Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLEtaNToPiNChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /processes/hadronic/models/inclxx/incl_physics/src/G4INCLEtaNToPiNChannel.cc (Version 11.3.0) and /processes/hadronic/models/inclxx/incl_physics/src/G4INCLEtaNToPiNChannel.cc (Version 10.3.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // INCL++ intra-nuclear cascade model              26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France               27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium     28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France       29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H     30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France                31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France              32 // Davide Mancusi, CEA-Saclay, France
 33 //                                                 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1                    34 #define INCLXX_IN_GEANT4_MODE 1
 35                                                    35 
 36 #include "globals.hh"                              36 #include "globals.hh"
 37                                                    37 
 38 #include "G4INCLEtaNToPiNChannel.hh"               38 #include "G4INCLEtaNToPiNChannel.hh"
 39 #include "G4INCLKinematicsUtils.hh"                39 #include "G4INCLKinematicsUtils.hh"
 40 #include "G4INCLBinaryCollisionAvatar.hh"          40 #include "G4INCLBinaryCollisionAvatar.hh"
 41 #include "G4INCLRandom.hh"                         41 #include "G4INCLRandom.hh"
 42 #include "G4INCLGlobals.hh"                        42 #include "G4INCLGlobals.hh"
 43 #include "G4INCLLogger.hh"                         43 #include "G4INCLLogger.hh"
 44                                                    44 
 45 namespace G4INCL {                                 45 namespace G4INCL {
 46                                                <<  46 
 47     EtaNToPiNChannel::EtaNToPiNChannel(Particl     47     EtaNToPiNChannel::EtaNToPiNChannel(Particle *p1, Particle *p2)
 48     : particle1(p1), particle2(p2)                 48     : particle1(p1), particle2(p2)
 49     {                                              49     {
 50                                                <<  50 
 51     }                                              51     }
 52                                                <<  52 
 53     EtaNToPiNChannel::~EtaNToPiNChannel(){         53     EtaNToPiNChannel::~EtaNToPiNChannel(){
 54                                                <<  54 
 55     }                                              55     }
 56                                                <<  56 
 57     void EtaNToPiNChannel::fillFinalState(Fina     57     void EtaNToPiNChannel::fillFinalState(FinalState *fs) {
 58         Particle * nucleon;                        58         Particle * nucleon;
 59         Particle * eta;                            59         Particle * eta;
 60         if(particle1->isNucleon()) {               60         if(particle1->isNucleon()) {
 61             nucleon = particle1;                   61             nucleon = particle1;
 62             eta = particle2;                       62             eta = particle2;
 63         } else {                                   63         } else {
 64             nucleon = particle2;                   64             nucleon = particle2;
 65             eta = particle1;                       65             eta = particle1;
 66         }                                          66         }
 67                                                << 
 68         G4double plab=KinematicsUtils::momentu << 
 69                                                    67 
 70         const G4double r2 = Random::shoot();   <<  68     const G4double r2 = Random::shoot();
 71         if (nucleon->getType() == Neutron) {   <<  69     if (nucleon->getType() == Neutron) {
 72             if (r2*3. < 2.) {                  <<  70       if (r2*3. < 2.) {
 73                 nucleon->setType(Proton);      <<  71         nucleon->setType(Proton);
 74                 eta->setType(PiMinus);         <<  72         eta->setType(PiMinus);
 75             }                                  <<  73       }
 76             else {                             <<  74       else {
 77                 nucleon->setType(Neutron);     <<  75         nucleon->setType(Neutron);
 78                 eta->setType(PiZero);          <<  76         eta->setType(PiZero);
