Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLKinematicsUtils.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/inclxx/incl_physics/src/G4INCLKinematicsUtils.cc (Version 11.3.0) and /processes/hadronic/models/inclxx/incl_physics/src/G4INCLKinematicsUtils.cc (Version 3.0)


  1 //                                                  1 
  2 // *******************************************    
  3 // * License and Disclaimer                       
  4 // *                                              
  5 // * The  Geant4 software  is  copyright of th    
  6 // * the Geant4 Collaboration.  It is provided    
  7 // * conditions of the Geant4 Software License    
  8 // * LICENSE and available at  http://cern.ch/    
  9 // * include a list of copyright holders.         
 10 // *                                              
 11 // * Neither the authors of this software syst    
 12 // * institutes,nor the agencies providing fin    
 13 // * work  make  any representation or  warran    
 14 // * regarding  this  software system or assum    
 15 // * use.  Please see the license in the file     
 16 // * for the full disclaimer and the limitatio    
 17 // *                                              
 18 // * This  code  implementation is the result     
 19 // * technical work of the GEANT4 collaboratio    
 20 // * By using,  copying,  modifying or  distri    
 21 // * any work based  on the software)  you  ag    
 22 // * use  in  resulting  scientific  publicati    
 23 // * acceptance of all terms of the Geant4 Sof    
 24 // *******************************************    
 25 //                                                
 26 // INCL++ intra-nuclear cascade model             
 27 // Alain Boudard, CEA-Saclay, France              
 28 // Joseph Cugnon, University of Liege, Belgium    
 29 // Jean-Christophe David, CEA-Saclay, France      
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H    
 31 // Sylvie Leray, CEA-Saclay, France               
 32 // Davide Mancusi, CEA-Saclay, France             
 33 //                                                
 34 #define INCLXX_IN_GEANT4_MODE 1                   
 35                                                   
 36 #include "globals.hh"                             
 37                                                   
 38 #include "G4INCLKinematicsUtils.hh"               
 39 #include "G4INCLParticleTable.hh"                 
 40                                                   
 41 namespace G4INCL {                                
 42                                                   
 43   namespace KinematicsUtils {                     
 44                                                   
 45   G4double fiveParFit (const G4double a, const    
 46     return a+b*std::pow(x, c)+d*std::log(x)+e*    
 47   }                                               
 48                                                   
 49   G4double compute_xs(const std::vector<G4doub    
 50       G4double sigma = 0.;                        
 51       G4double Ethreshold = 0.0;                  
 52       if(coefficients.size() == 6){               
 53           Ethreshold = coefficients[5];           
 54           if(Ethreshold >= 5){ //there are no     
 55               if(pLab > Ethreshold){ // E is E    
 56                   return 0.;                      
 57               }                                   
 58           }                                       
 59           else{                                   
 60               if(pLab < Ethreshold){              
 61                   return 0.;                      
 62               }                                   
 63           }                                       
 64       }                                           
 65                                                   
 66       sigma = fiveParFit(coefficients[0],coeff    
 67       if(sigma < 0.){                             
 68           return 0.;                              
 69       };                                          
 70       return sigma;                               
 71   }                                               
 72                                                   
 73   void transformToLocalEnergyFrame(Nucleus con    
 74 // assert(!p->isMeson() && !p->isPhoton() && !    
 75     const G4double localEnergy = getLocalEnerg    
 76     const G4double localTotalEnergy = p->getEn    
 77     p->setEnergy(localTotalEnergy);               
 78     p->adjustMomentumFromEnergy();                
 79   }                                               
 80                                                   
 81   G4double getLocalEnergy(Nucleus const * cons    
 82 // assert(!p->isMeson() && !p->isPhoton() && !    
