Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // INCL++ intra-nuclear cascade model 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France << 27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics 28 // Joseph Cugnon, University of Liege, Belgium << 28 // Davide Mancusi, CEA 29 // Jean-Christophe David, CEA-Saclay, France << 29 // Alain Boudard, CEA 30 // Pekka Kaitaniemi, CEA-Saclay, France, and H << 30 // Sylvie Leray, CEA 31 // Sylvie Leray, CEA-Saclay, France << 31 // Joseph Cugnon, University of Liege 32 // Davide Mancusi, CEA-Saclay, France << 32 // >> 33 // INCL++ revision: v5.0_rc3 33 // 34 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 #define INCLXX_IN_GEANT4_MODE 1 35 36 36 #include "globals.hh" 37 #include "globals.hh" 37 38 38 #ifndef G4INCLClusteringModelIntercomparison_h 39 #ifndef G4INCLClusteringModelIntercomparison_hh 39 #define G4INCLClusteringModelIntercomparison_h 40 #define G4INCLClusteringModelIntercomparison_hh 1 40 41 41 #ifdef INCLXX_IN_GEANT4_MODE << 42 #define INCL_CACHING_CLUSTERING_MODEL_INTERCOM << 43 #endif // INCLXX_IN_GEANT4_MODE << 44 << 45 #include "G4INCLIClusteringModel.hh" 42 #include "G4INCLIClusteringModel.hh" 46 #include "G4INCLParticle.hh" 43 #include "G4INCLParticle.hh" 47 #include "G4INCLParticleTable.hh" << 48 #include "G4INCLCluster.hh" 44 #include "G4INCLCluster.hh" 49 #include "G4INCLNucleus.hh" 45 #include "G4INCLNucleus.hh" 50 #include "G4INCLKinematicsUtils.hh" 46 #include "G4INCLKinematicsUtils.hh" 51 #include "G4INCLHashing.hh" << 52 << 53 #include <set> << 54 #include <algorithm> << 55 47 56 namespace G4INCL { 48 namespace G4INCL { 57 49 58 /** \brief Container for the relevant inform << 59 * << 60 * This struct contains all the information << 61 * clustering algorithm. It is probably more << 62 * feeds on, hopefully improving cache perfo << 63 */ << 64 struct ConsideredPartner { << 65 Particle *particle; << 66 G4bool isTargetSpectator; << 67 G4int Z; << 68 G4int S; << 69 ThreeVector position; << 70 ThreeVector momentum; << 71 G4double energy; << 72 G4double potentialEnergy; << 73 << 74 ConsideredPartner() : << 75 particle(NULL), << 76 isTargetSpectator(false), << 77 Z(0), << 78 S(0), << 79 energy(0.), << 80 potentialEnergy(0.) << 81 {} << 82 << 83 ConsideredPartner(Particle * const p) : << 84 particle(p), << 85 isTargetSpectator(particle->isTargetSpec << 86 Z(particle->getZ()), << 87 S(particle->getS()), << 88 position(particle->getPosition()), << 89 momentum(particle->getMomentum()), << 90 energy(particle->getEnergy()), << 91 potentialEnergy(particle->getPotentialEn << 92 {} << 93 }; << 94 << 95 /// \brief Cluster coalescence algorithm use << 96 class ClusteringModelIntercomparison : publi 50 class ClusteringModelIntercomparison : public IClusteringModel { 97 public: 51 public: 98 ClusteringModelIntercomparison(Config cons << 52 ClusteringModelIntercomparison() { 99 theNucleus(NULL), << 53 zeroOut(); 100 selectedA(0), << 54 101 selectedZ(0), << 102 selectedS(0), << 103 sqtot(0.), << 104 cascadingEnergyPool(0.), << 105 protonMass(ParticleTable::getRealMass(Pr << 106 neutronMass(ParticleTable::getRealMass(N << 107 lambdaMass(ParticleTable::getRealMass(La << 108 runningMaxClusterAlgorithmMass(theConfig << 109 nConsideredMax(0), << 110 nConsidered(0), << 111 consideredPartners(NULL), << 112 isInRunningConfiguration(NULL), << 113 maxMassConfigurationSkipping(ParticleTab << 114 { << 115 // Set up the maximum charge and neutron 55 // Set up the maximum charge and neutron number for clusters 116 clusterZMaxAll = 0; 56 clusterZMaxAll = 0; 117 clusterNMaxAll = 0; 57 clusterNMaxAll = 0; 118 for(G4int A=0; A<=runningMaxClusterAlgor << 58 for(G4int A=0; A<=maxClusterAlgorithmMass; ++A) { 119 if(clusterZMax[A]>clusterZMaxAll) << 