 79             }                                  <<  77       }
 80         }                                      <<  78     }
 81         else {                                 <<  79     else {
 82             if (r2*3. < 2.) {                  <<  80       if (r2*3. < 2.) {
 83                 nucleon->setType(Neutron);     <<  81         nucleon->setType(Neutron);
 84                 eta->setType(PiPlus);          <<  82         eta->setType(PiPlus);
 85             }                                  <<  83       }
 86             else {                             <<  84       else {
 87                 nucleon->setType(Proton);      <<  85         nucleon->setType(Proton);
 88                 eta->setType(PiZero);          <<  86         eta->setType(PiZero);
 89             }                                  <<  87       }
 90         }                                      <<  88     }
 91                                                <<  89     
 92         G4double sh=nucleon->getEnergy()+eta-> <<  90     G4double sh=nucleon->getEnergy()+eta->getEnergy();
 93         G4double mn=nucleon->getMass();        <<  91     G4double mn=nucleon->getMass();
 94         G4double me=eta->getMass();            <<  92     G4double me=eta->getMass();
 95         G4double en=(sh*sh+mn*mn-me*me)/(2*sh) <<  93     G4double en=(sh*sh+mn*mn-me*me)/(2*sh);
 96         nucleon->setEnergy(en);                <<  94     nucleon->setEnergy(en);
 97         G4double ee=std::sqrt(en*en-mn*mn+me*m <<  95     G4double ee=std::sqrt(en*en-mn*mn+me*me);
 98         eta->setEnergy(ee);                    <<  96     eta->setEnergy(ee);
 99         G4double pn=std::sqrt(en*en-mn*mn);    <<  97     G4double pn=std::sqrt(en*en-mn*mn);
100                                                <<  98 /* isotropy
101         const G4double pi=std::acos(-1.0);     <<  99 
102         G4double x1;                           << 100     ThreeVector mom_nucleon = Random::normVector(pn);
103         G4double u1;                           << 101 
104         G4double fteta;                        << 102  nucleon->setMomentum(mom_nucleon);
105         G4double teta;                         << 103  eta->setMomentum(-mom_nucleon);
106         G4double fi;                           << 104 */
107                                                << 105 
108         G4double a0;                           << 106 // real distribution (from PRC 78, 025204 (2008))  --- detailed balance from pi nucleon --> eta nucleon 
109         G4double a1;                           << 107      
110         G4double a2;                           << 108      
111         G4double a3;                           << 109      G4double ECM=G4INCL::KinematicsUtils::totalEnergyInCM(particle1,particle2);
112         G4double a4;                           << 110      
113         G4double a5;                           << 111      const G4double pi=std::acos(-1.0);   
114         G4double a6;                           << 112      G4double x1;
115                                                << 113      G4double u1;
116         if (plab > 1400.) plab=1400.; // no in << 114      G4double fteta;
117         G4double p6=std::pow(plab, 6);         << 115      G4double teta;
118         G4double p5=std::pow(plab, 5);         << 116      G4double fi;
119         G4double p4=std::pow(plab, 4);         << 117      
120         G4double p3=std::pow(plab, 3);         << 118      if (ECM < 1650.) {
121         G4double p2=std::pow(plab, 2);         << 119       // below 1650 MeV - angular distribution (x=cos(theta): ax^2+bx+c   
122         G4double p1=plab;                      << 120       
123                                                << 121       G4double f1= -0.0000288627*ECM*ECM+0.09155289*ECM-72.25436;  // f(1) that is the maximum (fit on experimental data)
124         // a6                                  << 122       G4double b1=(f1-(f1/(1.5-0.5*std::pow((ECM-1580.)/95.,2))))/2.; // ideas: 1) f(-1)=0.5f(1); 2) "power term" flattens the distribution away from ECM=1580 MeV
125         if (plab <= 600.) {                    << 123       G4double a1=2.5*b1; // minimum at cos(theta) = -0.2
126             a6=5.721872E-18*p6 - 1.063594E-14* << 124       G4double c1=f1-3.5*b1;
127             7.812226E-12*p4 - 2.947343E-09*p3  << 125       
128             5.955500E-07*p2 - 6.081534E-05*p1  << 126       G4double interg1=2.*a1/3. +2.*c1; // (integral to normalize)   
