Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 #include "G4INCLEtaNToPiNChannel.hh" 38 #include "G4INCLEtaNToPiNChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 39 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 41 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 42 #include "G4INCLGlobals.hh" 43 #include "G4INCLLogger.hh" 43 #include "G4INCLLogger.hh" 44 44 45 namespace G4INCL { 45 namespace G4INCL { 46 << 46 47 EtaNToPiNChannel::EtaNToPiNChannel(Particl 47 EtaNToPiNChannel::EtaNToPiNChannel(Particle *p1, Particle *p2) 48 : particle1(p1), particle2(p2) 48 : particle1(p1), particle2(p2) 49 { 49 { 50 << 50 51 } 51 } 52 << 52 53 EtaNToPiNChannel::~EtaNToPiNChannel(){ 53 EtaNToPiNChannel::~EtaNToPiNChannel(){ 54 << 54 55 } 55 } 56 << 56 57 void EtaNToPiNChannel::fillFinalState(Fina 57 void EtaNToPiNChannel::fillFinalState(FinalState *fs) { 58 Particle * nucleon; 58 Particle * nucleon; 59 Particle * eta; 59 Particle * eta; 60 if(particle1->isNucleon()) { 60 if(particle1->isNucleon()) { 61 nucleon = particle1; 61 nucleon = particle1; 62 eta = particle2; 62 eta = particle2; 63 } else { 63 } else { 64 nucleon = particle2; 64 nucleon = particle2; 65 eta = particle1; 65 eta = particle1; 66 } 66 } 67 << 68 G4double plab=KinematicsUtils::momentu << 69 67 70 const G4double r2 = Random::shoot(); << 68 const G4double r2 = Random::shoot(); 71 if (nucleon->getType() == Neutron) { << 69 if (nucleon->getType() == Neutron) { 72 if (r2*3. < 2.) { << 70 if (r2*3. < 2.) { 73 nucleon->setType(Proton); << 71 nucleon->setType(Proton); 74 eta->setType(PiMinus); << 72 eta->setType(PiMinus); 75 } << 73 } 76 else { << 74 else { 77 nucleon->setType(Neutron); << 75 nucleon->setType(Neutron); 78 eta->setType(PiZero); << 76 eta->setType(PiZero); 79 } << 77 } 80 } << 78 } 81 else { << 79 else { 82 if (r2*3. < 2.) { << 80 if (r2*3. < 2.) { 83 nucleon->setType(Neutron); << 81 nucleon->setType(Neutron); 84 eta->setType(PiPlus); << 82 eta->setType(PiPlus); 85 } << 83 } 86 else { << 84 else { 87 nucleon->setType(Proton); << 85 nucleon->setType(Proton); 88 eta->setType(PiZero); << 86 eta->setType(PiZero); 89 } << 87 } 90 } << 88 } 91 << 89 92 G4double sh=nucleon->getEnergy()+eta-> << 90 G4double sh=nucleon->getEnergy()+eta->getEnergy(); 93 G4double mn=nucleon->getMass(); << 91 G4double mn=nucleon->getMass(); 94 G4double me=eta->getMass(); << 92 G4double me=eta->getMass(); 95 G4double en=(sh*sh+mn*mn-me*me)/(2*sh) << 93 G4double en=(sh*sh+mn*mn-me*me)/(2*sh); 96 nucleon->setEnergy(en); << 94 nucleon->setEnergy(en); 97 G4double ee=std::sqrt(en*en-mn*mn+me*m << 95 G4double ee=std::sqrt(en*en-mn*mn+me*me); 98 eta->setEnergy(ee); << 96 eta->setEnergy(ee); 99 G4double pn=std::sqrt(en*en-mn*mn); << 97 G4double pn=std::sqrt(en*en-mn*mn); 100 << 98 /* isotropy 101 const G4double pi=std::acos(-1.0); << 99 102 G4double x1; << 100 ThreeVector mom_nucleon = Random::normVector(pn); 103 G4double u1; << 101 104 G4double fteta; << 102 nucleon->setMomentum(mom_nucleon); 105 G4double teta; << 103 eta->setMomentum(-mom_nucleon); 106 G4double fi; << 104 */ 107 << 105 108 G4double a0; << 106 // real distribution (from PRC 78, 025204 (2008)) --- detailed balance from pi nucleon --> eta nucleon 