59 if(ParticleTable::clusterZMax[A]>clusterZMaxAll) 120 clusterZMaxAll = clusterZMax[A]; << 60 clusterZMaxAll = ParticleTable::clusterZMax[A]; 121 if(A-clusterZMin[A]>clusterNMaxAll) << 61 if(A-ParticleTable::clusterZMin[A]>clusterNMaxAll) 122 clusterNMaxAll = A-clusterZMin[A]; << 62 clusterNMaxAll = A-ParticleTable::clusterZMin[A]; 123 } 63 } 124 std::fill(candidateConfiguration, << 64 } 125 candidateConfiguration + Parti << 65 126 static_cast<Particle*>(NULL)); << 66 void cleanUp() { 127 << 67 delete candidateConfiguration; 128 std::fill(runningEnergies, << 68 consideredPartners.clear(); 129 runningEnergies + ParticleTabl << 69 runningConfiguration.clear(); 130 0.0); << 70 } 131 << 132 std::fill(runningPotentials, << 133 runningPotentials + ParticleTa << 134 0.0); << 135 << 136 std::fill(runningConfiguration, << 137 runningConfiguration + Particl << 138 -1); << 139 71 >> 72 void zeroOut() { >> 73 candidateConfiguration = 0; 140 } 74 } 141 75 142 virtual ~ClusteringModelIntercomparison() 76 virtual ~ClusteringModelIntercomparison() { 143 delete [] consideredPartners; << 77 cleanUp(); 144 delete [] isInRunningConfiguration; << 145 } 78 } 146 79 147 virtual Cluster* getCluster(Nucleus*, Part 80 virtual Cluster* getCluster(Nucleus*, Particle*); 148 virtual G4bool clusterCanEscape(Nucleus co << 81 virtual G4bool clusterCanEscape(Cluster const * const); 149 82 150 private: 83 private: 151 void findClusterStartingFrom(const G4int o << 84 void findClusterStartingFrom(const G4int oldA, const G4int oldZ); 152 G4double getPhaseSpace(const G4int oldA, C << 85 G4double getPhaseSpace(G4int oldA, Particle *p); 153 86 154 Nucleus *theNucleus; 87 Nucleus *theNucleus; >> 88 Particle *theLeadingParticle; >> 89 ParticleList consideredPartners; >> 90 ParticleList* candidateConfiguration; >> 91 >> 92 G4double runningEnergies[ParticleTable::maxClusterMass]; >> 93 ThreeVector runningMomenta[ParticleTable::maxClusterMass]; >> 94 ThreeVector runningPositions[ParticleTable::maxClusterMass]; >> 95 ParticleList runningConfiguration; // Use deque instead? >> 96 G4double runningPotentials[ParticleTable::maxClusterMass]; 155 97 156 G4double runningEnergies[ParticleTable::ma << 98 G4int selectedA, selectedZ; 157 ThreeVector runningMomenta[ParticleTable:: << 158 ThreeVector runningPositions[ParticleTable << 159 G4double runningPotentials[ParticleTable:: << 160 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTE << 161 Hashing::NucleonItem runningConfiguration[ << 162 #elif defined(INCL_CACHING_CLUSTERING_MODEL_IN << 163 G4int runningConfiguration[ParticleTable:: << 164 #else << 165 #error Unrecognized INCL_CACHING_CLUSTERING_MO << 166 #endif << 167 << 168 G4int selectedA, selectedZ, selectedS; << 169 G4double sqtot; 99 G4double sqtot; 170 100 171 G4int clusterZMaxAll, clusterNMaxAll; 101 G4int clusterZMaxAll, clusterNMaxAll; 172 102 173 G4double cascadingEnergyPool; << 103 G4double participantEnergyPool; 174 << 175 /// \brief Lower limit of Z for cluster of << 176 static const G4int clusterZMin[ParticleTab << 177 /// \brief Upper limit of Z for cluster of << 178 static const G4int clusterZMax[ParticleTab << 179 << 180 /// \brief Precomputed factor 1.0/A << 181 static const G4double clusterPosFact[Parti << 182 << 183 /// \brief Precomputed factor (1.0/A)^2 << 184 static const G4double clusterPosFact2[Part << 185 << 186 /// \brief Phase-space parameters for clus << 187 static const G4double clusterPhaseSpaceCut << 188 104 189 static const G4double limitCosEscapeAngle; 105 static const G4double limitCosEscapeAngle; 190 << 191 const G4double protonMass; << 192 const G4double neutronMass; << 193 const G4double lambdaMass; << 194 << 195 G4int runningMaxClusterAlgorithmMass; << 196 << 197 G4int nConsideredMax; << 198 G4int