129         }                                      << 127       
130         else {                                 << 128       G4int passe1=0;
131             a6=1.549323E-18*p6 - 9.570613E-15* << 129       while (passe1==0) {
132             2.428560E-11*p4 - 3.237490E-08*p3  << 130        // Sample x from -1 to 1
133             2.385312E-05*p2 - 9.167580E-03*p1  << 131        x1=Random::shoot();
134         }                                      << 132        if (Random::shoot() > 0.5) x1=-x1;
135         // a5                                  << 133        
136         if (plab <= 700.) {                    << 134        // Sample u from 0 to 1
137             a5=-3.858406E-16*p6 + 7.397533E-13 << 135        u1=Random::shoot();
138             5.344420E-10*p4 + 1.865842E-07*p3  << 136        fteta=(a1*x1*x1+b1*x1+c1)/interg1;
139             3.234292E-05*p2 + 2.552380E-03*p1  << 137        // The condition
140         }                                      << 138        if (u1*f1/interg1 < fteta) {
141         else {                                 << 139         teta=std::acos(x1);
142             a5=-3.775268E-17*p6 + 2.445059E-13 << 140         passe1=1;
143             6.503137E-10*p4 + 9.065678E-07*p3  << 141        }
144             6.953576E-04*p2 + 2.757524E-01*p1  << 142       }
145         }                                      << 143      }
146         // a4                                  << 144      else {      
147         if (plab <= 550.) {                    << 145       // above 1650 MeV - angular distribution (x=cos(theta): (ax^2+bx+c)*(0.5+(arctan(10*(x+dev)))/pi) + vert
148             a4=-2.051840E-16*p6 + 3.858551E-13 << 146       
149             3.166229E-10*p4 + 1.353545E-07*p3  << 147       G4double a2=-0.29;
150             2.631251E-05*p2 + 2.109593E-03*p1  << 148       G4double b2=0.348;    // ax^2+bx+c: around cos(theta)=0.6 with maximum at 0.644963 (value = 0.1872666)
151         }                                      << 149       G4double c2=0.0546;
152         else if (plab <= 650.) {               << 150       G4double dev=-0.2;  // tail close to zero from "dev" down to -1
153             a4=-1.698136E-05*p2 + 1.827203E-02 << 151       G4double vert=0.04; // to avoid negative differential cross sections
154         }                                      << 152       
155         else {                                 << 153       G4double interg2=0.1716182902205207; // with the above given parameters! (integral to normalize)
156             a4=-2.808337E-17*p6 + 1.640033E-13 << 154       const G4double f2=1.09118088; // maximum (integral taken into account)
157             3.820460E-10*p4 + 4.452787E-07*p3  << 155       
158             2.621981E-04*p2 + 6.530743E-02*p1  << 156       G4int passe2=0;
159         }                                      << 157       while (passe2==0) {
160         // a3                                  << 158        // Sample x from -1 to 1
161         if (plab <= 700.) {                    << 159        x1=Random::shoot();
162             a3=7.061866E-16*p6 - 1.356389E-12* << 160        if (Random::shoot() > 0.5) x1=-x1;
163             9.783322E-10*p4 - 3.407333E-07*p3  << 161        
164             5.903545E-05*p2 - 4.735559E-03*p1  << 162        // Sample u from 0 to 1
165         }                                      << 163        u1=Random::shoot();
166         else {                                 << 164        fteta=((a2*x1*x1+b2*x1+c2)*(0.5+(std::atan(10*(x1+dev)))/pi) + vert)/interg2;
167             a3=1.138088E-16*p6 - 7.459580E-13* << 165        // The condition
168             2.015156E-09*p4 - 2.867416E-06*p3  << 166        if (u1*f2 < fteta) {
169             2.261028E-03*p2 - 9.323442E-01*p1  << 167         teta=std::acos(x1);
170         }                                      << 168         passe2=1;
171         // a2                                  << 169        }
172         if (plab <= 550.) {                    << 170       }
173             a2=1.352952E-17*p6 - 3.030435E-13* << 171      }
174             4.624668E-10*p4 - 2.759605E-07*p3  << 172      
175             6.996373E-05*p2 - 4.745692E-03*p1  << 173      fi=(2.0*pi)*Random::shoot();   
176         }                                      << 174      
177         else if (plab <= 700.) {               << 175      ThreeVector mom_nucleon(
178             a2=5.514651E-08*p3 - 8.734112E-05* << 176                              pn*std::sin(teta)*std::cos(fi),
