Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 33 // 32 // 34 #define INCLXX_IN_GEANT4_MODE 1 33 #define INCLXX_IN_GEANT4_MODE 1 35 34 36 #include "globals.hh" 35 #include "globals.hh" 37 36 38 #include "G4INCLDeltaDecayChannel.hh" 37 #include "G4INCLDeltaDecayChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 38 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 39 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 40 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 41 #include "G4INCLGlobals.hh" 43 42 44 namespace G4INCL { 43 namespace G4INCL { 45 44 46 DeltaDecayChannel::DeltaDecayChannel(Particl << 45 DeltaDecayChannel::DeltaDecayChannel(Nucleus *n, Particle *p, ThreeVector const dir) 47 :theParticle(p), incidentDirection(dir) << 46 :theParticle(p), theNucleus(n), incidentDirection(dir) 48 { } 47 { } 49 48 50 DeltaDecayChannel::~DeltaDecayChannel() {} 49 DeltaDecayChannel::~DeltaDecayChannel() {} 51 50 52 G4double DeltaDecayChannel::computeDecayTime 51 G4double DeltaDecayChannel::computeDecayTime(Particle *p) { 53 const G4double m = p->getMass(); 52 const G4double m = p->getMass(); 54 const G4double g0 = 115.0; 53 const G4double g0 = 115.0; 55 G4double gg = g0; 54 G4double gg = g0; 56 if(m > 1500.0) gg = 200.0; 55 if(m > 1500.0) gg = 200.0; 57 const G4double geff = p->getEnergy()/m; 56 const G4double geff = p->getEnergy()/m; 58 const G4double qqq = KinematicsUtils::mome 57 const G4double qqq = KinematicsUtils::momentumInCM(m, ParticleTable::effectiveNucleonMass, ParticleTable::effectivePionMass); 59 const G4double psf = std::pow(qqq, 3)/(std << 58 const G4double psf = std::pow(qqq, 3)/(std::pow(qqq, 3) + 5832000.0); 60 const G4double tdel = -G4INCL::PhysicalCon << 59 const G4double tdel = -G4INCL::PhysicalConstants::hc/(gg*psf)*std::log(Random::shoot())*geff; 61 if( m > 1400) return tdel * 1./(1. + std:: << 60 return tdel; 62 return tdel; // fm << 63 } 61 } 64 62 65 void DeltaDecayChannel::sampleAngles(G4doubl 63 void DeltaDecayChannel::sampleAngles(G4double *ctet_par, G4double *stet_par, G4double *phi_par) { 66 const G4double hel = theParticle->getHelic 64 const G4double hel = theParticle->getHelicity(); 67 unsigned long loopCounter = 0; << 68 const unsigned long maxLoopCounter = 10000 << 69 do { 65 do { 70 (*ctet_par) = -1.0 + 2.0*Random::shoot() 66 (*ctet_par) = -1.0 + 2.0*Random::shoot(); 71 if(std::abs(*ctet_par) > 1.0) (*ctet_par 67 if(std::abs(*ctet_par) > 1.0) (*ctet_par) = Math::sign(*ctet_par); 72 ++loopCounter; << 68 } while(Random::shoot() > ((1.0 + 3.0 * hel * (*ctet_par) * (*ctet_par)) 73 } while(loopCounter<maxLoopCounter && Rand << 69 /(1.0 + 3.0 * hel))); 74 (*stet_par) = std::sqrt(1.-(*ctet_par)*(*c 70 (*stet_par) = std::sqrt(1.-(*ctet_par)*(*ctet_par)); 75 (*phi_par) = Math::twoPi * Random::shoot() 71 (*phi_par) = Math::twoPi * Random::shoot(); 76 } 72 } 77 73 78 void DeltaDecayChannel::fillFinalState(Final << 74 FinalState* DeltaDecayChannel::getFinalState() { 79 // SUBROUTINE DECAY2(P1,P2,P3,WP,ij, 75 // SUBROUTINE DECAY2(P1,P2,P3,WP,ij, 80 // s X1,X2,hel,B1,B2,B3) 76 // s X1,X2,hel,B1,B2,B3) 81 77 82 // This routine describes the anisotropic 78 // This routine describes the anisotropic decay of a particle of mass 83 // xi into 2 particles of masses x1,x2. 79 // xi into 2 particles of masses x1,x2. 