Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 34 #define INCLXX_IN_GEANT4_MODE 1 35 35 36 #include "globals.hh" 36 #include "globals.hh" 37 37 38 #include "G4INCLDeltaDecayChannel.hh" 38 #include "G4INCLDeltaDecayChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 39 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 41 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 42 #include "G4INCLGlobals.hh" 43 43 44 namespace G4INCL { 44 namespace G4INCL { 45 45 46 DeltaDecayChannel::DeltaDecayChannel(Particl 46 DeltaDecayChannel::DeltaDecayChannel(Particle *p, ThreeVector const &dir) 47 :theParticle(p), incidentDirection(dir) 47 :theParticle(p), incidentDirection(dir) 48 { } 48 { } 49 49 50 DeltaDecayChannel::~DeltaDecayChannel() {} 50 DeltaDecayChannel::~DeltaDecayChannel() {} 51 51 52 G4double DeltaDecayChannel::computeDecayTime 52 G4double DeltaDecayChannel::computeDecayTime(Particle *p) { 53 const G4double m = p->getMass(); 53 const G4double m = p->getMass(); 54 const G4double g0 = 115.0; 54 const G4double g0 = 115.0; 55 G4double gg = g0; 55 G4double gg = g0; 56 if(m > 1500.0) gg = 200.0; 56 if(m > 1500.0) gg = 200.0; 57 const G4double geff = p->getEnergy()/m; 57 const G4double geff = p->getEnergy()/m; 58 const G4double qqq = KinematicsUtils::mome 58 const G4double qqq = KinematicsUtils::momentumInCM(m, ParticleTable::effectiveNucleonMass, ParticleTable::effectivePionMass); 59 const G4double psf = std::pow(qqq, 3)/(std << 59 const G4double psf = std::pow(qqq, 3)/(std::pow(qqq, 3) + 5832000.0); 60 const G4double tdel = -G4INCL::PhysicalCon << 60 const G4double tdel = -G4INCL::PhysicalConstants::hc/(gg*psf)*std::log(Random::shoot())*geff; 61 if( m > 1400) return tdel * 1./(1. + std:: << 61 return tdel; 62 return tdel; // fm << 63 } 62 } 64 63 65 void DeltaDecayChannel::sampleAngles(G4doubl 64 void DeltaDecayChannel::sampleAngles(G4double *ctet_par, G4double *stet_par, G4double *phi_par) { 66 const G4double hel = theParticle->getHelic 65 const G4double hel = theParticle->getHelicity(); 67 unsigned long loopCounter = 0; << 68 const unsigned long maxLoopCounter = 10000 << 69 do { 66 do { 70 (*ctet_par) = -1.0 + 2.0*Random::shoot() 67 (*ctet_par) = -1.0 + 2.0*Random::shoot(); 71 if(std::abs(*ctet_par) > 1.0) (*ctet_par 68 if(std::abs(*ctet_par) > 1.0) (*ctet_par) = Math::sign(*ctet_par); 72 ++loopCounter; << 69 } while(Random::shoot() > ((1.0 + 3.0 * hel * (*ctet_par) * (*ctet_par)) 73 } while(loopCounter<maxLoopCounter && Rand << 70 /(1.0 + 3.0 * hel))); 74 (*stet_par) = std::sqrt(1.-(*ctet_par)*(*c 71 (*stet_par) = std::sqrt(1.-(*ctet_par)*(*ctet_par)); 75 (*phi_par) = Math::twoPi * Random::shoot() 72 (*phi_par) = Math::twoPi * Random::shoot(); 76 } 73 } 77 74 78 void DeltaDecayChannel::fillFinalState(Final 75 void DeltaDecayChannel::fillFinalState(FinalState *fs) { 79 // SUBROUTINE DECAY2(P1,P2,P3,WP,ij, 76 // SUBROUTINE DECAY2(P1,P2,P3,WP,ij, 80 // s X1,X2,hel,B1,B2,B3) 77 // s X1,X2,hel,B1,B2,B3) 81 78 82 // This routine describes the anisotropic 79 // This routine describes the anisotropic decay of a particle of mass 83 // xi into 2 particles of masses x1,x2. 80 // xi into 2 particles of masses x1,x2. 84 // The anisotropy is supposed to follow a 81 // The anisotropy is supposed to follow a 1+3*hel*(cos(theta))**2 85 // law with respect to the direction of th 82 // law with respect to the direction of the incoming particle. 