Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 33 // 32 // 34 #define INCLXX_IN_GEANT4_MODE 1 33 #define INCLXX_IN_GEANT4_MODE 1 35 34 36 #include "globals.hh" 35 #include "globals.hh" 37 36 38 /** \file G4INCLDeuteronDensity.cc 37 /** \file G4INCLDeuteronDensity.cc 39 * \brief Deuteron density in r and p accordin 38 * \brief Deuteron density in r and p according to the Paris potential. 40 * 39 * 41 * \date 6 March 2012 40 * \date 6 March 2012 42 * \author Davide Mancusi 41 * \author Davide Mancusi 43 */ 42 */ 44 43 45 #include "G4INCLDeuteronDensity.hh" 44 #include "G4INCLDeuteronDensity.hh" 46 #include "G4INCLGlobals.hh" 45 #include "G4INCLGlobals.hh" 47 // #include <cassert> 46 // #include <cassert> 48 #include <algorithm> 47 #include <algorithm> 49 48 50 namespace G4INCL { 49 namespace G4INCL { 51 50 52 namespace DeuteronDensity { << 51 /// \brief Coefficients for the deuteron wave function 53 << 52 const G4double DeuteronDensity::coeff1[coeffTableSize] = { 54 namespace { << 53 0.88688076e+0, 55 << 54 -0.34717093e+0, 56 const G4int coeffTableSize = 13; << 55 -0.30502380e+1, 57 << 56 0.56207766e+2, 58 /// \brief Coefficients for the deuteron << 57 -0.74957334e+3, 59 const G4double coeff1[coeffTableSize] = << 58 0.53365279e+4, 60 0.88688076e+0, << 59 -0.22706863e+5, 61 -0.34717093e+0, << 60 0.60434469e+5, 62 -0.30502380e+1, << 61 -0.10292058e+6, 63 0.56207766e+2, << 62 0.11223357e+6, 64 -0.74957334e+3, << 63 -0.75925226e+5, 65 0.53365279e+4, << 64 0.29059715e+5, 66 -0.22706863e+5, << 65 -0.48157368e+4 67 0.60434469e+5, << 66 }; 68 -0.10292058e+6, << 67 69 0.11223357e+6, << 68 /// \brief Coefficients for the deuteron wave function 70 -0.75925226e+5, << 69 const G4double DeuteronDensity::coeff2[coeffTableSize] = { 71 0.29059715e+5, << 70 0.23135193e-1, 72 -0.48157368e+4 << 71 -0.85604572e+0, 73 }; << 72 0.56068193e+1, 74 << 73 -0.69462922e+2, 75 /// \brief Coefficients for the deuteron << 74 0.41631118e+3, 76 const G4double coeff2[coeffTableSize] = << 75 -0.12546621e+4, 77 0.23135193e-1, << 76 0.12387830e+4, 78 -0.85604572e+0, << 77 0.33739172e+4, 79 0.56068193e+1, << 78 -0.13041151e+5, 80 -0.69462922e+2, << 79 0.19512524e+5, 81 0.41631118e+3, << 80 -0.15634324e+5, 82 -0.12546621e+4, << 81 0.66231089e+4, 83 0.12387830e+4, << 82 -0.11698185e+4 84 0.33739172e+4, << 83 }; 85 -0.13041151e+5, << 84 86 0.19512524e+5, << 85 /// \brief Normalisation coefficient for the r-space deuteron wave function 87 -0.15634324e+5, << 86 const G4double DeuteronDensity::normalisationR = std::sqrt(32. * Math::pi) * 0.28212; 88 0.66231089e+4, << 87 89 -0.11698185e+4 << 88 /// \brief Normalisation coefficient for the p-space deuteron wave function 90 }; << 89 const G4double DeuteronDensity::normalisationP = normalisationR / (std::sqrt(4. * Math::pi) * std::pow(PhysicalConstants::hc,1.5)); 91 << 90 92 /// \brief Normalisation coefficient for << 91 /// \brief Mysterious coefficient that appears in the wavefunctions 93 const G4double normalisationR = std::sqr << 92 const G4double DeuteronDensity::al = 0.23162461; 94 << 93 95 /// \brief Normalisation coefficient for << 94 G4double DeuteronDensity::densityR(const G4double r) { 96 const G4double normalisationP = normalis << 95 const G4double sWave = wavefunctionR(0, r); 97 << 96 const G4double dWave = wavefunctionR(2, r); 98 /// \brief Mysterious coefficient that a << 97 return r*r*(sWave*sWave + dWave*dWave); 99 const G4double al = 0.23162461; << 98 } 100 << 101 } << 102 << 103 G4double densityR(const G4double r) { << 104 const G4double sWave = wavefunctionR(0, << 105 const G4double dWave = wavefunctionR(2, << 106 return r*r*(sWave*sWave + dWave*dWave); << 107 } << 108 99 109 G4double derivDensityR(const G4double r) { << 100 G4double DeuteronDensity::derivDensityR(const G4double r) { 110 const G4double sWave = wavefunctionR(0, << 101 const G4double sWave = wavefunctionR(0, r); 111 const G4double dWave = wavefunctionR(2, << 102 const G4double dWave = wavefunctionR(2, r); 112 const G4double sWaveDeriv = derivWavefun << 103 const G4double