84 // The anisotropy is supposed to follow a 80 // The anisotropy is supposed to follow a 1+3*hel*(cos(theta))**2 85 // law with respect to the direction of th 81 // law with respect to the direction of the incoming particle. 86 // In the input, p1,p2,p3 is the momentum 82 // In the input, p1,p2,p3 is the momentum of particle xi. 87 // In the output, p1,p2,p3 is the momentum 83 // In the output, p1,p2,p3 is the momentum of particle x1 , while 88 // q1,q2,q3 is the momentum of particle x2 84 // q1,q2,q3 is the momentum of particle x2. 89 85 90 // COMMON/bl12/QQ1(200),QQ2(200),QQ3(200) 86 // COMMON/bl12/QQ1(200),QQ2(200),QQ3(200),QQ4(200), 91 // s YY1(200),YY2(200),YY3(200) 87 // s YY1(200),YY2(200),YY3(200),YM(200),IPI(200) 92 // common/hazard/ial,IY1,IY2,IY3,IY4,IY5 88 // common/hazard/ial,IY1,IY2,IY3,IY4,IY5,IY6,IY7,IY8,IY9,IY10, 93 // s IY11,IY12,IY13,IY14,IY1 89 // s IY11,IY12,IY13,IY14,IY15,IY16,IY17,IY18,IY19 94 90 95 // DATA IY8,IY9,IY10/82345,92345,45681/ << 91 // DATA IY8,IY9,IY10/82345,92345,45681/ 96 // PCM(E,A,C)=0.5*SQRT((E**2-(A+C)**2)*(E* 92 // PCM(E,A,C)=0.5*SQRT((E**2-(A+C)**2)*(E**2-(A-C)**2))/E P-N20800 97 // XI=YM(ij) 93 // XI=YM(ij) 98 94 99 // XE=WP 95 // XE=WP P-N20810 100 // B1=P1/XE 96 // B1=P1/XE P-N20820 101 // B2=P2/XE 97 // B2=P2/XE P-N20830 102 // B3=P3/XE << 98 // B3=P3/XE 103 // XQ=PCM(XI,X1,X2) << 99 // XQ=PCM(XI,X1,X2) 104 100 105 const G4double deltaMass = theParticle->ge 101 const G4double deltaMass = theParticle->getMass(); 106 102 107 G4double fi, ctet, stet; 103 G4double fi, ctet, stet; 108 sampleAngles(&ctet, &stet, &fi); 104 sampleAngles(&ctet, &stet, &fi); 109 105 110 G4double cfi = std::cos(fi); 106 G4double cfi = std::cos(fi); 111 G4double sfi = std::sin(fi); 107 G4double sfi = std::sin(fi); 112 G4double beta = incidentDirection.mag(); 108 G4double beta = incidentDirection.mag(); 113 109 114 G4double q1, q2, q3; 110 G4double q1, q2, q3; 115 G4double sal=0.0; 111 G4double sal=0.0; 116 if (beta >= 1.0e-10) 112 if (beta >= 1.0e-10) 117 sal = incidentDirection.perp()/beta; 113 sal = incidentDirection.perp()/beta; 118 if (sal >= 1.0e-6) { 114 if (sal >= 1.0e-6) { 119 G4double b1 = incidentDirection.getX(); 115 G4double b1 = incidentDirection.getX(); 120 G4double b2 = incidentDirection.getY(); 116 G4double b2 = incidentDirection.getY(); 121 G4double b3 = incidentDirection.getZ(); 117 G4double b3 = incidentDirection.getZ(); 122 G4double cal = b3/beta; 118 G4double cal = b3/beta; 123 G4double t1 = ctet+cal*stet*sfi/sal; 119 G4double t1 = ctet+cal*stet*sfi/sal; 124 G4double t2 = stet/sal; 120 G4double t2 = stet/sal; 125 q1=(b1*t1+b2*t2*cfi)/beta; 121 q1=(b1*t1+b2*t2*cfi)/beta; 126 q2=(b2*t1-b1*t2*cfi)/beta; 122 q2=(b2*t1-b1*t2*cfi)/beta; 127 q3=(b3*t1/beta-t2*sfi); 123 q3=(b3*t1/beta-t2*sfi); 128 } else { 124 } else { 129 q1 = stet*cfi; 125 q1 = stet*cfi; 130 q2 = stet*sfi; 126 q2 = stet*sfi; 131 q3 = ctet; 127 q3 = ctet; 132 } 128 } 133 theParticle->setHelicity(0.0); 129 theParticle->setHelicity(0.0); 134 130 135 ParticleType pionType; 131 ParticleType pionType; 136 #ifdef INCLXX_IN_GEANT4_MODE << 137 G4int deltaPDGCode = 0; << 138 #endif << 139 switch(theParticle->getType()) { 132 switch(theParticle->getType()) { 140 case DeltaPlusPlus: 133 case DeltaPlusPlus: 141 theParticle->setType(Proton); 134 theParticle->setType(Proton); 142 pionType = PiPlus; 135 pionType = PiPlus; 143 #ifdef INCLXX_IN_GEANT4_MODE << 144 deltaPDGCode = 2224; << 145 #endif << 146 break; 136 