86 // In the input, p1,p2,p3 is the momentum 83 // In the input, p1,p2,p3 is the momentum of particle xi. 87 // In the output, p1,p2,p3 is the momentum 84 // In the output, p1,p2,p3 is the momentum of particle x1 , while 88 // q1,q2,q3 is the momentum of particle x2 85 // q1,q2,q3 is the momentum of particle x2. 89 86 90 // COMMON/bl12/QQ1(200),QQ2(200),QQ3(200) 87 // COMMON/bl12/QQ1(200),QQ2(200),QQ3(200),QQ4(200), 91 // s YY1(200),YY2(200),YY3(200) 88 // s YY1(200),YY2(200),YY3(200),YM(200),IPI(200) 92 // common/hazard/ial,IY1,IY2,IY3,IY4,IY5 89 // common/hazard/ial,IY1,IY2,IY3,IY4,IY5,IY6,IY7,IY8,IY9,IY10, 93 // s IY11,IY12,IY13,IY14,IY1 90 // s IY11,IY12,IY13,IY14,IY15,IY16,IY17,IY18,IY19 94 91 95 // DATA IY8,IY9,IY10/82345,92345,45681/ 92 // DATA IY8,IY9,IY10/82345,92345,45681/ 96 // PCM(E,A,C)=0.5*SQRT((E**2-(A+C)**2)*(E* 93 // PCM(E,A,C)=0.5*SQRT((E**2-(A+C)**2)*(E**2-(A-C)**2))/E P-N20800 97 // XI=YM(ij) 94 // XI=YM(ij) 98 95 99 // XE=WP 96 // XE=WP P-N20810 100 // B1=P1/XE 97 // B1=P1/XE P-N20820 101 // B2=P2/XE 98 // B2=P2/XE P-N20830 102 // B3=P3/XE 99 // B3=P3/XE 103 // XQ=PCM(XI,X1,X2) 100 // XQ=PCM(XI,X1,X2) 104 101 105 const G4double deltaMass = theParticle->ge 102 const G4double deltaMass = theParticle->getMass(); 106 103 107 G4double fi, ctet, stet; 104 G4double fi, ctet, stet; 108 sampleAngles(&ctet, &stet, &fi); 105 sampleAngles(&ctet, &stet, &fi); 109 106 110 G4double cfi = std::cos(fi); 107 G4double cfi = std::cos(fi); 111 G4double sfi = std::sin(fi); 108 G4double sfi = std::sin(fi); 112 G4double beta = incidentDirection.mag(); 109 G4double beta = incidentDirection.mag(); 113 110 114 G4double q1, q2, q3; 111 G4double q1, q2, q3; 115 G4double sal=0.0; 112 G4double sal=0.0; 116 if (beta >= 1.0e-10) 113 if (beta >= 1.0e-10) 117 sal = incidentDirection.perp()/beta; 114 sal = incidentDirection.perp()/beta; 118 if (sal >= 1.0e-6) { 115 if (sal >= 1.0e-6) { 119 G4double b1 = incidentDirection.getX(); 116 G4double b1 = incidentDirection.getX(); 120 G4double b2 = incidentDirection.getY(); 117 G4double b2 = incidentDirection.getY(); 121 G4double b3 = incidentDirection.getZ(); 118 G4double b3 = incidentDirection.getZ(); 122 G4double cal = b3/beta; 119 G4double cal = b3/beta; 123 G4double t1 = ctet+cal*stet*sfi/sal; 120 G4double t1 = ctet+cal*stet*sfi/sal; 124 G4double t2 = stet/sal; 121 G4double t2 = stet/sal; 125 q1=(b1*t1+b2*t2*cfi)/beta; 122 q1=(b1*t1+b2*t2*cfi)/beta; 126 q2=(b2*t1-b1*t2*cfi)/beta; 123 q2=(b2*t1-b1*t2*cfi)/beta; 127 q3=(b3*t1/beta-t2*sfi); 124 q3=(b3*t1/beta-t2*sfi); 128 } else { 125 } else { 129 q1 = stet*cfi; 126 q1 = stet*cfi; 130 q2 = stet*sfi; 127 q2 = stet*sfi; 131 q3 = ctet; 128 q3 = ctet; 132 } 129 } 133 theParticle->setHelicity(0.0); 130 theParticle->setHelicity(0.0); 134 131 135 ParticleType pionType; 132 ParticleType pionType; 136 #ifdef INCLXX_IN_GEANT4_MODE << 137 G4int deltaPDGCode = 0; << 138 #endif << 139 switch(theParticle->getType()) { 133 switch(theParticle->getType()) { 140 case DeltaPlusPlus: 134 case DeltaPlusPlus: 141 theParticle->setType(Proton); 135 theParticle->setType(Proton); 142 pionType = PiPlus; 136 pionType = PiPlus; 143 #ifdef INCLXX_IN_GEANT4_MODE << 144 deltaPDGCode = 2224; << 145 #endif << 146 break; 137 break; 147 