nConsidered; << 199 << 200 /** \brief Array of considered cluster par << 201 * << 202 * A dynamical array of ConsideredPartner << 203 * variable and filled with pointers to nu << 204 * clustering. We used to use a ParticleLi << 205 * made it very cumbersome to check whethe << 206 * included in the running configuration. << 207 * coupled with a boolean mask (\see{isInR << 208 * overhead by a large amount. Running ti << 209 * by almost 30% (!). << 210 * << 211 * Lesson learnt: when you need speed, not << 212 */ << 213 ConsideredPartner *consideredPartners; << 214 << 215 /** \brief Array of flags for nucleons in << 216 * << 217 * Clustering partners that are already us << 218 * configuration are flagged as "true" in << 219 */ << 220 G4bool *isInRunningConfiguration; << 221 << 222 /** \brief Best cluster configuration << 223 * << 224 * This array contains pointers to the nuc << 225 * cluster configuration that has been fou << 226 */ << 227 Particle *candidateConfiguration[ParticleT << 228 << 229 #if defined(INCL_CACHING_CLUSTERING_MODEL_INTE << 230 typedef std::set<Hashing::HashType> HashCo << 231 typedef HashContainer::iterator HashIterat << 232 << 233 /// \brief Array of containers for configu << 234 HashContainer checkedConfigurations[Partic << 235 #elif defined(INCL_CACHING_CLUSTERING_MODEL_IN << 236 /** \brief Class for storing and comparing << 237 * << 238 * This class is actually just a wrapper a << 239 * pointers. It provides a lexicographical << 240 * (SortedNucleonConfiguration::operator<) << 241 * containers. << 242 */ << 243 class SortedNucleonConfiguration { << 244 public: << 245 // Use Particle* as nucleon identifier << 246 typedef G4int NucleonItem; << 247 << 248 /// \brief Constructor << 249 SortedNucleonConfiguration() : theSize << 250 << 251 /// \brief Copy constructor << 252 SortedNucleonConfiguration(const Sorte << 253 theSize(rhs.theSize), << 254 nucleons(new NucleonItem[theSize]) << 255 { << 256 std::copy(rhs.nucleons, rhs.nucleons+t << 257 } << 258 << 259 /// \brief Destructor << 260 ~SortedNucleonConfiguration() { << 261 delete [] nucleons; << 262 } << 263 << 264 /// \brief Helper method for the assig << 265 void swap(SortedNucleonConfiguration & << 266 std::swap(theSize, rhs.theSize); << 267 std::swap(nucleons, rhs.nucleons); << 268 } << 269 << 270 /// \brief Assignment operator << 271 SortedNucleonConfiguration &operator=( << 272 SortedNucleonConfiguration tempConfi << 273 swap(tempConfig); << 274 return *this; << 275 } << 276 << 277 /** \brief Order operator for SortedNu << 278 * << 279 * The comparison is done lexicographi << 280 * element to the last). << 281 */ << 282 G4bool operator<(const SortedNucleonCo << 283 // assert(theSize==rhs.theSize); << 284 return std::lexicographical_compare( << 285 } << 286 << 287 /// \brief Fill configuration with arr << 288 void fill(NucleonItem *config, size_t << 289 theSize = n; << 290 nucleons = new NucleonItem[theSize]; << 291 std::copy(config, config+theSize, nu << 292 std::sort(nucleons, nucleons+theSize << 293 } << 294 << 295 private: << 296 /// \brief Size of the array << 297 size_t theSize; << 298 << 299 /// \brief The real array << 300 NucleonItem *nucleons; << 301 }; << 302 << 303 typedef std::set<SortedNucleonConfiguratio << 304 typedef SortedNucleonConfigurationContaine << 305 << 306 /// \brief Array of containers for configu << 307 SortedNucleonConfigurationContainer checke << 308 #elif !defined(INCL_CACHING_CLUSTERING_MODEL_I << 309 #error Unrecognized INCL_CACHING_CLUSTERING_MO << 310 #endif << 311 << 312 /** \brief Maximum mass for configuration << 313 * << 314 * Skipping configurations becomes ineffic << 315 */ << 316 G4int maxMassConfigurationSkipping; << 317 }; 106 }; 318 107 319 } 108 } 320 109 321 #endif 110 #endif 322 111