179         }                                      << 177                              pn*std::sin(teta)*std::sin(fi),
180         else {                                 << 178                              pn*std::cos(teta)
181             a2=5.621795E-17*p6 - 3.701960E-13* << 179                              );
182             1.005796E-09*p4 - 1.441294E-06*p3  << 180 // end real distribution      
183             1.146234E-03*p2 - 4.775194E-01*p1  << 181      
184         }                                      << 182     nucleon->setMomentum(-mom_nucleon);
185         // a1                                  << 183     eta->setMomentum(mom_nucleon);
186         if (plab <= 500.) {                    << 
187             a1=-2.425827E-16*p6 + 4.113350E-13 << 
188             2.342298E-10*p4 + 4.934322E-08*p3  << 
189             3.564530E-06*p2 + 6.516398E-04*p1  << 
190         }                                      << 
191         else if (plab <= 700.) {               << 
192             a1=-1.824213E-10*p4 + 3.599251E-07 << 
193             2.480862E-04*p2 + 6.894931E-02*p1  << 
194         }                                      << 
195         else {                                 << 
196             a1=-5.139366E-17*p6 + 3.408224E-13 << 
197             9.341903E-10*p4 + 1.354028E-06*p3  << 
198             1.093509E-03*p2 + 4.653326E-01*p1  << 
199         }                                      << 
200         // a0                                  << 
201         if (plab <= 400.) {                    << 
202             a0=1.160837E-13*p6 - 1.813002E-10* << 
203             1.155391E-07*p4 - 3.862737E-05*p3  << 
204             7.230513E-03*p2 - 7.469799E-01*p1  << 
205         }                                      << 
206         else if (plab <= 700.) {               << 
207             a0=2.267918E-14*p6 - 7.593899E-11* << 
208             1.049849E-07*p4 - 7.669301E-05*p3  << 
209             3.123846E-02*p2 - 6.737221E+00*p1  << 
210         }                                      << 
211         else {                                 << 
212             a0=-1.851188E-17*p6 + 1.281122E-13 << 
213             3.686161E-10*p4 + 5.644116E-07*p3  << 
214             4.845757E-04*p2 + 2.203918E-01*p1  << 
215         }                                      << 
216                                                << 
217         G4double interg1=2.*(a6/7. + a4/5. + a << 
218         G4double f1=(a6+a5+a4+a3+a2+a1+a0)/int << 
219                                                << 
220         G4int passe1=0;                        << 
221         while (passe1==0) {                    << 
222             // Sample x from -1 to 1           << 
223             x1=Random::shoot();                << 
224             if (Random::shoot() > 0.5) x1=-x1; << 
225                                                << 
226             // Sample u from 0 to 1            << 
227             u1=Random::shoot();                << 
228             fteta=(a6*x1*x1*x1*x1*x1*x1+a5*x1* << 
229             // The condition                   << 
230             if (u1*f1 < fteta) {               << 
231                 teta=std::acos(x1);            << 
232                 //        std::cout << x1  <<  << 
233                 passe1=1;                      << 
234             }                                  << 
235         }                                      << 
236                                                << 
237         fi=(2.0*pi)*Random::shoot();           << 
238                                                << 
239         ThreeVector mom_nucleon(               << 
240                                 pn*std::sin(te << 
241                                 pn*std::sin(te << 
242                                 pn*std::cos(te << 
243                                 );             << 
244         // end real distribution               << 
245                                                << 
246         nucleon->setMomentum(-mom_nucleon);    << 
247         eta->setMomentum(mom_nucleon);         << 
248                                                   184         
249         fs->addModifiedParticle(nucleon);      << 185     fs->addModifiedParticle(nucleon);
250         fs->addModifiedParticle(eta);          << 186     fs->addModifiedParticle(eta);
251     }                                             187     }
252                                                << 188 
253 }                                                 189 }
254                                                   190