break; 147 case DeltaPlus: 137 case DeltaPlus: 148 if(Random::shoot() < 1.0/3.0) { 138 if(Random::shoot() < 1.0/3.0) { 149 theParticle->setType(Neutron); 139 theParticle->setType(Neutron); 150 pionType = PiPlus; 140 pionType = PiPlus; 151 } else { 141 } else { 152 theParticle->setType(Proton); 142 theParticle->setType(Proton); 153 pionType = PiZero; 143 pionType = PiZero; 154 } 144 } 155 #ifdef INCLXX_IN_GEANT4_MODE << 156 deltaPDGCode = 2214; << 157 #endif << 158 break; 145 break; 159 case DeltaZero: 146 case DeltaZero: 160 if(Random::shoot() < 1.0/3.0) { 147 if(Random::shoot() < 1.0/3.0) { 161 theParticle->setType(Proton); 148 theParticle->setType(Proton); 162 pionType = PiMinus; 149 pionType = PiMinus; 163 } else { 150 } else { 164 theParticle->setType(Neutron); 151 theParticle->setType(Neutron); 165 pionType = PiZero; 152 pionType = PiZero; 166 } 153 } 167 #ifdef INCLXX_IN_GEANT4_MODE << 168 deltaPDGCode = 2114; << 169 #endif << 170 break; 154 break; 171 case DeltaMinus: 155 case DeltaMinus: 172 theParticle->setType(Neutron); 156 theParticle->setType(Neutron); 173 pionType = PiMinus; 157 pionType = PiMinus; 174 #ifdef INCLXX_IN_GEANT4_MODE << 175 deltaPDGCode = 1114; << 176 #endif << 177 break; 158 break; 178 default: 159 default: 179 INCL_FATAL("Unrecognized delta type; t << 160 FATAL("Unrecognized delta type; type=" << theParticle->getType() << std::endl); 180 pionType = UnknownParticle; 161 pionType = UnknownParticle; 181 break; 162 break; 182 } 163 } 183 164 184 G4double xq = KinematicsUtils::momentumInC 165 G4double xq = KinematicsUtils::momentumInCM(deltaMass, 185 theParticle->getMass(), 166 theParticle->getMass(), 186 ParticleTable::getINCLMass(pionType)); 167 ParticleTable::getINCLMass(pionType)); 187 168 188 q1 *= xq; 169 q1 *= xq; 189 q2 *= xq; 170 q2 *= xq; 190 q3 *= xq; 171 q3 *= xq; 191 172 192 ThreeVector pionMomentum(q1, q2, q3); 173 ThreeVector pionMomentum(q1, q2, q3); 193 ThreeVector pionPosition(theParticle->getP 174 ThreeVector pionPosition(theParticle->getPosition()); 194 Particle *pion = new Particle(pionType, pi 175 Particle *pion = new Particle(pionType, pionMomentum, pionPosition); 195 theParticle->setMomentum(-pionMomentum); 176 theParticle->setMomentum(-pionMomentum); 196 theParticle->adjustEnergyFromMomentum(); 177 theParticle->adjustEnergyFromMomentum(); 197 178 198 #ifdef INCLXX_IN_GEANT4_MODE << 179 FinalState *fs = new FinalState; 199 // Set the information about the parent re << 200 // (as unique, integer ID, we take the rou << 201 G4int parentResonanceID = static_cast<G4in << 202 pion->setParentResonancePDGCode(deltaPDGCo << 203 pion->setParentResonanceID(parentResonance << 204 theParticle->setParentResonancePDGCode(del << 205 theParticle->setParentResonanceID(parentRe << 206 #endif << 207 << 208 fs->addModifiedParticle(theParticle); 180 fs->addModifiedParticle(theParticle); 209 fs->addCreatedParticle(pion); 181 fs->addCreatedParticle(pion); 210 // call loren(q1,q2,q3,b1,b2,b3,wq) 182 // call loren(q1,q2,q3,b1,b2,b3,wq) 211 // call loren(p1,p2,p3,b1,b2,b3,wp) 183 // call loren(p1,p2,p3,b1,b2,b3,wp) 212 // qq1(ij)=q1 184 // qq1(ij)=q1 213 // qq2(ij)=q2 185 // qq2(ij)=q2 214 // qq3(ij)=q3 186 // qq3(ij)=q3 215 // qq4(ij)=wq 187 // qq4(ij)=wq 216 // ym(ij)=xi 188 // ym(ij)=xi 217 // RETURN 189 // RETURN P-N21120 218 // END 190 // END P-N21130 >> 191 return fs; 219 } 192 } 220 } 193 } 221 194