case DeltaPlus: 138 case DeltaPlus: 148 if(Random::shoot() < 1.0/3.0) { 139 if(Random::shoot() < 1.0/3.0) { 149 theParticle->setType(Neutron); 140 theParticle->setType(Neutron); 150 pionType = PiPlus; 141 pionType = PiPlus; 151 } else { 142 } else { 152 theParticle->setType(Proton); 143 theParticle->setType(Proton); 153 pionType = PiZero; 144 pionType = PiZero; 154 } 145 } 155 #ifdef INCLXX_IN_GEANT4_MODE << 156 deltaPDGCode = 2214; << 157 #endif << 158 break; 146 break; 159 case DeltaZero: 147 case DeltaZero: 160 if(Random::shoot() < 1.0/3.0) { 148 if(Random::shoot() < 1.0/3.0) { 161 theParticle->setType(Proton); 149 theParticle->setType(Proton); 162 pionType = PiMinus; 150 pionType = PiMinus; 163 } else { 151 } else { 164 theParticle->setType(Neutron); 152 theParticle->setType(Neutron); 165 pionType = PiZero; 153 pionType = PiZero; 166 } 154 } 167 #ifdef INCLXX_IN_GEANT4_MODE << 168 deltaPDGCode = 2114; << 169 #endif << 170 break; 155 break; 171 case DeltaMinus: 156 case DeltaMinus: 172 theParticle->setType(Neutron); 157 theParticle->setType(Neutron); 173 pionType = PiMinus; 158 pionType = PiMinus; 174 #ifdef INCLXX_IN_GEANT4_MODE << 175 deltaPDGCode = 1114; << 176 #endif << 177 break; 159 break; 178 default: 160 default: 179 INCL_FATAL("Unrecognized delta type; t 161 INCL_FATAL("Unrecognized delta type; type=" << theParticle->getType() << '\n'); 180 pionType = UnknownParticle; 162 pionType = UnknownParticle; 181 break; 163 break; 182 } 164 } 183 165 184 G4double xq = KinematicsUtils::momentumInC 166 G4double xq = KinematicsUtils::momentumInCM(deltaMass, 185 theParticle->getMass(), 167 theParticle->getMass(), 186 ParticleTable::getINCLMass(pionType)); 168 ParticleTable::getINCLMass(pionType)); 187 169 188 q1 *= xq; 170 q1 *= xq; 189 q2 *= xq; 171 q2 *= xq; 190 q3 *= xq; 172 q3 *= xq; 191 173 192 ThreeVector pionMomentum(q1, q2, q3); 174 ThreeVector pionMomentum(q1, q2, q3); 193 ThreeVector pionPosition(theParticle->getP 175 ThreeVector pionPosition(theParticle->getPosition()); 194 Particle *pion = new Particle(pionType, pi 176 Particle *pion = new Particle(pionType, pionMomentum, pionPosition); 195 theParticle->setMomentum(-pionMomentum); 177 theParticle->setMomentum(-pionMomentum); 196 theParticle->adjustEnergyFromMomentum(); 178 theParticle->adjustEnergyFromMomentum(); 197 << 198 #ifdef INCLXX_IN_GEANT4_MODE << 199 // Set the information about the parent re << 200 // (as unique, integer ID, we take the rou << 201 G4int parentResonanceID = static_cast<G4in << 202 pion->setParentResonancePDGCode(deltaPDGCo << 203 pion->setParentResonanceID(parentResonance << 204 theParticle->setParentResonancePDGCode(del << 205 theParticle->setParentResonanceID(parentRe << 206 #endif << 207 179 208 fs->addModifiedParticle(theParticle); 180 fs->addModifiedParticle(theParticle); 209 fs->addCreatedParticle(pion); 181 fs->addCreatedParticle(pion); 210 // call loren(q1,q2,q3,b1,b2,b3,wq) 182 // call loren(q1,q2,q3,b1,b2,b3,wq) 211 // call loren(p1,p2,p3,b1,b2,b3,wp) 183 // call loren(p1,p2,p3,b1,b2,b3,wp) 212 // qq1(ij)=q1 184 // qq1(ij)=q1 213 // qq2(ij)=q2 185 // qq2(ij)=q2 214 // qq3(ij)=q3 186 // qq3(ij)=q3 215 // qq4(ij)=wq 187 // qq4(ij)=wq 216 // ym(ij)=xi 188 // ym(ij)=xi 217 // RETURN 189 // RETURN P-N21120 218 // END 190 // END P-N21130 219 } 191 } 220 } 192 } 221 193