109 G4double a1; << 107 110 G4double a2; << 108 111 G4double a3; << 109 G4double ECM=G4INCL::KinematicsUtils::totalEnergyInCM(particle1,particle2); 112 G4double a4; << 110 113 G4double a5; << 111 const G4double pi=std::acos(-1.0); 114 G4double a6; << 112 G4double x1; 115 << 113 G4double u1; 116 if (plab > 1400.) plab=1400.; // no in << 114 G4double fteta; 117 G4double p6=std::pow(plab, 6); << 115 G4double teta; 118 G4double p5=std::pow(plab, 5); << 116 G4double fi; 119 G4double p4=std::pow(plab, 4); << 117 120 G4double p3=std::pow(plab, 3); << 118 if (ECM < 1650.) { 121 G4double p2=std::pow(plab, 2); << 119 // below 1650 MeV - angular distribution (x=cos(theta): ax^2+bx+c 122 G4double p1=plab; << 120 123 << 121 G4double f1= -0.0000288627*ECM*ECM+0.09155289*ECM-72.25436; // f(1) that is the maximum (fit on experimental data) 124 // a6 << 122 G4double b1=(f1-(f1/(1.5-0.5*std::pow((ECM-1580.)/95.,2))))/2.; // ideas: 1) f(-1)=0.5f(1); 2) "power term" flattens the distribution away from ECM=1580 MeV 125 if (plab <= 600.) { << 123 G4double a1=2.5*b1; // minimum at cos(theta) = -0.2 126 a6=5.721872E-18*p6 - 1.063594E-14* << 124 G4double c1=f1-3.5*b1; 127 7.812226E-12*p4 - 2.947343E-09*p3 << 125 128 5.955500E-07*p2 - 6.081534E-05*p1 << 126 G4double interg1=2.*a1/3. +2.*c1; // (integral to normalize) 129 } << 127 130 else { << 128 G4int passe1=0; 131 a6=1.549323E-18*p6 - 9.570613E-15* << 129 while (passe1==0) { 132 2.428560E-11*p4 - 3.237490E-08*p3 << 130 // Sample x from -1 to 1 133 2.385312E-05*p2 - 9.167580E-03*p1 << 131 x1=Random::shoot(); 134 } << 132 if (Random::shoot() > 0.5) x1=-x1; 135 // a5 << 133 136 if (plab <= 700.) { << 134 // Sample u from 0 to 1 137 a5=-3.858406E-16*p6 + 7.397533E-13 << 135 u1=Random::shoot(); 138 5.344420E-10*p4 + 1.865842E-07*p3 << 136 fteta=(a1*x1*x1+b1*x1+c1)/interg1; 139 3.234292E-05*p2 + 2.552380E-03*p1 << 137 // The condition 140 } << 138 if (u1*f1/interg1 < fteta) { 141 else { << 139 teta=std::acos(x1); 142 a5=-3.775268E-17*p6 + 2.445059E-13 << 140 passe1=1; 143 6.503137E-10*p4 + 9.065678E-07*p3 << 141 } 144 6.953576E-04*p2 + 2.757524E-01*p1 << 142 } 145 } << 143 } 146 // a4 << 144 else { 147 if (plab <= 550.) { << 145 // above 1650 MeV - angular distribution (x=cos(theta): (ax^2+bx+c)*(0.5+(arctan(10*(x+dev)))/pi) + vert 148 a4=-2.051840E-16*p6 + 3.858551E-13 << 146 149 3.166229E-10*p4 + 1.353545E-07*p3 << 147 G4double a2=-0.29; 150 2.631251E-05*p2 + 2.109593E-03*p1 << 148 G4double b2=0.348; // ax^2+bx+c: around cos(theta)=0.6 with maximum at 0.644963 (value = 0.1872666) 151 } << 149 G4double c2=0.0546; 152 else if (plab <= 650.) { << 150 G4double dev=-0.2; // tail close to zero from "dev" down to -1 153 a4=-1.698136E-05*p2 + 1.827203E-02 << 151 G4double vert=0.04; // to avoid negative differential cross sections 154 } << 152 155 else { << 153 G4double interg2=0.1716182902205207; // with the above given parameters! (integral to normalize) 156 a4=-2.808337E-17*p6 + 1.640033E-13 << 154 const G4double f2=1.09118088; // maximum (integral taken into account) 157 3.820460E-10*p4 + 4.452787E-07*p3 << 155 158 2.621981E-04*p2 + 6.530743E-02*p1 << 156 G4int passe2=0; 159 } << 157 while (passe2==0) { 160 // a3 << 158 // Sample x from -1 to 1 161 if (plab <= 700.) { << 159 x1=Random::shoot(); 162 a3=7.061866E-16*p6 - 1.356389E-12* << 160 if (Random::shoot() > 0.5) x1=-x1; 163 9.783322E-10*p4 - 3.407333E-07*p3 << 161 164 5.903545E-05*p2 - 4.735559E-03*p1 << 162 // Sample u from 0 to 1 165 } << 163 u1=Random::shoot(); 166 else { << 164 fteta=((a2*x1*x1+b2*x1+c2)*(0.5+(std::atan(10*(x1+dev)))/pi) + vert)/interg2; 167 a3=1.138088E-16*p6 - 7.459580E-13* << 165 // The condition 168 2.015156E-09*p4 - 2.867416E-06*p3 << 166 if (u1*f2 < fteta) { 169 2.261028E-03*p2 - 9.323442E-01*p1 << 167 teta=std::acos(x1); 170 } << 168 passe2=1; 171 // a2 << 169 } 172 if (plab <= 550.) { << 170 } 173 a2=1.352952E-17*p6 - 3.030435E-13* << 171 } 174 4.624668E-10*p4 - 2.759605E-07*p3 << 172 175 6.996373E-05*p2 - 4.745692E-03*p1 << 173 fi=(2.0*pi)*Random::shoot(); 176 } << 174 177 else if (plab <= 700.) { << 175 ThreeVector mom_nucleon( 178 a2=5.514651E-08*p3 - 8.734112E-05* << 176 pn*std::sin(teta)*std::cos(fi), 179 } << 177 pn*std::sin(teta)*std::sin(fi), 180 else { << 178 pn*std::cos(teta) 181 a2=5.621795E-17*p6 - 3.701960E-13* << 179 ); 182 1.005796E-09*p4 - 1.441294E-06*p3 << 180 // end real distribution 183 1.146234E-03*p2 - 4.775194E-01*p1 << 181 184 } << 182 nucleon->setMomentum(-mom_nucleon); 185 // a1 << 183 eta->setMomentum(mom_nucleon); 186 if (plab <= 500.) { << 187 a1=-2.425827E-16*p6 + 4.113350E-13 << 188 2.342298E-10*p4 + 4.934322E-08*p3 << 189 3.564530E-06*p2 + 6.516398E-04*p1 << 190 } << 191 else if (plab <= 700.) { << 192 a1=-1.824213E-10*p4 + 3.599251E-07 << 193 2.480862E-04*p2 + 6.894931E-02*p1 << 194 } << 195 else { << 196 a1=-5.139366E-17*p6 + 3.408224E-13 << 197 9.341903E-10*p4 + 1.354028E-06*p3 << 198 1.093509E-03*p2 + 4.653326E-01*p1 << 199 } << 200 // a0 << 201 if (plab <= 400.) { << 202 a0=1.160837E-13*p6 - 1.813002E-10* << 203 1.155391E-07*p4 - 3.862737E-05*p3 << 204 7.230513E-03*p2 - 7.469799E-01*p1 << 205 } << 206 else if (plab <= 700.) { << 207 a0=2.267918E-14*p6 - 7.593899E-11* << 208 1.049849E-07*p4 - 7.669301E-05*p3 << 209 3.123846E-02*p2 - 6.737221E+00*p1 << 210 } << 211 else { << 212 a0=-1.851188E-17*p6 + 1.281122E-13 << 213 3.686161E-10*p4 + 5.644116E-07*p3 << 214 4.845757E-04*p2 + 2.203918E-01*p1 << 215 } << 216 << 217 G4double interg1=2.*(a6/7. + a4/5. + a << 218 G4double f1=(a6+a5+a4+a3+a2+a1+a0)/int << 219 << 220 G4int passe1=0; << 221 while (passe1==0) { << 222 // Sample x from -1 to 1 << 223 x1=Random::shoot(); << 224 if (Random::shoot() > 0.5) x1=-x1; << 225 << 226 // Sample u from 0 to 1 << 227 u1=Random::shoot(); << 228 fteta=(a6*x1*x1*x1*x1*x1*x1+a5*x1* << 229 // The condition << 230 if (u1*f1 < fteta) { << 231 teta=std::acos(x1); << 232 // std::cout << x1 << << 233 passe1=1; << 234 } << 235 } << 236 << 237 fi=(2.0*pi)*Random::shoot(); << 238 << 239 ThreeVector mom_nucleon( << 240 pn*std::sin(te << 241 pn*std::sin(te << 242 pn*std::cos(te << 243 ); << 244 // end real distribution << 245 << 246 nucleon->setMomentum(-mom_nucleon); << 247 eta->setMomentum(mom_nucleon); << 248 184 249 fs->addModifiedParticle(nucleon); << 185 fs->addModifiedParticle(nucleon); 250 fs->addModifiedParticle(eta); << 186 fs->addModifiedParticle(eta); 251 } 187 } 252 << 188 253 } 189 } 254 190