Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #include "G4INCLDeltaDecayChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 43 44 namespace G4INCL { 45 46 DeltaDecayChannel::DeltaDecayChannel(Particl 47 :theParticle(p), incidentDirection(dir) 48 { } 49 50 DeltaDecayChannel::~DeltaDecayChannel() {} 51 52 G4double DeltaDecayChannel::computeDecayTime 53 const G4double m = p->getMass(); 54 const G4double g0 = 115.0; 55 G4double gg = g0; 56 if(m > 1500.0) gg = 200.0; 57 const G4double geff = p->getEnergy()/m; 58 const G4double qqq = KinematicsUtils::mome 59 const G4double psf = std::pow(qqq, 3)/(std 60 const G4double tdel = -G4INCL::PhysicalCon 61 if( m > 1400) return tdel * 1./(1. + std:: 62 return tdel; // fm 63 } 64 65 void DeltaDecayChannel::sampleAngles(G4doubl 66 const G4double hel = theParticle->getHelic 67 unsigned long loopCounter = 0; 68 const unsigned long maxLoopCounter = 10000 69 do { 70 (*ctet_par) = -1.0 + 2.0*Random::shoot() 71 if(std::abs(*ctet_par) > 1.0) (*ctet_par 72 ++loopCounter; 73 } while(loopCounter<maxLoopCounter && Rand 74 (*stet_par) = std::sqrt(1.-(*ctet_par)*(*c 75 (*phi_par) = Math::twoPi * Random::shoot() 76 } 77 78 void DeltaDecayChannel::fillFinalState(Final 79 // SUBROUTINE DECAY2(P1,P2,P3,WP,ij, 80 // s X1,X2,hel,B1,B2,B3) 81 82 // This routine describes the anisotropic 83 // xi into 2 particles of masses x1,x2. 84 // The anisotropy is supposed to follow a 85 // law with respect to the direction of th 86 // In the input, p1,p2,p3 is the momentum 87 // In the output, p1,p2,p3 is the momentum 88 // q1,q2,q3 is the momentum of particle x2 89 90 // COMMON/bl12/QQ1(200),QQ2(200),QQ3(200) 91 // s YY1(200),YY2(200),YY3(200) 92 // common/hazard/ial,IY1,IY2,IY3,IY4,IY5 93 // s IY11,IY12,IY13,IY14,IY1 94 95 // DATA IY8,IY9,IY10/82345,92345,45681/ 96 // PCM(E,A,C)=0.5*SQRT((E**2-(A+C)**2)*(E* 97 // XI=YM(ij) 98 99 // XE=WP 100 // B1=P1/XE 101 // B2=P2/XE 102 // B3=P3/XE 103 // XQ=PCM(XI,X1,X2) 104 105 const G4double deltaMass = theParticle->ge 106 107 G4double fi, ctet, stet; 108 sampleAngles(&ctet, &stet, &fi); 109 110 G4double cfi = std::cos(fi); 111 G4double sfi = std::sin(fi); 112 G4double beta = incidentDirection.mag(); 113 114 G4double q1, q2, q3; 115 G4double sal=0.0; 116 if (beta >= 1.0e-10) 117 sal = incidentDirection.perp()/beta; 118 if (sal >= 1.0e-6) { 119 G4double b1 = incidentDirection.getX(); 120 G4double b2 = incidentDirection.getY(); 121 G4double b3 = incidentDirection.getZ(); 122 G4double cal = b3/beta; 123 G4double t1 = ctet+cal*stet*sfi/sal; 124 G4double t2 = stet/sal; 125 q1=(b1*t1+b2*t2*cfi)/beta; 126 q2=(b2*t1-b1*t2*cfi)/beta; 127 q3=(b3*t1/beta-t2*sfi); 128 } else { 129 q1 = stet*cfi; 130 q2 = stet*sfi; 131 q3 = ctet; 132 } 133 theParticle->setHelicity(0.0); 134 135 ParticleType pionType; 136 #ifdef INCLXX_IN_GEANT4_MODE 137 G4int deltaPDGCode = 0; 138 #endif 139 switch(theParticle->getType()) { 140 case DeltaPlusPlus: 141 theParticle->setType(Proton); 142 pionType = PiPlus; 143 #ifdef INCLXX_IN_GEANT4_MODE 144 deltaPDGCode = 2224; 145 #endif 146 break; 147 case DeltaPlus: 148 if(Random::shoot() < 1.0/3.0) { 149 theParticle->setType(Neutron); 150 pionType = PiPlus; 151 } else { 152 theParticle->setType(Proton); 153 pionType = PiZero; 154 } 155 #ifdef INCLXX_IN_GEANT4_MODE 156 deltaPDGCode = 2214; 157 #endif 158 break; 159 case DeltaZero: 160 if(Random::shoot() < 1.0/3.0) { 161 theParticle->setType(Proton); 162 pionType = PiMinus; 163 } else { 164 theParticle->setType(Neutron); 165 pionType = PiZero; 166 } 167 #ifdef INCLXX_IN_GEANT4_MODE 168 deltaPDGCode = 2114; 169 #endif 170 break; 171 case DeltaMinus: 172 theParticle->setType(Neutron); 173 pionType = PiMinus; 174 #ifdef INCLXX_IN_GEANT4_MODE 175 deltaPDGCode = 1114; 176 #endif 177 break; 178 default: 179 INCL_FATAL("Unrecognized delta type; t 180 pionType = UnknownParticle; 181 break; 182 } 183 184 G4double xq = KinematicsUtils::momentumInC 185 theParticle->getMass(), 186 ParticleTable::getINCLMass(pionType)); 187 188 q1 *= xq; 189 q2 *= xq; 190 q3 *= xq; 191 192 ThreeVector pionMomentum(q1, q2, q3); 193 ThreeVector pionPosition(theParticle->getP 194 Particle *pion = new Particle(pionType, pi 195 theParticle->setMomentum(-pionMomentum); 196 theParticle->adjustEnergyFromMomentum(); 197 198 #ifdef INCLXX_IN_GEANT4_MODE 199 // Set the information about the parent re 200 // (as unique, integer ID, we take the rou 201 G4int parentResonanceID = static_cast<G4in 202 pion->setParentResonancePDGCode(deltaPDGCo 203 pion->setParentResonanceID(parentResonance 204 theParticle->setParentResonancePDGCode(del 205 theParticle->setParentResonanceID(parentRe 206 #endif 207 208 fs->addModifiedParticle(theParticle); 209 fs->addCreatedParticle(pion); 210 // call loren(q1,q2,q3,b1,b2,b3,wq) 211 // call loren(p1,p2,p3,b1,b2,b3,wp) 212 // qq1(ij)=q1 213 // qq2(ij)=q2 214 // qq3(ij)=q3 215 // qq4(ij)=wq 216 // ym(ij)=xi 217 // RETURN 218 // END 219 } 220 } 221