 83     G4double vloc = 0.0;                          
 84     const G4double r = p->getPosition().mag();    
 85     const G4double mass = p->getMass();           
 86                                                   
 87     // Local energy is constant outside the su    
 88     if(r > n->getUniverseRadius()) {              
 89       INCL_WARN("Tried to evaluate local energ    
 90             << '\n' << p->print() << '\n'         
 91             << "Maximum radius = " << n->getDe    
 92             << "Universe radius = " << n->getU    
 93       return 0.0;                                 
 94     }                                             
 95                                                   
 96     G4double pfl0 = 0.0;                          
 97     const ParticleType t = p->getType();          
 98     const G4double kinE = p->getKineticEnergy(    
 99     if(kinE <= n->getPotential()->getFermiEner    
100       pfl0 = n->getPotential()->getFermiMoment    
101     } else {                                      
102       const G4double tf0 = p->getPotentialEner    
103       if(tf0<0.0) return 0.0;                     
104       pfl0 = std::sqrt(tf0*(tf0 + 2.0*mass));     
105     }                                             
106     const G4double pReflection = p->getReflect    
107     const G4double reflectionRadius = n->getDe    
108     const G4double pNominal = p->getMomentum()    
109     const G4double nominalReflectionRadius = n    
110     const G4double pl = pfl0*n->getDensity()->    
111     vloc = std::sqrt(pl*pl + mass*mass) - mass    
112                                                   
113     return vloc;                                  
114   }                                               
115                                                   
116   ThreeVector makeBoostVector(Particle const *    
117     const G4double totalEnergy = p1->getEnergy    
118     return ((p1->getMomentum() + p2->getMoment    
119   }                                               
120                                                   
121   G4double totalEnergyInCM(Particle const * co    
122     return std::sqrt(squareTotalEnergyInCM(p1,    
123   }                                               
124                                                   
125   G4double squareTotalEnergyInCM(Particle cons    
126     G4double beta2 = makeBoostVector(p1, p2).m    
127     if(beta2 > 1.0) {                             
128       INCL_ERROR("squareTotalEnergyInCM: beta2    
129       beta2 = 0.0;                                
130     }                                             
131     return (1.0 - beta2)*std::pow(p1->getEnerg    
132   }                                               
133                                                   
134   G4double momentumInCM(Particle const * const    
135     const G4double m1sq = std::pow(p1->getMass    
136     const G4double m2sq = std::pow(p2->getMass    
137     const G4double z = p1->getEnergy()*p2->get    
138     G4double pcm2 = (z*z-m1sq*m2sq)/(2*z+m1sq+    
139     if(pcm2 < 0.0) {                              
140       INCL_ERROR("momentumInCM: pcm2 == " << p    
141       pcm2 = 0.0;                                 
142     }                                             
143     return std::sqrt(pcm2);                       
144   }                                               
145                                                   
146   G4double momentumInCM(const G4double E, cons    
147     return 0.5*std::sqrt((E*E - std::pow(M1 +     
148        *(E*E - std::pow(M1 - M2, 2)))/E;          
149   }                                               
150                                                   
151   G4double momentumInLab(const G4double s, con    
152     const G4double m1sq = m1*m1;                  
153     const G4double m2sq = m2*m2;                  
154     G4double plab2 = (s*s-2*s*(m1sq+m2sq)+(m1s    
155     if(plab2 < 0.0) {                             
156       INCL_ERROR("momentumInLab: plab2 == " <<    
157       plab2 = 0.0;                                
158     }                                             
159     return std::sqrt(plab2);                      
160   }                                               
161                                                   
162   G4double momentumInLab(Particle const * cons    
163     const G4double m1 = p1->getMass();            
164     const G4double m2 = p2->getMass();            
165     const G4double s = squareTotalEnergyInCM(p    
166     return momentumInLab(s, m1, m2);              
167   }                                               
168                                                   
169   G4double sumTotalEnergies(const ParticleList    
170     G4double E = 0.0;                             
171     for(ParticleIter i=pl.begin(), e=pl.end();    
172       E += (*i)->getEnergy();                     
173     }                                             
174     return E;                                     
175   }                                               
176                                                   
177   ThreeVector sumMomenta(const ParticleList &p    
178     ThreeVector p(0.0, 0.0, 0.0);                 
179     for(ParticleIter i=pl.begin(), e=pl.end();    
180       p += (*i)->getMomentum();                   
181     }                                             
182     return p;                                     
183   }                                               
184                                                   
185   G4double energy(const ThreeVector &p, const     
186     return std::sqrt(p.mag2() + m*m);             
187   }                                               
188                                                   
189   G4double invariantMass(const G4double E, con    
190     return std::sqrt(squareInvariantMass(E, p)    
191   }                                               
192                                                   
193   G4double squareInvariantMass(const G4double     
194     return E*E - p.mag2();                        
195   }                                               
196                                                   
197   G4double gammaFromKineticEnergy(const Partic    
198     G4double mass;                                
199     if(p.theType==Composite)                      
200       mass = ParticleTable::getTableMass(p.the    
201     else                                          
202       mass = ParticleTable::getTableParticleMa    
203     return (1.+EKin/mass);                        
204   }                                               
205                                                   
206   }                                               
207                                                   
208 }                                                 
209