sWaveDeriv = derivWavefunctionR(0, r); 113 const G4double dWaveDeriv = derivWavefun << 104 const G4double dWaveDeriv = derivWavefunctionR(2, r); 114 return (sWave*sWaveDeriv + dWave*dWaveDe << 105 return (sWave*sWaveDeriv + dWave*dWaveDeriv) / Math::twoPi; 115 } << 106 } 116 107 117 G4double densityP(const G4double p) { << 108 G4double DeuteronDensity::densityP(const G4double p) { 118 const G4double sWave = wavefunctionP(0, << 109 const G4double sWave = wavefunctionP(0, p); 119 const G4double dWave = wavefunctionP(2, << 110 const G4double dWave = wavefunctionP(2, p); 120 return p*p*(sWave*sWave + dWave*dWave); << 111 return p*p*(sWave*sWave + dWave*dWave); 121 } << 112 } 122 113 123 G4double wavefunctionR(const G4int l, cons << 114 G4double DeuteronDensity::wavefunctionR(const G4int l, const G4double theR) { 124 // assert(l==0 || l==2); // only s- and d-wave 115 // assert(l==0 || l==2); // only s- and d-waves in a deuteron 125 const G4double r = 2. * std::max(theR, 1 << 116 const G4double r = 2. * std::max(theR, 1.e-4); 126 117 127 G4double result = 0.; << 118 G4double result = 0.; 128 G4double fmr; << 119 G4double fmr; 129 120 130 for(G4int i=0; i<coeffTableSize; ++i) { << 121 for(G4int i=0; i<coeffTableSize; ++i) { 131 fmr = r * (al+i); << 122 fmr = r * (al+i); 132 if(l==0) { // s-wave << 123 if(l==0) { // s-wave 133 result += coeff1[i] * std::exp(-fmr) << 124 result += coeff1[i] * std::exp(-fmr); 134 } else { // d-wave << 125 } else { // d-wave 135 result += coeff2[i] * std::exp(-fmr) << 126 result += coeff2[i] * std::exp(-fmr) * (1.+3./fmr+3./(fmr*fmr)); 136 } << 137 } 127 } 138 << 139 result *= normalisationR/r; << 140 return result; << 141 } 128 } 142 129 143 G4double derivWavefunctionR(const G4int l, << 130 result *= normalisationR/r; >> 131 return result; >> 132 } >> 133 >> 134 G4double DeuteronDensity::derivWavefunctionR(const G4int l, const G4double theR) { 144 // assert(l==0 || l==2); // only s- and d-wave 135 // assert(l==0 || l==2); // only s- and d-waves in a deuteron 145 const G4double r = 2. * std::max(theR, 1 << 136 const G4double r = 2. * std::max(theR, 1.e-4); 146 137 147 G4double result = 0.; << 138 G4double result = 0.; 148 G4double fmr; << 139 G4double fmr; 149 140 150 for(G4int i=0; i<coeffTableSize; ++i) { << 141 for(G4int i=0; i<coeffTableSize; ++i) { 151 fmr = r * (al+i); << 142 fmr = r * (al+i); 152 if(l==0) { // s-wave << 143 if(l==0) { // s-wave 153 result += coeff1[i] * std::exp(-fmr) << 144 result += coeff1[i] * std::exp(-fmr) * (fmr + 1.); 154 } else { // d-wave << 145 } else { // d-wave 155 result += coeff2[i] * std::exp(-fmr) << 146 result += coeff2[i] * std::exp(-fmr) * (fmr + 4. + 9./fmr + 9./(fmr*fmr)); 156 } << 157 } 147 } 158 << 159 result *= -normalisationR/(r*r); << 160 return result; << 161 } 148 } 162 149 163 G4double wavefunctionP(const G4int l, cons << 150 result *= -normalisationR/(r*r); >> 151 return result; >> 152 } >> 153 >> 154 G4double DeuteronDensity::wavefunctionP(const G4int l, const G4double theQ) { 164 // assert(l==0 || l==2); // only s- and d-wave 155 // assert(l==0 || l==2); // only s- and d-waves in a deuteron 165 const G4double q = theQ / PhysicalConsta << 156 const G4double q = theQ / PhysicalConstants::hc; 166 const G4double q2 = q*q; << 157 const G4double q2 = q*q; 167 G4double result=0.; << 158 G4double result=0.; 168 G4double fmq, alPlusI; << 159 G4double fmq, alPlusI; 169 for(G4int i=0; i<coeffTableSize; ++i) { << 160 for(G4int i=0; i<coeffTableSize; ++i) { 170 alPlusI = al+i; << 161 alPlusI = al+i; 171 fmq = q2 + alPlusI*alPlusI; << 162 fmq = q2 + alPlusI*alPlusI; 172 if(l==0) { // s-wave << 163 if(l==0) { // s-wave 173 result += coeff1[i] / fmq; << 164 result += coeff1[i] / fmq; 174 } else { // d-wave << 165 } else { // d-wave 175 result += coeff2[i] / fmq; << 166 result += coeff2[i] / fmq; 176 } << 177 } 167 } 178 << 179 result *= normalisationP; << 180 return result; << 181 } 168 } 182 169 >> 170 result *= normalisationP; >> 171 return result; 183 } 172 } 184 173 185 } 174 } >> 175 186 176