if(tf0<0.0) return 0.0;
104       pfl0 = std::sqrt(tf0*(tf0 + 2.0*mass));  <<  74       pfl0 = std::sqrt(tf0*(tf0 + 2.0*mass));
105     }                                              75     }
106     const G4double pReflection = p->getReflect <<  76     const G4double pl = pfl0*n->getDensity()->getMaxTFromR(r);
107     const G4double reflectionRadius = n->getDe << 
108     const G4double pNominal = p->getMomentum() << 
109     const G4double nominalReflectionRadius = n << 
110     const G4double pl = pfl0*n->getDensity()-> << 
111     vloc = std::sqrt(pl*pl + mass*mass) - mass     77     vloc = std::sqrt(pl*pl + mass*mass) - mass;
112                                                    78 
113     return vloc;                                   79     return vloc;
114   }                                                80   }
115                                                    81 
116   ThreeVector makeBoostVector(Particle const * <<  82   ThreeVector KinematicsUtils::makeBoostVector(Particle const * const p1, Particle const * const p2){
117     const G4double totalEnergy = p1->getEnergy     83     const G4double totalEnergy = p1->getEnergy() + p2->getEnergy();
118     return ((p1->getMomentum() + p2->getMoment     84     return ((p1->getMomentum() + p2->getMomentum())/totalEnergy);
119   }                                                85   }
120                                                    86 
121   G4double totalEnergyInCM(Particle const * co <<  87   G4double KinematicsUtils::totalEnergyInCM(Particle const * const p1, Particle const * const p2){
122     return std::sqrt(squareTotalEnergyInCM(p1,     88     return std::sqrt(squareTotalEnergyInCM(p1,p2));
123   }                                                89   }
124                                                    90 
125   G4double squareTotalEnergyInCM(Particle cons <<  91   G4double KinematicsUtils::squareTotalEnergyInCM(Particle const * const p1, Particle const * const p2) {
126     G4double beta2 = makeBoostVector(p1, p2).m <<  92     G4double beta2 = KinematicsUtils::makeBoostVector(p1, p2).mag2();
127     if(beta2 > 1.0) {                              93     if(beta2 > 1.0) {
128       INCL_ERROR("squareTotalEnergyInCM: beta2 <<  94       ERROR("KinematicsUtils::squareTotalEnergyInCM: beta2 == " << beta2 << " > 1.0" << std::endl);
129       beta2 = 0.0;                                 95       beta2 = 0.0;
130     }                                              96     }
131     return (1.0 - beta2)*std::pow(p1->getEnerg     97     return (1.0 - beta2)*std::pow(p1->getEnergy() + p2->getEnergy(), 2);
132   }                                                98   }
133                                                    99 
134   G4double momentumInCM(Particle const * const << 100   G4double KinematicsUtils::momentumInCM(Particle const * const p1, Particle const * const p2) {
135     const G4double m1sq = std::pow(p1->getMass    101     const G4double m1sq = std::pow(p1->getMass(),2);
136     const G4double m2sq = std::pow(p2->getMass    102     const G4double m2sq = std::pow(p2->getMass(),2);
137     const G4double z = p1->getEnergy()*p2->get    103     const G4double z = p1->getEnergy()*p2->getEnergy() - p1->getMomentum().dot(p2->getMomentum());
138     G4double pcm2 = (z*z-m1sq*m2sq)/(2*z+m1sq+    104     G4double pcm2 = (z*z-m1sq*m2sq)/(2*z+m1sq+m2sq);
139     if(pcm2 < 0.0) {                              105     if(pcm2 < 0.0) {
140       INCL_ERROR("momentumInCM: pcm2 == " << p << 106       ERROR("KinematicsUtils::momentumInCM: pcm2 == " << pcm2 << " < 0.0" << std::endl);
141       pcm2 = 0.0;                                 107       pcm2 = 0.0;
142     }                                             108     }
143     return std::sqrt(pcm2);                       109     return std::sqrt(pcm2);
144   }                                               110   }
145                                                   111 
146   G4double momentumInCM(const G4double E, cons << 112   G4double KinematicsUtils::momentumInCM(const G4double E, const G4double M1, const G4double M2) {
147     return 0.5*std::sqrt((E*E - std::pow(M1 +     113     return 0.5*std::sqrt((E*E - std::pow(M1 + M2, 2))
148        *(E*E - std::pow(M1 - M2, 2)))/E;          114        *(E*E - std::pow(M1 - M2, 2)))/E;
149   }                                               115   }
150                                                   116 
151   G4double momentumInLab(const G4double s, con << 117   G4double KinematicsUtils::momentumInLab(const G4double s, const G4double m1, const G4double m2) {
152     const G4double m1sq = m1*m1;                  118     const G4double m1sq = m1*m1;
153     const G4double m2sq = m2*m2;                  119     const G4double m2sq = m2*m2;
154     G4double plab2 = (s*s-2*s*(m1sq+m2sq)+(m1s    120     G4double plab2 = (s*s-2*s*(m1sq+m2sq)+(m1sq-m2sq)*(m1sq-m2sq))/(4*m2sq);
155     if(plab2 < 0.0) {                             121     if(plab2 < 0.0) {
156       INCL_ERROR("momentumInLab: plab2 == " << << 122       ERROR("KinematicsUtils::momentumInLab: plab2 == " << plab2 << " < 0.0; m1sq == " << m1sq << "; m2sq == " << m2sq << "; s == " << s << std::endl);
157       plab2 = 0.0;                                123       plab2 = 0.0;
158     }                                             124     }
159     return std::sqrt(plab2);                      125     return std::sqrt(plab2);
160   }                                               126   }
161                                                   127 
162   G4double momentumInLab(Particle const * cons << 128   G4double KinematicsUtils::momentumInLab(Particle const * const p1, Particle const * const p2) {
163     const G4double m1 = p1->getMass();            129     const G4double m1 = p1->getMass();
164     const G4double m2 = p2->getMass();            130     const G4double m2 = p2->getMass();
165     const G4double s = squareTotalEnergyInCM(p    131     const G4double s = squareTotalEnergyInCM(p1, p2);
166     return momentumInLab(s, m1, m2);           << 132     return KinematicsUtils::momentumInLab(s, m1, m2);
167   }                                               133   }
168                                                   134 
169   G4double sumTotalEnergies(const ParticleList << 135   G4double KinematicsUtils::sumTotalEnergies(const ParticleList &pl) {
170     G4double E = 0.0;                             136     G4double E = 0.0;
171     for(ParticleIter i=pl.begin(), e=pl.end(); << 137     for(ParticleIter i = pl.begin(); i != pl.end(); ++i) {
172       E += (*i)->getEnergy();                     138       E += (*i)->getEnergy();
173     }                                             139     }
174     return E;                                     140     return E;
175   }                                               141   }
176                                                   142 
177   ThreeVector sumMomenta(const ParticleList &p << 143   ThreeVector KinematicsUtils::sumMomenta(const ParticleList &pl) {
178     ThreeVector p(0.0, 0.0, 0.0);                 144     ThreeVector p(0.0, 0.0, 0.0);
179     for(ParticleIter i=pl.begin(), e=pl.end(); << 145     for(ParticleIter i = pl.begin(); i != pl.end(); ++i) {
180       p += (*i)->getMomentum();                   146       p += (*i)->getMomentum();
181     }                                             147     }
182     return p;                                     148     return p;
183   }                                               149   }
184                                                   150 
185   G4double energy(const ThreeVector &p, const  << 151   G4double KinematicsUtils::energy(const ThreeVector &p, const G4double m) {
186     return std::sqrt(p.mag2() + m*m);             152     return std::sqrt(p.mag2() + m*m);
187   }                                               153   }
188                                                   154 
189   G4double invariantMass(const G4double E, con << 155   G4double KinematicsUtils::invariantMass(const G4double E, const ThreeVector & p) {
190     return std::sqrt(squareInvariantMass(E, p) << 156     return std::sqrt(E*E - p.mag2());
191   }                                               157   }
192                                                   158 
193   G4double squareInvariantMass(const G4double  << 159   G4double KinematicsUtils::gammaFromKineticEnergy(const ParticleSpecies &p, const G4double EKin) {
194     return E*E - p.mag2();                     << 
195   }                                            << 
196                                                << 
197   G4double gammaFromKineticEnergy(const Partic << 
198     G4double mass;                                160     G4double mass;
199     if(p.theType==Composite)                      161     if(p.theType==Composite)
200       mass = ParticleTable::getTableMass(p.the << 162       mass = ParticleTable::getTableMass(p.theA, p.theZ);
201     else                                          163     else
202       mass = ParticleTable::getTableParticleMa    164       mass = ParticleTable::getTableParticleMass(p.theType);
203     return (1.+EKin/mass);                        165     return (1.+EKin/mass);
204   }                                            << 
205                                                << 
206   }                                               166   }
207                                                   167 
208 }                                                 168 }
209                                                   169